|For the Scientific American.] A LIGHT UNIT.

The measurement of the intensity of artificial light is one of the problems that has not been satisfactorily solved, though many able physicists have given it their earnest attention.
Among the instruments that have been contrived to accom plish this result is the chlor-hydrogen photometer, first introduced by Professor J. W. Draper, and afterwards modified by Bunsen and Roscoe. Though this instrument is very beautiful and philosophical in its action, it is open to the objection that it measures rather the chemical or actinic than the illuminating power of a flame. The polariscope photometer of Arago, and the electro-photometer of Masson, are also very
ingenious instruments; but the dificulties attending their ingenious instruments; but the difficulties attending their use have, thus far, prevented their introduction.
The photometer generally employed is that of Ritchie or of Bunsen, and especially the latter. The principle iuvolved in its action is the determination, by well known means, of the relative brilliancy of two lights, one of which is supposed to be invariable. Heretofore, the invariable light, or unit, has been a flame produced by a candle, which is defined as been a flame produced by a candle, which is defined as
" a sperm candle of six to the pound, burning at the rate of 120 grs. per minute." With this the second flame is com120 grs. per minute." With this the second flame is com-
pared; and, if it is ten or fifteen times as strong, it is spoken pared; and, if it is ten or fifteen times as
of as being a ten or fifteen candle light.
Though this method is reliable in theory, in practice it is open to error, owing to the variability of what should be the invariable light or unit. If we could always obtain sperm candles possessing the same composition, the indications might be received with a certain degree of reliance; but when we remember that, at present, the so called sperm candles are made of different materials, in different proportions, we see how little confidence is to be placed on a light unit of this description ; and it is the object of this communication to detail the results of an attempt to obtain a reliable and invariable light unit.
It is evident that, if a given solid is heated to a certain temperature, it will emit a light of a definite or corresponding intensity. At the same time, the solid will undergo a certain expansion which may be employed to indicate or measure the intensity of the light emitted. I therefore arranged a fine platinum wire so that it was heated by a Bunsen flame, and the amount of expansion and equivalent light determined. It was soon found that, though the arrangement was very well in theory, the practical difficulties in its construction and mode of action were such that it would not answer. I consequently resorted to the following modification, in which measurements of expansion of the wire are not necessary :
A flame of pure dry hydrogen, burning at a definite rate, was caused to impinge upon a platinum coil, when it was found that, so long as wire of the same diameter was used in cound that, so long as wire of the same diameter was used in constructing coils of the, same dimensions, the latter, on be-
ing subjected to hydrogen flames issuing from burners that ing subjected to hydrogen flames issuing from burners that
were similar in all respects, always emitted a light of the were similar in
same intensity.
The dimensions of the coils and burners employed in my experiments were as follows: A platinum wire, one decimeter in length, and weighing twenty-five centigrammes, was wound into a close spiral coil of five turns, four millimeters in diameter on the outside. The remainder of the wire was then turned up parallel to the axis of the coil, and terminated in a hook by which it was suspended over the hydrogen flame.
The burner presented a circular opening, one millimeter in diameter. The platinum spiral was suspended over this so as nearly to touch it, and the supply of hydrogen regulated to produce a flame which kept the whole coil at a white heat. Such an arrangement is easily reproducible in any locality, and when the rate of combustion of the hydrogen is the same, it must necessarily emit a light of the same brilliancy : it consequently provides a light unit, which meets all the conditions of the problem.
The want of intensity in the above described light unit may be urged as an objection, but it is rather an advantage than otherwise, when lights of low intensity are to be examined. If the brilliancy of the light to be measured is very great, any objection on this account is easily remedied by determining the value of an ordinary gas or candle flame in the above light unit, and employing it as an intermediate unit of comparison, from which the value of the brilliant light may be calculated in the proposed light units.
Among the advantages gained by such a light unit is the elimination of errors arising from the variation in the light giving power of the volatile hydrocarbons, produced in the combustion of a candle. According to Dr. Frankland, the luminosity of such flames depends-not on the incandescence of solid particles, but on the luminosity of the gases or
vapors produced in the flame during combustion. Since the composition and luminosity of these gases must vary greatly with the temperature, rate of combustion, and nature of the material composing the candle, it is evident that there must be similar variations in the brilliancy of the resulting flame. The use of an incandescent solid, as the platinum wire, avoid for the production of the light unit to the simplest state.

Tunnel between England and Franee.

 Another project for a submarine roadway under the Eng lish channel has been mooted, and a committee of engineers has approved the plan, which is the production of a Frenchman, M. Thome de Gamond. There is novelty in the schemeHaven and Dieppe where the distance between the two coun tries is 64 miles, in preference to between the South Fore only twenty miles. The reason for this choice of locality is not apparent.

