A POPULAR ILLUSTRATED WEEKLY OF THE WORLD'S PROGRESS

SCIENTIFIC AMERICAN ESTABLISHED 1845

MUNN \& CO., Inc., - Editors and Proprietors

No. 361 Broadway, New York
 Charles Allen munk, President

TERMS TO SUBSCRIBERS.
 copy, one year, to any foreign country, postage prepaia, 18s. 6 d
THE SCIENTIFIC AMERICAN
PUBLICATIONS.

NEW YORK, SATURDAY, AUGUST 21st, 1909.
The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sharp, the article short, and the facts authentic, the contributions will receive
tention. Accepted articles will be paid for at regular space rates.

Racing yachis in a gale

The recent run of seventy vessels of the New York Yacht Club from Martha's Vineyard around Cape Cod to Portland harbor afforded a supreme test of the seagoing qualities of the modern racing yacht. The distance was 152 miles. Not long after the start the wind began to freshen, and throughout the night, as the yachts fought their way along the coast of Cape Cod, it increased to what was probably a moderate gale. The fleet was so roughly handled that the ma jority of the boats were scattered during the afternoon and night, and the following morning found refuge in the various harbors from Vineyard Haven to Portland. Of those that completed the run, or rather race, for such it was, F. F. Brewster's 90 -foot schooner "Elmina" went through without any mishap, covering the 152 miles in 22 hours, 36 minutes, and 38 seconds elapsed time. Equally meritorious was the performance of Cornelius Vanderbilt's sloop "Aurora," a vessel over Cornelius Vanderbilt's sloop "Aurora," a vessel over
30 feet shorter than "Elmina" on the waterline, 30 feet shorter than "Elmina" on the waterline,
which covered the course in 26 hours, 11 minutes, which covered the course in 26 hours, 11 minutes,
and 21 seconds, beating Mr. W. E. Iselin's 90 -foot yawl "Vigilant," the old "America" cup defender, by over 9 hours. The "Aurora" was navigated throughout by Mr. W. Butler Duncan, Jr., who says that the onedesign Herreshoff yachts (the class consists of the "Aurora," "Istalena," and "Winsome") could hardly be surpassed in their weatherly qualities and were not in the least danger in the seaway. Nevertheless, the fact remains that a moderate summer gale sufficed to scatter this fleet of seventy vessels, completely disabling many of them, and driving the greater part of them to the shelter of the nearest harbor. The casualties comprised almost every kind of a disaster that can befall sails and spars, running and standing gear, from complete wreckage, as in the case of the "Eleanora," for merly the "Effort," whose mast went by the board, carrying bowsprit and everything above deck with carrying bowsprit and everything above deck with
it, to the breaking of the jaws of the gaff and the it, to the breaking of the jaws of the gaff and the
parting of blocks and the minor mishaps so well known parting of blocks and the minor mishaps so well known
to the racing yachtsman. The many casualties merely emphasize the fact, already well known to experienced yachtsmen and designers, that the enormous spars and big sail plan of the modern racing yacht are ill adapted for a thrash to windward in a heavy sea and wind. Although when a racing yacht is staggering along under her full press of canvas, the strains in spars, shrouds and stays run up to a very high figure, they evidently do not equal the more violent strains which occur under the sudden, snappy plunging and lurching of a vessel that is being driven under reduced canvas in a short and lively sea. The result of this experience of a summer's gale will be to bring the moderately sparred and more comfortable cruiser into greater favor with the average yachtsman.

PEARY AND THE NORTH POLE.