Sheehan's Patent for Steelifying Iron

In another column we publish the story of Thomas Sheehan, and how he happened to make an invention by the railroad companies who are using his process for steeli fying iron, and the amounts paid for the privilege

Chicago \& Northwes Michigan Central...

$\$ 3,500$
1,500

Chicago, Burlingto

Chicago, Burlington, \& Quincy
1,500
2,000
Pennsylvania Central.
Pittstrurgh, Fort Wayne \& CBicag
Camden \& Amboy.
ittle Miami Amboy. 1,20
Little Miami, Columbus, \& Xenia
Schenectady Locomotive Works.
Chicago, Rock Island, \& Pacific.
St. Louis \& Iron Mountain.
North Missouri
Vandalia, Terre Haute, \& Indianapolis
St. Louis \& Indianapolis. 1,900 vention, that have not yet settled with the patentee, but who acknowledge their liability; and still others, "against whom suits have been brought in the United States Courts, which have not come to trial. A judgment has been obtained against one of the companies very recently for $\$ 12,800$, which has not been settled.

IT is a shameful thing to be weary of inquiry, when what we search for is excellent.

nent home and foreagn vatents.

Lamp.-Dr. Franklin T. Grimes, Liberty, Mo.-The invention relates to che class of lamps in which a tube or funnel is combined with the bowl, the within a short distance of the bottom of the same, whereby the bowl is con erted into a fountain reservoir,in which, whenit is filled, there is a vacuum formed above the surface of the oil or liquid, which is consequently main funnel where it is subject to atmospheric pressure. The invention consists mainly in a peculiar arrangement of the valve apparatus, whereby certain
advantages are attained in the regulation of the supply of oil to the wick tubes, in filling the reservoir, and in other operations incidental and necesary to the use of the lamp
Insect Trap.-Thomas Wier, Lacon, Ill.-This invention relates to the use of two or more pieces of wood, of any form or size, and fastened together them, said pieces being intended to be placed among the branches of fruit trees, or on the ground near fruit trees, and to serve as a trap for the larva of moths, and other noxious insects,
Handle Strap for Traveling Bag.-Arthur Alexandre, os New York
city.-To the frame of a traveling bag are attachedrings, which are preferably made square, as allowing the strap to be passed through them more readily The strap is made of sumfilent length to adapt it to serve as a shoulder strap, and may be made in one piece, or in two pieces connected by a buckle. The
ends of the straps are passed through the rings, and are secured to the body of the strap by a button, by sewing, or by other convenient means. To the
strap, at a distance from its ends equal to about one third the distance from the ends to the center of the straps, are attached two hooks. The middle part of the strap is made double by having the ends of a short strap attached
to it, and has holes formed in the lower ply to receive the hooks. To adjust thit, and has holes formed in the lower ply to receive the hooks. To adjust
the handle strap for use as a handle, the hooks are passed inward through the rings and brought upward along the under side of the strap, and hooked into the holes in the lower ply of its double middle part. To adjust the
strap for use as a shoulder strap, the hooks are unhooked, and the strap is strap for use as a shoulder strap, the hooks are unhooked, and the strap is drawn out to its entire length. Keepers or slides are placed upon the strap,
near the hooks, and, when the strap is extended for use as a shoulder strap near the hooks, and, when the strap is extended for use as a shoulder strap,
are slipped over the hooks to cover them and keep them from catching upon anything with which the strap may come in contact.
Flag halyard.- William Albert, Brooklyn, N. y.-This invention relates to an improved manner of securing flag halyards; and it consists in
attaching them to a weight or traveler ftted on a rod or guide attached to the royal backstays of a ship or other convenient place, or to the flag sta nearits base, so that it can rise and fall as the halgards vary in length accor
ding to their condition of dryness, thereby always keeping them taut but no ing to their condition of dryness, thereby always keeping them taut but no then becoming wet. This plan will not injure the halyards, while it will always keep them taut and trim. In the common way, they will sometimes Thill Codpling.-Coleman Bridgman, st. Cloud, Minn.-The object this invention is to furnish a simple, convenient, and safe coupling for thills
of buggies, wagons, etc. It consists in a jointed coupling pin and slotted of buggies, wagons, etc. It consists in a jointed coupling pin and slotte par, and also in a slotted washer, arranged to form a simple, durable, and out hammer, wrench, or other tool, without trouble, and in an expeditious and easy manner.
W asi Boiler.-Silas Bennett, Newcastle, Pa.-This invention has for its constructed and arranged as to distribute the circulating suds evenly over all parts of the clothes, so as to wash the clothes evenly and avoid staining in one place. It consists in the construction and arrangement of the various pipes and distributing tubes, with a flanged and pertorated bottom, vertical and cross strips, constructed and arranged in connection with each other o accomplish the purpose set forth.
Fan MilL.-Alexander Plymate, of Blue Earth County, Minn., administra
tor of Franklin H. Plymate, deceased. -This is an improvement in fan mille which consists in a peculiar construction of the feed board, and in the use o a two part shoe for the support of the sieves, the parts being a
Coupling Hoors for Coal Cars. - Frank bugh of boon
Coupling Hoors for Coal Cars.-Frank Bush, of Boonton, N. J. -In
the ordinary coupling hook the inner link is passed through a hole in the forward part of the shank of the hook, and is then welded. so that when it is necessary to repair or renew the link, the entire hook has to be detached from the car and taken to the shop, where it requires at least three men to
handle it upon the anvil while the link is being welded. To avid this inconhandle it upon the anvil while the link is being welded. To avold this incon-
venience and expense, the inventor forms a second or inner hook upon the venience and expense, the inventor forms a second or inner hook upon the
shank of and just inside of the outer hook. The point of the inner hook exshank of and pust inside of the outer hook. The point of the inner hook ex-
tends back parallel with the shank of the outer hook,so as to enter a hole in a plate on the end of the draw bar. By this construction, by loosening the hook, the coupling link or ring may be readlly placed in or removed from possible for the link or ring to become detached.