Public interest in the present attempt by Peary to reach the North Pole has been reawakened by the rereach the North Pole has been reawakened start of the schooner "Jeanie" from St. John's, Newfoundland, for Etah, west Greenland, for the purpose of getting into communication with the explorer, who has now been absent over twelve months on his piesent expedition to the North Pole. When Peary left in the "Roosevelt," about twelve months ago, he p'anned to push as far north as the ice would admit, and then establish winter quarters and make preparation for a dash by sled between March and June of the present year. If he were successful he planned to return to Etah with the ship, if possible, and if not, without it. If he failed to reach the Pole, it was his purpose, should another attempt seem to promise suc cess, to remain in the North till the summer of 1910 , and make another attempt in the early months of that year. If any disaster has befallen the "Roosevelt," the schooner will probably find Peary at Etah awaiting her
arival; and he will be there if he has succeeded in reaching and returning from the Pole. Should he have failed in his quest, he will still be far away to the north and the schooner will bring back such dispatches and reports as he may have sent down. Possibly the vesse will also bring back Dr. F. A. Cooke, of Brooklyn, who went north two years ago and was landed at Etah to undertake a trip to the Pole with a single companion. The last word from him was sent back by a native when he was about to go out over the Arctic ice on his quest. If all goes well the return of the vessel may be looked for about October 1st, when some definite news of Peary's work may be expected.

TWENTY MILES UNDER THE SEA

The rapid progress of the arts and sciences in these opening years of the twentieth century affords oppor tunity for the enjoyment of novel situations and sensations, which were possible only in the dreams of the enthusiast of an earlier day. Thanks to official cour tesy, the Editor was recently afforded an opportunity, during the trials of the latest submarines built for our navy, to make a run of some twenty miles below the surface of the water in one of these always inter esting and to-day extremely formidable craft
A little removed from the long lines of battleships, destroyers, and auxiliaries, that were moored during the recent summer maneuvers in Provincetown Bay, was the converted hull of an old wooden sailing brig, the property of the Fore River Ship Building Company, which acted as "mother ship" to a group of submarines which acted as "mother ship" to a group of submarines, recently constructed by that company, which had been
brought to Provincetown for their official government brought to Provincetown for their official government
tests. Selecting the "Stingray," one of the largest submarines, for the reason that her trials for the day were to be carried on entirely below the surface, we went aboard, and found ourselves on a narrow, flat deck, about five feet in width and sixty feet in length, which covers in the superstructure, a light construc tion of steel plating built upon the hull of the subma rine proper, and perforated so as to allow a free en trance and exit of the water. A steel hand rope, car ried in removable stanchions, surrounds this deck. Ex tending up through the center of the deck to a height of about five feet is a narrow elliptical tower, on top of which is the sighting hood or conning tower, pierced by several little glass-filled ports for observation. Just i_{1} front of the conning tower is a removable navigating bridge, used when the ship is at the surface gating bridge, used when the ship is at the surface.
In front of this are the two tall tubes of the periscopes, In front of this are the
which are in duplicate,
The ship was driven to the outside mile course by the electric motors, the gasoline engines which are used for propulsion on the surface in extended runs, being uncoupled. The first surprise of the day was the extraordinary smoothness of the motion, there being not the slightest vibration to indicate that the ves sel was under way. As we approached the course, orders were given to dismantle the upper works and send everything below. The wire handrope around the deck was removed, the stanchions lifted from their sockets, the navigating bridge on the conning tower was knocked down, and all of this material, with the steering gear, compass, etc., was handed, piece by piece, through the manhole, until the ship was stripped clean for the dive. As soon as everybody had gone below, the manhole was closed, and the submarine was ready for her first run over the measured mile course. Below decks throughout the five hours below the sur face we were struck with the purity and sweetness of the air, and the absence of any odor other than that of the last coat of paint which the interior had received. Forward, side by side, we noticed the two torpedo tubes. Aft, beyond a bulkhead, were the twin gasoline engines, and abaft of them the two motors, the former used for charging the batteries and for propulsion when the ship is at the surface, the latter being used exclusively for propulsion when the ship is submerged.

While making the trial runs, the steering is done by a man in the conning tower." Immediately below him, standing on the deck, is the lookout, with his eye at the periscope. Facing the side of the vessel, another man controls, by means of a handwheel, the diving rudder, and holds the vessel at its proper depth. At various stations were men with their hands upon the wheels and revers that regulate the ballast tanks for giving the proper submergence and trim to the vessel; aft were the engineers.

It will be remembered that when we went below, the submarine was floating at the depth for surface cruis ing. The first operation was to admit sufficient water into her tanks to sink the boat to the awash condition, and in sharp succession the commands came, "Fill the main ballast tank," "Fill the forward trimming tank," " Fill the after trimming tank." lmmediately one could hear the rather ominous swish of the water, as it rushed -into the vessel. Instinctively our eye followed the pointer on the large depth gage, which was fastened on the side of the submarine in front of the man who controls the diving rudder. The tanks were left open till a depth of five feet was regis-
tered. Then came the order to start the engines, which was shortly followed by the sharp word of command, "Dive." A few swift turns to the handwheel were followed by a curious dipping or lurching sensation, as the submarine, impelled by the downwardlydeflected rudder astern, changed from the horizontal to an inclination of about five degrees, and began to go down. The descent was shown at once on the depth gage, which moved quickly to indicate eight, ten, twelve, and ultimately fifteen feet, the depth at which the runs were to be made
It should be explained here that the handling of the diving rudder is the most delicate operation, and the one requiring most skill and judgment, connected with the submarine. The rudder must not be put down too suddenly, or there may be too precipitate a plunge. At 9.5 knots, the speed at which the run was made, it took about five degrees of rudder to make the dive. The submarine going down had an inclination of three and a half degrees. To keep her on an even keel when submerged, it was necessary to give her about one and a half degrees of the diving helm. This is due to the fact that when the submerging tanks are filled, she does not take in sufficient water ballast to entirely sink her, but is adjusted with a reserve buoyancy of about 1,000 pounds. To correct this buoyancy, it is necessary to keep the helm slightly down when she is running. To reach the fifteen-foot depth takes from fifty seconds to a minute and a half, according to the speed at which the boat is being run
The mile course was laid out about half a mile off shore, the start, finish, and quarters being marked by pairs of ranges set up on shore. The instant of passing the ranges was noted by the man at the eyepiece of the periscope, which was swung around at right angles to the axis of the boat. As each range passed the field of the periscope, the observer called out "Mark," the time being taken by observers both on shore and within the submarine. When the mile course had been covered, which was done under full power at the rate of nine and a half knots, the diving rudder was put up, and the same curious change of level was felt as when the dive was made.

Perhaps the most surprising thing about this five hours' trip below water was the fact that, even when the boat was being driven at the highest speed, there was practically no vibration, and absolutely no indication that the water was sweeping by the vessel at a spend of nearly twelve miles an hour. The only sound was the slight hum of the electric motors, punctuated by an occasional word of command from navigator or engineer. As far as any indication of sight or sound was concerned, the cabin might have been that of any ship that sails the surface of the sea in the orthodox manner. The first suggestion that the boat was alive with movement came when, at the end of the run, the submarine thrust her nose above the surface, when the 'swish of the broken water at the bcw could be distinctly heard. After making a wide turn, and heading for the course, the rudder was put down; a dive to the fifteen feet depth was made, and, under a reduced speed of about eight knots, the course was again covered. This was repeated, until the twelve runs scheduled for the day's trial had been completed, the speed of the successive runs varying from nine and a half down to a minimum of about four knots. The engines were standardized by counting the revolutions corresponding to the various speeds.