盖usimess ayd wersonal.

The Charge for Insertion under this head is One Dollar a Line. Lf the Nottces
exceed Four Lines. One Dolar and a Balr per Line will be charged.
Bailey's Star Hydrant has superior merits to all others. Ad dress G. C. Bailey \& Co., Pittsburgh, Pa., for descriptive circulars and prices.
shop's Tight Work Stave Machine saws 8,000 staves per day, lengthwise of the grain, w
Beach \& Bishop, Menasha, Wis.
Builder's Scaffold-Patent for Sale-For further particulars, I want an Agent, having an extensive experience in Selling Patent Rights, with best of References as to character and ability, to sell tion. A rare opportunity. Address W. E. Bartlett, Newburgh, N. Y.
Entire or State Rights of McGee's CombinationCollar Pin for Sale. See Description, page 259,
Glass Cutters' Wheels-all grits-J. E. Mitchell—Phila.
Cutlers' Grindstones-price reduced-Mitchell—Phila.
Mitchell's Grindstone Depot, 310 York Avenue-Phila.
For Steam Fire Engines, address R. J. Gould, Newark, N. J.
Wanted-a second hand Staple Machine, in perfect order, for making the Boardman pattern of Blind Staples. It is to be sent out of th United States. Address, by mail, L. E.
New York, stating where it
The Oil used on all the Machinery at the A. I. Fair is from Sign Factory-The largest Metal Sign Factory in the world Orders solicited. Rates low, and work
Adams, 132 South 5 th A venue, New York. Wanted-A first class Miller for White Lead Works. Ad
dress, with references, \&c., White Lead Company, New Britain, Conn. Wanted-The best Shoe Peg Machine made,-also, 2 d hand Ward Spoke Lathe. Send description \& price to HURD \& BRO., Urbana, O.
Walrus Leather, for Polishing Steel, Brass, and and Plated Ware. Greene, Tweed \& Co., 18 Park Place, New York.
Repertory of Arts. -For sale, a complete set of the Repertory of Arts, handsomely bound, half calf, uniform size, with general indices of Arts, handsomely bound, half calf, uniform size, with general indices
comprising five series and 113 volumes. Perfect in every respect. Em. comprising five series and 113 volumes. Perfect in every respect. Em-
bracing Inventions, Discoveries, and Improvements in Arts, Manufactures
and Agriculture, with Engravings-from 1795 down to 1856 . Apply to