A look through the eyepiece of the periscope, while we were submerged, removed the last doubt as to the ability of the submarine to "see." By means of a handwheel the periscope may be swept rapidly around the whole horizon; and so perfect is the reflection of the little mirrors, that we were able to pick out any particular battleship, yacht, or object on shore, with as much ease and as perfect visibility as if we had stood six or eight feet. above the water, at the level of the object glass at the top of the periscope. The operator stated that in rough weather the wash of the waves keeps the glass clean and does not interfere with vision.
There can be no question that the submarine has at last "come into its own." Among the captains of the battleships and the line officers in general at Provincetown, there was noticeable a growing respect for these craft, due to the varied and accurate work which the flotilla had accomplished during the summer maneuvers. There has been a steady but slow growth in the speed of the submarine. Its control is now perfect, and its radius of action is being rapidly increased. Our largest boats have a radius of about one thousand miles; and two are under construction cn the Pacific coast which will have a cruising radius of about three thousand miles. This means that the submarine is taking on full seagoing qualities. It must no longer be regarded as restricted to seacoast operation. The time is not far distant when an admiral searching for the enemy upon the high seas may include a submarine flotilla in his fleet. The profound significance of this fact upon strategy and tactics will be appreciated by every naval expert.

ENGINEERING.

The New York, New Haven \& Hartford Railway Company are about to make tests of the comparative performance of electric and steam locomotives in freight service. To this end they have ordered two freight locomotives. One of these is to be equipped with side rods, and the other will be of the geared type.
Statistics of accidents on the railways of the United Kingdom for the year 1908 show that in accidents to trains, rolling stock, or permanent way, no passengers were killed, but 283 were injured; while of employees, 6 were killed and 164 injured. Accidents of a kind other than the foregoing included 102 passengers and 376 employees killed, and 2,240 passengers and 4,976 employees injured.
The "Alagoas," the seventh of ten torpedo-boat destroyers ordered by the Brazilian government, was successfully launched by Messrs. Yarrow \& Co. of Glasgow on July 29th. Like her sister vessels she is 240 feet long by 23 feet 6 inches beam, and will be equipped with two doubel-ended Yarrow boilers of 4,000 horse-power capacity, supplying the two sets of 4 -cylinder triple-expansion engines, refrigerating appa-4-cylinder triple-expansion en
ratus, and other auxiliaries.

In a recent paper W. E. Gray states that the manufacture of tin plates originated in Bohemia, hammered iron plates having been coated with tin in that country some time before the year 1600 . Tinplate making was introduced into England from Saxony in 1665, and the first tinplate factory in France was estaband the first tinplate factory in France was estab-
lished in 1714. Tin plates were first made on a comlished in 1714. Tin plates were first made on a com-
mercial basis in the United States at Pittsburg in mercia
1872.
According to "Railways" of Calcutta, the success of the monorail system in India for carrying freight and passengers is largely a question of finding a satisfactory type of carriage, and Mr. Brennan is now making experiments on short lengths of roads in India to determine this question. The monorail system is believed to possess great value, because of its simplicity and cheapness of construction, for military purposes on mountain roads. The result of the experimental work will be given in a forthcoming report.
The Jamaica Bay Improvement Commission will shortly make a survey for the bulkhead line, which will be built at about 2,000 feet from the westerly and northerly shore of the bay, and will extend from Barren Island to Three Mile Creek. The government will dredge a channel which will ultimately be 30 feet deep and 1,000 feet wide. The dredged material w ill be used to fill in the 1,250 acres between the bulkhead and the shore line. In the earlier stage of the operations it is proposed to dig the channel to a depth of 18 feet and a wid +h of $500 \cdot$ feet.
The work which has been done in the electrification of steam railroads has probably suffered from the lack of collaboration between the different railroads and interests that have been engaged in such work. Hence, it is gratifying to note that the New York Railway Club has appointed a special committee to take up the subject during the coming fall and winter, and report at the annual electrical meeting of the club in March next. They will collect data and make suggestions as to the direction in which further investigation should be made. Substantially the same action has been taken by the Maintenance-of-Way Association and the American Railway Association.
A new record for mining and shipping anthracite coal has recently been made by the Kingston Coal Company, of Wilkes-Barre, Pa. During the month of July, that company's breaker No. 2 shipped 91,000 gross tons of coal, which, as far as we can learn, beats the record of any in the United States. This breaker has been entirely rebuilt during the last six months without any stoppage of its machinery, improved springboard shakers being substituted for revolving sicreens, and mechanical pickers introduced to dispense with a large number of boys on the picking belts. The breaker worked twenty-four full working days of nine hours, the greatest number of mine cars dumped in one day being 1,641 .
So vast are the crowds which are expected to gather during the forthcoming Hudson-Fulton Celebration, that the Executive Committee have made elaborate plans for the proper care of the health and convenience of the visitors. During the entire time of the celebration there will be open, twenty-four hours a day, a large number of emergency hospitals, provided with telephone connections. A number of physicians and 1,500 trained nurses have volunteered their services. During the three days of the land parades there will be established a temporary emergency hospital at every five blocks, with ambulances stationed at every ten blocks. During the two water events of the celebration, an innovation will be introduced in the form of ambulance launches, with nurses, doctors, and police officers in attendance.

ELECTRICITY.

In recent trials of the Pollak-Virag high-speed tele graph between Berlin and Königsberg, a distance of 480 miles, 2,800 distinctly recorded words were transmitted in five. minutes.

So successful have been the experiments with the new Telefunken system of wireless transmission at the new 20-kilowatt station of the Austrian government at Pola on the Adriatic, that signals strong enough to be automatically printed on tape by the coherers were received at Norddeich on the North Sea, Copenhagen, and Berlin.
The wave forms of electric currents have been made visible by M. Abraham of Paris by means of an adaptation of the mirror galvanometer. Upon the mirror being set swinging horizontally by the current, the beam of light is thrown upon a revolving prism and a set of fixed mirrors in such a way that it is spread out in the vertical direction, so that the wave form of the current appears upon a screen.
The French government, which already had the monopoly of telegraph and telephone operations in France, has extended its legislation to include wireless telegraphy. No wireless telegraph or telephone apparatus may be set up on French territory or ships except where authorized by the state, and foreign vessels in French waters may not operate their apparatus in such a way as to conflict with government messages.
Wireless messages transmitted from the Glace Bay station in Canada have recently been picked up with some regularity by the Eiffel Tower receiving station in Paris, proving that transatlantic wireless communication is an accomplished fact. The Paris plant is in no way competing with commercial stations, being purely for military purposes, making no communication with places outside of France except the French African colonies.
The growing importance of the electric vehicle, hitherto somewhat overshadowed by the more showy
successes of the gasoline car, is evinced by the fact successes of the gasoline car, is evinced by the fact of Automobile Engineers in Chicago half the papers presented related to electrical subjects. Two of the papers referred to storage batteries and one to meas: papers referred to storage batteries and one to meas-
urement of energy consumed by commercial vehicles, the most animated discussion of the meeting centering aroיnd the latt r.
The notable successes of wireless telegraphy in procuring speedy assistance for ships in distress at sea in spite of fog and distance, best exemplified by the cases of the "Republic" and the "Ivernia," has caused an application for lower insurance rates for vessels equipped with wireless apparatus to be proposed for the international marine insurance congress at Baden next month. Success of the application should be mutually beneficial, both effecting a saving in insurance cost to shipowners using wireless and extending the use of the latter.
Upon the successful completion of tests now in progress of a 5,000-kilowatt unit, the New York Interborough Railway will install two more General Electric Curtis low-pressure turbines driving 3 -phase 25 -cycle 11,000 -volt generators, each of 5,000 kilowatts capacity, operated by exhaust steam from existing reciprocating engines at the 59th Street power house. It is estimated that the turbines will take nearly as much power from the exhaust steam as the reciprocating engines do in expanding from 150 pounds pressure to atmosphere.
The Great Eastern Railway of England, with one of the largest termini in London and a great suburban traffic, has lost passengers at the rate of $25,000,000$ per annum since the advent of the London County Council's electric tramways, and this in spite of a gradual reduction of its fares amounting in some cases to 40 per cent. The council tramways are a municipal undertaking, and while giving good service have been run hitherto at a loss, the deficit being paid out of the rates, so that the railway company, as a large ratepayer, is naturally aggrieved at having to contribute to the support of a successful rival.
The Public Service Commission, which has been considering the question of compulsory electrification of railways passing through the Adirondacks forest preserve, as a means of fire prevention in the latter, has rejected this remedy on account of its prohibitive cost. The additional cost of operation by electricity was estimated to be $\$ 1,156,470$ a year more than the present cost of operation by steam locomotives, for the New York Central lines alone, that figure being reduced by only $\$ 100,000$ if all the power were generated by water. This great expense is due to the very unfavorable conditions for electric service, the traffic consisting of a few heavy trains over comparatively long distances, whereas economical electrical operation requires a fairly uniform traffic composed of a large number of small trains at small intervals, as in the suburban service of large cities.