Turkey Boxwood pieces for Sale, suitable for engravers and rancy turners' use. Address Stephens \& Co., Riverton, Conn.
Patent Felt Floor Carpeting. C. J. Fay, Camden, N. J.
All kinds of Presses and Dies. Bliss \& Williams, successors to Mays \& Bliss, 118 to 122 Plymouth St. Brooklyn. Send for Catalogue. Sold in bottles, cans, and barrels, by Wm. F. Nye, New Bedford, Mass.
Gear Wheel Moulding Machines-Paget's Blocks and Gipsy Winches (English Patent). Hamilton E. Towle, 176 Broadway, New York.
The paper that meets the eye of manufacturers throughout the United States-Boston Bulletin, 8400 a year. Advertisements lic. a line pright Drills-The best in the world are
Consolidation-"American Manufacturer and Trade of the West." Pittsburgh. Finest and best paper of its class in the world. Everybody takes it.
resses, Dies, and all Can Tools-Ferracute Works, Bridgeton, N. J.
Vinegar-how made-of Cider, Wine, or Sorgo, in 10 hours F sage, cromwell, Conn
Best Oak Tanned Leather and Vulcanized Rubber Belting.
Greene, Tweed \& Co., 18 Park Place Greene, Tweed \& Co., 18 Park Place, New. York.
o Cotton Pressers, Storage Men, and Freighters.-35-horse Engine and Boiler, with two Hydraulic Cotion Presses, each capable o pressing 35 oales an hour. Machinery first class. Price extremely low. Wm. D. Andrews \& Bro., 414 Water st. New York.
L. \& J. W. Feuchtwanger, Chemists, 55 Cedar st., New York, Send your address to Howard \& Co., No. 865 Broadway, New York, and by return mall you will receive their Descriptive Price List o Waltham Watches. All prices reduced since February 1st.
Self-testing Steam Gauge.-The accuracy of this gauge can circular. E. H. Ashcroft, Boston, Mass.
Ashcroft's Low Water Detector. Thousands in use. Price \$15. Can be applied tor less than \$1. Send for Circular. E. H. Ashcrof Boston, Mass.
Brown's Coalyard Quarry \& Contractors' Apparatus for hoisting and conveyingmaterial by iron cable. W.D.Andrews \& Bro,414 Water st.,N.Y.
Presses, Dies, and Tinners' Tools. Conor \& Mays, late Mays \& Bliss, 4 to 8 Water st., opposite Fulton Ferry, Brooklyn, N. Y.
Over 1,000 Tanners, Paper-makers, Contractors, \&c., use the Pumps of Heald, sisco \& Co. See advertisement.
For Solid Wrought-iron Beams, etc., see advertisement. Address Union Iron Mills, Pittsburgh, Pa , for lithograph, etc. Mining, Wrecking, Pumping, Drainage, or Irrigating Machinery, for sale or rent. See advertisement, Andrew's Patent, inside page.
Superior Belting-The best Philadelphia Oak Tanned Leather Belting is manufactured by c. w. Arny, 301 Cherry Street, Philadelphia. Improved Foot Lathes, Hand Planers, etc. Many a reader of this paper has one of them. Selling in all parts or the country, Canada,
Blake's Belt Studs. The cheapest and best fastening for Rubber and Leather Belting. Greene, Tweed \& Co., 18 Park Place, N. Y.
Patent for sale, or Partner wanted with capital to introduce the same. Piease address Philip Marquard, 468 Swan st., Buffalo, N. Y. To Ascertain where there will be a demand for new machinery or manutacturers' bapplies read Boston Commercial Bulletin's Manufacturing News of the United States. Terms $\$ 400$ a year
Dickinson's Patent Shaped Diamond Carbon Points and AdJustable Holder for dressing emery wheels, grindstones, etc. See Scientific
American, July 24 and Nov. 20, 1869. 64 Nassau st., New York. Railway Turn Tables-Greenleaf's Patent. Drawings sent on application. Greenleaf Machine Works, Indianapolis, Ind. Peck's Patent Drop Press. For circulars address the sole
manufacturers, Milo, Peck \& Co.. New Haven, Ct:

Mrs. W-has Examples for the Ladies. January 18t, 1871, she had made 24,476 vests, (in 1870, 2,255 vests, 17 costs ; to 50 pairs of pantaloons, besides doing the family sewing for six persons a the work ranging from the finest muslin to the heaviest beaver cloth.
 Brovn, 7bledo, ohio.

Suswers to Corregpoudents.

SPECIAL NO TE. -This column is designed for the general interest and in.
struction of our readers, not for gratuitous repliesto questions of a purely business or personal nature. We will publish such inquiries, however when vaid for as advertisementsat 1.00 a line, under the head of "Business and Personal."

Coil in Boilers.-In answer to M. S. M., in relation to coil in boiler, I would say that his plan of heating water is not practicable. The sudden contraction of his coll, when the water supply is turned on,
will start any joint he can put in. I have tried $23 / 2$ inch wrought dipe (very heavy), running it through fre box, over bridge wall to back end of boiler; the pipe 8 feet long would contract 18 -12 inches, as soon as water was turned on, and of course start a joint or burst the connections. If
s . W. will use a heater of 5 inch pipe, such as is used for casing oil wells, say 10 feet long, and put in six lengths of 1 inch pipe, using return bends,
and let his exhanust steam heat his water, he will be on a sure safe footing; and if hehas it arranged soas 0 save a steady continuous feed on his boller, so much the better, for he will use less fuel and have no explosion. - E. A., of Pa.

Exterminating Rats and Mice.-I saw an inquiry, from one of your readers, how to exterminate rats and mice. One of the best
remedies I have used is an equal mixture of flour and plaster of Paris. It is preferable to poison, because it will not hurt cats when catching them.