SCIENCE

Capt. R. F. Scott, who recently returned after a thrilling attempt to reach the South Pole, in which he was nearly successful, has announced his intention of setting out on another Antarctic expedition early in 1910.

That the New York Aquarium is certainly meeting with public approval would follow from the remark able attendance in July, 1909. During that month 528,266 persons passed through the turnstile-an average of 17,040 per day. Up to August 2d, 1909, the total attendance was $2,006,919$.
It is announced that Lieut. Shackleton will lecture in the United States and Canada, in order to earn enough money to pay the heavy indebtedness which he incurred on his last Antarctic expedition. The announcement is astonishing, as it was generally supposed that Lieut. Shackleton had been aided by his government. It is stated that the expedition was financed by a small group of Americans who lost their fill in the last financial crisis.

The Duke of the Abruzzi cables that he has ascended Mount Godwin-Austen, in the Himalayas, to a height of 24,600 feet. He failed by 3,665 feet in reaching the mountain's summit. We believe, that although he did not succeed in his ultimate object in ascending this lofty peak, he has broken all records for mountain climbing. The Duke had an advantage over the private individuals who were his rivals in the Himalayan field, in so far as the government of India furnished him with guides and porters. For all that, his hardships must have been tremendous. The Workmans have stated that climbing in the Swiss Alps is child's play compared with the feats of endurance which climbing in the Himalayas demands.
As aluminium is extensively employed in the manufacture of kitchen utensils it is important to know how it is affected by the foods which are brought into contact with it. For this purpose Fillinger boiled aluminium foil in fresh milk, sour milk, wine, mineral waters and 10 per cent solutions of various salts. The aluminium foil was weighed before and after the boiling, which was continued for half an hour. No appreciable loss of weight was produced by boiling in sweet milk, white or red wine, or solutions of sodium chloride, potassium iodide, sodium nitrate, potassium sulphate, and calcium nitrate, and only a very small loss was caused by sour milk. The aluminium was strongly attacked, however, by sodium bicarbonate, magnesium sulphate, calcium sulphate, and mineral waters.
Garrigon has tested the radio-activity of the hot springs of the Pyrenees by immersing in their waters a photographic film inclosed in a tube of aluminium. The film showed an impression after a longer or shorter immersion, while a second film, immersed in the same conditions, but inclosed in a tube of lead, remained unaffected. A very thin sheet of lead sufremained unaffected. A very thin sheet of lead suf-
fices to stop the radiations of radium, etc., which pass fices to stop the radiations of radium, etc., which pass
through comparatively thick sheets of aluminium. The following experiment, of similar character, is reported by an. Italian scientific journal: A photographic plate, wrapped in paraffined paper (to exclude moisture) and then in black paper, was placed between two plates of iron $1 / 12$ inch thick, which were coated with asphalt varnish. The iron plate next to the sensitive film had five perforations, about $1 / 2$ inch in diameter. The whole apparatus was suspended for 15 hours over a spring, with the perforated plate lowermost. On being developed the photographic plate showed impressions of the five perforations. A control plate, treated in the same manner, but not exposed over the spring, showed no impression whatever.
F. Robin has made a series of experiments on the hardness of steel at low temperature, using a falling ball $2 / 5$ inch in diameter, which gave a blow of about three tons. The metals were in bars about two inches long and one inch square. They were placed in three refrigerating mixtures, producing temperatures of $-4,-112$, and -300 deg. F. The temperature -4 deg. F. was obtained by a mixture of ice and calcium chloride; the temperature - $112 \cdot$ deg. F. by a mixture of carbon dioxide snow and 95 per cent alcohol. The lowest temperature, - 300 deg. F., was obtained by a mixture of liquid oxygen and nitrogen containing a very large proportion of nitrogen. The experimenter finds, as Hadfield did, an increase in hardness of steel immersed in liquid air, but the increase is not progressive, the curve of hardness rising suddenly at -112 deg. F. and attaining a great height in liquid air. Cast antimony also increased greatly in hardness, but cooling had comparatively little effect upon aluminium, copper, lead, tin, nickel, and some other metals. Spring steel containing silicon shows little change. Chrome steel showed great variation, while tungsten steel, vanadium steel, molybdenum steel, and rapid-cutting steel gained little in hardness on being cooled to the lowest temperature. Quenched steels gained considerably in hardness.