- F. s., of Pa.
Floating of Solid in Molten Iron.-Permit me to suggest, in answer to S. H. W., that the probable cause, of cold iron floating on melted iron, is the attraction of cohesion in the latter. Light pleces of
metal, such as a piece of fine wire, a small sewing needle, or a flat piece metal, such as a piece of fine wire, a small sewing needle, or a flat piece
of sheet lead will float on water, and the only satisfactory reason of its of sheet lead will float on water, and the only satistactory reason of its
doing so which occurs to me is, that the attraction of the particles of water for each other is sufficlent to resist the passage of such light objects through its surface.-W. J. B.
J. R., of Slippery Rork, Pa.-The mineral you send appears to be an earthy carbonate of iron, and should be assayed to determine its value. It would be of interest to know how it occurs, whether in beds or
velns, in either case how thick, as well as the direction and amount of dip; the associated frocks, above and below, whether shale, limestone, etc.;
whether reddish nodules, or lumps of an iron ore with concentric coatings, whether reddish nodu
nccur in the vicinity.
What MUSt I Do ?-When botches want to borrow my nice tools, and when I will not lend them, they call me names. Must I stand and take it, or lend the tools?-J. P. W.
Aness of persecution.
J. I. M., of Pa.-Relatively to the axle, all parts of a rolling wheel move with an uniform velocity. Relatively to the plane upon which
it rolls, the advance movement of the top of the wheel is temporarily it rolls, the advance movement of the top of the wheel is temporarily
greater than that of the bottom; but as all parts of the perimeter are successively top and bottom, the average advance of each part is equal.
A. J. H., of Mass.-All else being equal, the mechanical powers of screws are relatively as their pitch, or the number of threads to
the inch on each, without respect to their diameters; but the larger the diameter of the screw with a given pitch is, the less is its friction in working, owing to the reduction of the inclination of the thread. A screw of larger diameter will raise 'greater weight without stripping the thread, than one of smaller diameter with equal pitch. For these reasons, to make an easy working and durable scr
rather than of smaller diameter.
G. K., of N. Y.-Friction does not increase with the increase of surface, but-with some slight variations, not yet fully accounted for,-
directly as the pressure of the rubbing surfaces against each other. This directly as the pressure of the rubbing surfaces against each other. This
answer refers to the static or fixed force required to overcome the friction answer refers to the static or fixed force required to overcome the friction
of bodies, and not to the power consumed in overcoming it for a given space of time, which will be as the coeff cient of friction in pounds, multi-
plied by the space it overcomes in each minute of time; this will be explied by the space it overcomes in each minute of time; this will be ex-
pressed in horse power by the quotient obtained in dividing the product pressed in
by 33,000 .
G. L., of Minn., sends us a lit of maple branch, containing a peculiar insect, nicely housed therein, and asks ${ }^{\circ}$ what the bug is. It is a Hymenopter, one of the "wood-wasps," as the Germans call them, or
"horn-tails." The long horny borer at the end of the body, contains two fine, serrated needles for boring holes, in which they deposit their eggs.
This species is the Tremex columba, and usually infests the elm, button This species is the Tremex columba, and usually infests the elm, button-
wood, and pear. Thegrub or larva is yellowish white, about an Inch and wood, and pear. Thegrub or larva is yellowish white, about an inch and
a half long, with a horn on the hind end. J. C. C., of Pa.-Your mineral specimen is simply hornblend
-of no use in the arts. C. D. A., of N. Y.-The subject of balancing cylinders was treated at great length in Vol. XIII.
C. B. R., of N. B.-The draft of a furnace might undoubtedly Hindrance to the Flow of Water throvgh Pipe.J. R. B.,query 17, page 187, says the descent in his pipe is even, but I pre-
sume an accurate proflle would show a slight depression at some point sume an accurate profle would show a slight depression at some point
perhaps at the spring. A depression equal to the diameter of the bore Would be suffcient to prevent the air from escaping at the upper end; and
if the current is not rapid enough to carry it through, it will remain, and if the current is not rapid enough to carry it through, it will remain, and
Its accumulation is virtually so much subtracted from the fall, thusretard its accumulation is virtually so much subtracted from the fall, thins retard-
ing the flow. When the hight of the column of confined air becomes equal ing the flow. When the hight of the column of conflned air becomes equal
to the difference of level between the spring and the discharge-that is, when its lower end reaches as much below the level of the discharge as 1ts upper end is below the level of the spring,--the water pressure becomes
equalized, and the flow stops. The remedy is very simple. Make a small hole or leak in the top of the pipe, at the summit, or highest point below the depression, and leave it open permanently for the escape of the air.-
O.A. B., of N. \mathbf{Y}.
Gas for Toy Balloons.-C. B. S. can make this gas by pouring slightly diluted muriatic acid upon an equal weight of zinc, in a covered vessel having a small tap or stop cock in the top for filling the bal-
loons. The vessel should be made of lead, to prevent corrosion. It is impossible to estimate the amount of material, as the balloons generally vary greatly in size. He should be very careful with the gas; it is highly
inflammable.-C. O. I., of Pa. inflammable.-C. O. I., of Pa.
Skeleton Leaves.-J. V. M., query 3, October 14, will find that strong vinegar will destroy all the pulpy matter of leaves, withou
injuring the fibrous parts. Leaves with woody fibers, such as those of the different species of ivy, require to be left in the vinegar for a fortyight
or longer. The skeletons can be bleached by chlorine gas, of or longer. The skeletons can be bleached by chlorine gas, of which com-
mercial chloride oflime is the most convenient preparation for the pur mersial chloride oflime
poee. - D. B., of N. Y.
artist's Canvas.-J. T. M. C. can make a very cheap canvas by stretching a sheet of damp paper on a pane of glass or board, and, when
partially dry, pasting on it four or flye pieces of thin muslin, each piece partially dry, pasting on it four or five pieces of thin muslin, each piece
being allowed to dry before another is put on; and all must be stretched being allowed to dry before another is put on; and all must be stretched
very tight, and rubbed smooth. The paste should be made of isinglass very tight, and rubbed smooth. The paste should be made of isinglasi
rather than flour. Then cover it with white lead, using as little as possible, putting it on with a knife. Afterseveral days, give it a coat of paint and stipple it with a blender to give it a tooth. Leave it on the glass till and stipple it whth a blender to give it a too
the picture is finished. - E. s. s., of
Force of Falling Bodies.-Let me inform J. E. that: As the accelerating influence of gravitation upon a falling body, and its re-
tarding influence upon an ascending body, are equal, the force of the blow struck by the falling body, if all the force could be utillzed, would
be exactly enough to raise the body again to the place from which it fell. be exactly enough to raise the body again to the place from which it fell.
Hence, to find the force of a falling body, multiply its weight, in pounds, Hence, to find the force of a falling body, multiply its weight, in pounds,
by the hight in feet from which it has fallen, and you have the force in foot pounds. And it may interest J. E. to know further that to find the striking force of a body moving in any direction, he may use the following formula: Divide the velocity, in feet, per second, by 8 (or, for greater accuracy, 8.04), and multiply the square of the quotient by the weight o Aquírium Cement.-C. E. G. wishes to know how to make aquarium cement. Here is a receipt, which I think is goon,'taken from a newspaper: Take one part, by measure, of hithage, one or plaster of Paris, one of fine beach sand, and one of finely powdered rosin.
wanted for use, make into putty with boiled linseed oll.-E. M. D.
Correction.-In publishing my answer to D. D. D., of N. Y. you made me say, " better not nse back gear," or something near this: it should read: "better use
slow.-W.W. T., ofN. \mathbf{Y}.
Ink Stains on Leather.-H. S., query 4, September 30 , should try oxalic acid, or the so called salts of lemon. I have used the
former, but it varies in its effect upon different leathers. $-D$. B., of N. Y Heating Surafce of Boilers.-C. \& H. A., query 1, Oct 14, will find the following to be the proper proportions: For locomotive bollers, there should be about 80 squarefeetfor each square foot of grate
bars, and, on each square foot of grate bars, about 1 cwt. of coke or coal should be burned per hour. In stationary bollers, the number of square feet of heating surface required to evaporate a cubic foot of water pe hour is about 70, in Cornish boilers; and the heating surface, to each squarefoot of fire grate, should be from 13 to 15 square feet in wago boilers, and 40 square feet in Cornish boilers.-D. B., ofN. Y.
Bugs on Plants.-Insects and lice, infesting plants, may be effectually destroyed by the application of white hellebore in tine powder -c. T., of Vt .
Tender Gums.-If your correspondent, W. W. G., will use common salt and a soft brush,
get hard.-J. B. N., of Ohio.
Table Cutlery.-The worst agent now known for the de struction of table cutlery, is the steel knife sharpener, recently invented and in general use. I have been obliged to discard it, and to use the grindstone, as
C. T., of Vt .
Ġrinding Claf.-Answer to D. H. S., Jr., query No. 15, Aug 26. The means required are a pair of rollers, horizontally fixed on a sub stantial bed three or four feet in hight. One roller must travel faster than the other. A trough, with scrapers to throw down the detached clay,
with suspended weights attached, will also be required.-J. M. Mc., of -
loth for Brick Hacks.-D. H. S., Jr., query 16, August 26. Oil cloth or felting is used for this purpose, and should be nailed t
strips of lathing, or better still, to iron strips bent at rightangles, with strips of lathing, or heoter sthl, to iron sthps bent at rightangles, with Burning Brick with Wood.-D. H. S., Jr., query 17, August 26.-It is difficult to answer this query, without knowing the class of clas J. M. McC., of

Queries.

[We present herewoth a seriesof inquiries embracing a variety of topics of reater or less general interest. The questions are sionple,
prefer to elicit practical answers from our readers.
1.-Tempering Small Steel Goods.-How can I temper a plece of steel about four inches square and three fourths of an inch thick, with two holes in it, so as to keep the holes in shape, and the steel from
2.-Linseed Oil Stains.-How can I take linseed oil tains out of rough cut stone or granite, without leaving any marks on the tone?-M. C. M.
3.-Varnish for Walndt Furniture.-How can I var nish old walnut farniture after rubbing it down with pumice stone? I get ind that it runsinto holes as if the wood absorbed it in places. What fill
fin gg can I use before varnishing? And how can I treat walnut so as to cav bright gloss, without polishing wlth shellac polish?-M. C. M.
4.-Cement for Iron and Leather.-What kind of ce nent shall I use to faeten leather covering to iron pulleys, for running band
5.-Pasting Glazed Paper.-Is there any substance which will destroy the acid in flour paste, and further the drying of it whe used on glazed paper? 1 think the acid and slow drying destroy all the
glaze on paper. I have used hot and cold glue, gum arabic, and gum traga canth, but they are too expensive for general use. -F . s .
6.-Marbleizing Slate.-What is the process and th kind of material used formarbleizing slate? Is the art commo
lic, or is it secured by patent? Has the patent expired?-T. s.
7.-Cleaning Zinc.-How can I clean zinc in ice chests to bring it back to its original color? What shall I use, and how shall I use ?-W. H.
8.-Butter Weed for Paper Making.-Will some one of your readers inform me if the weed known as butter weed (which grow pontaneously upon all of our new rich lands to the extent oflthree to fou uns per acre) can be used for the manufacture of paper, or for any othe
purpose? If so, what is the probable value per tun? W . M. B.
9.-Aerostatic Tox.-A neat toy is often constructed hus: Take a large currant, thrust a pin through its center, place it carefully upon the upper end of a dandelion stem or other small tube, holding
the other end in the mouth, blow a strong, continuous blast, and the currant will remain suspended in the air as long as you continue to blow, eve when the tube is considerablyinclined from the perpendicular. What is the explanation? Has the principle, upon which it depends, been applied 10,
10.-Imitation amber Comb.-Can any one give me the 11.-Contents of a Pyramid.-Is there any rapid method of computing the number of cannon balls in a triangular pyramid?-T.G.T. 12.-Falling Bodies.-T. E. N. E., of Mass., in answer to
as a formula applicable to falling bodies, in which Q equals the quantity o
matter. Will he explain what the quantity of matter has to do with a fall matter. Will he explain what the quantity of matter has to do with a fall
ing body, apart from its momentum, especially in a vacuum? He epe aks o space, velocity, quantity, and time without designating whether he means feet or inches, minutes or seconds, pounds or tuns; and in case J. E. gets a
single one wrong, the formula will mislead him.-H. A. W.
13.-Stains on Gilding.-I have got a French gilt man telpiece clock on which are a number of spots, which look like verdigris.
Can any of your numerous correspondents tell me how to get rid of these ? The clockmakers I have taken it to say they can do nothing with it.-A. M 14.-Cleansing the Hair.-What is the best method of is asked by many ongino or dirt, without injury to the hair or scalp? This and late on Satedgneers who are often compelied to work all the week what preparation is commonly used by barbers for shampooing? - -H. L. J
15.-Vinegar from Sour Ale.-Can any of your corres pondents give me a good recipe for making sour ale into vinegar ?-C.H.F 16.-Back Pressure in Exhaust Pipe.-We run our ex haust steam from a 150 horse Corliss engine, through 1,200 feet of five inch
steam pipe. The pipe runs from one end of the dry house to the othe welve times, the turns being made by elbows of the same size as the pipe. At the end the steam is sllowed to exhaust in the open air without any
check. Query-Is there any appreciable back pressure? If so, how much check. Que
17.-Alloy.-How can I make an alloy that will melt at ,000 degrees, which will possess sufficient strength to make a steam cylin.
der, three inches in diameter, to withstand a pressure of ffty pounds?der, three
J. B. N.
18.-Proportions of Steam Boiler.-If a steam boiler of four feet diameter and one fourth inch plate will stand a pressure of sixty
pounds, is it not reasonable to conclude that a bhiler one foot in diameter and one sixteenth inch plate will stand the same strain with equal safety? J. B. N .
19.-Preserving Shingles.-Can any one furnish a

20.-Proportions of Cylinder.-Can any one solve the ollowing problems: Given the hight and number of gallons of a cylindrical
vessel, to find the diameter. Given the diameter and number of gallons o a cylindrical vessel, to find the hight. Given the area of a circle, to find the diameter (in fret and inchrs). - w. G. N.

Declined.

Communications upon the folloving subjectshavebeen received and examined by the Editor; but their publication is respectfully declinea:
Boiler Explosions.-C. E. G.-W. M.
Canal Boats.-W. W. R
Coil of Pipe.-B. G.
Ether Controversy.-C. T. J.
Influence of Color in Developing Life.-C. F. P
Metaphysical Articles.-F. G.
Narrow Gage Railways.-J. P.
Paine's Electro-motor.-S. J. K.
Property in Inventions.-J. E. S.
Self-acting Blowpipe.-W. J. C
The Gulf Stream.-J. P. W.

(0)fitial Zist of equtents.

issoed by the 0 . s. Patent office.

For the week ending October 10, 1871.
Reported offctally for the Scientific American.
SCHEDULE OF PATENT FEES:

For Copy of Clatm of any Patent issued withtn 30 years.................... $\$ 1$ sketch from the model or drawing, relating to such portion of a machine
asthe Claim covers, from .. $\$ 1$ asthe Claim covers, from
upioard, but usually
upward, but usually at the price above-named.
The full Speciftcation of any patent issuedsince Nov. 20,1866 at which time The full Specifcation of any patent issuedsince Nov. 20, 1866 at which time
the Patent Offcce commenced printing them.................... 1 1 25 oftcial Copies of Drawings of any patent issued since 1836, we can suppty at a reasonable cost, the proce depen.
involved and the number of views.
Full information, as to price of dravoings in each case may be had by addressin 0

MUNN \& CO..
Patent Soltcitors. 3y Park Row. New York.
119,684.-Harness.-I. H. Alexander, Newfield, N. Y.
119,686.--Tream Ene.-R. N. Allen, Pittsford. Vt.
119,687.-Potato Planter.-L. A. Aspinwall, N. Y.
119,688.-BED.-F. P. Baldwin, C. T. Segar, Utica, N. Y.
119,689.-Spike MACHINE.-M. Belknap, Philadelphia, Pa.
19,690.-Sewing Machine.-R. Blees, Brooklyn, N. Y.
19,691.-Heel- - E. P. Bray, Elizabeth, N. J.
119,691.-Heel-E. P. Bray, Elizabeth, N. J.
$119,692 .-$ SaddLe Box. - W. Brough, Coatesville, Pa.
119,693.-Rolling MiLl.- W. H. Brough, Coatesville, Pa.
119,694.-Evaporator, ETC.- F. G.Butler, Bellows Falls, Vt
$19,694 .-$ Evaporator, etc.- F. G.Butler, Bellows Fals,
$119,695 .-T \mathrm{RNING}$, etc.- R . M. Clapp, Vergennes, Vt.
119,696.-SAw Frame- - W. Clemson, Mid letown, N. Y.
$19,697 .-$ Harness.-C. H. Drury, Osceola, IIl.
119,698 .-CANopy.-J. Ellisdon, Liverpool, Eng.
119,6999--LIQUOPY.-J. Elisdon, Liverpool, Eng.
119,699.-LIQUID METER.-N. Finck, Elizabeth, N. J.
119,700.-SAUSAGE STUFFER.-C. Forschner, New York city
19,700.-SAdsage Stiffrer.-C. Forschner, New
119,702.-BENDING Wood.-Gi.staf Gustafson,Chicago, Ill. 119,703.-Ironing Table.-C. C. Hardy, Rutland, Vt.
119,704.-Raisin SEeder.-J. Harrington, New London,Con 119,704.-Raisin Seeder.- J. Harrington, New Lond
119,705.-Cuspadore.-E. A. Heath, New York city. 119,705.-Cuspadore.-E. A. Heath, New York city.
119,706 .-Cuspadore.-E. A. Heath, New York city. 119,707.-PoLIsHEr.-C. H. Helms, Poughkeepsie, N
119,708.-CLoth Presser.-P. Howe, Boston, Mass. 119,709.-WATER METER.-H. J. Hyams, Pittsburgh, Pa.
119,710.-INLAYING.-J. W. Hyatt, Jr., Albany, N. Y. 119,711.-STAPLE MACHINE--W. Malick, Erie, Pa.
119,712.-HARVESTER.L.J.McCormick,W.R.Baker,Chicago,Ill.
119,713.-Fire AiARM.-J.N.Pitts, J.E.RussellNiagara,N.Y. 19,713.-Fire Alarm.-J.N. Pitts, J.E.Russell,Niagara,N.Y