TESTING A TORPEDO-BOAT DEFENSE.

owites.

A most realistic test of the value of a boom for the defense of harbors against the attack of torpedo craft has just been made by the British Admiralty. In 1904 the submarine mine fields which up to that date had been maintained at the entrance to the principal British naval ports were abolished, and at the same time the Brennan torpedo-a weapon operated and directed from the shore by means of endless steel wires-was also discarded. These changes were followed by the organization of submarine and torpedo flotillas for the local defense of the ports, and simultaneously a great deal of attention began to be paid to the question of boom defense.
The latest pattern in these obstructions adopted by the British Admiralty consists of a number-generally from 100 to 150 -of balks of timber, each about ten feet long, tied together by four lines of strong steel hawsers. At intervals along its length, the boom is attached to pontoons which are themselves an-
through, at any rate without considerable damage to herself.
Of the trial itself there is little to say. It took place at five o'clock in the morning of July 28th. The "Ferret" left Portsmouth harbor, and, turning round, steamed toward the boom at about fifteen knots. The lieutenant and quartermaster stood on the bridge and at the wheel respectively, and steered a course direct for the center of the obstruction. When a hundred yards distant steam was shut off. The surround ing pinnaces and tugs closed in, the "Ferret" caught the boom between two balks-and went through it as easily as if it had been packthread. No shock what ever was felt on board. and everyone-engine-room staff and stokers included-remained at their posts, and were, in fact, unaware of the fact that the obstruction had been cleared. A glass of water left standing on the wardroom table was not even spilled. The hawsers were cleanly cut, and the two halves of the boom swung round with the tide toward the shore.

Destroyer ${ }^{6}$ Ferret ${ }^{\prime}$ as she appeared when approaching the boom at 15 knots speed.

chored to the bottom of the channel by heavy mooring chains. Each balk of timber is about a foot square in section, and is studded with a number of stout, curved steel spikes, four projecting from either end, and others being placed along the length of the balk at intervals of about three feet. The object of these spikes is to prevent the "jumping" of the boom-an incident which has occurred more than once in maneuvers. It is achieved by all movable weightsincluding the crew-being taken aft, thus lifting the bow of the vessel well out of water. Then, running at the boom at full speed, the nose would be pushed well over the edge of the boom, and the impetus of the vessel and the sudden rushing of the men forward again would in most cases prove sufficient to carry the ship safely across. A few years ago, however, a British torpedo vessel broke her back while trying to jump a boom.

It was, of course, well understood that any vessel larger than a destroyer could easily break any boom yet devised. The British Admiralty, however, after much discussion, came to the conclusion that the only vessels likely to penetrate the outer line of British port defenses were destroyers and torpedo boats (including, of course, submarines), and it was therefore decided to put to a practical test the problem whether a vessel of one of these types could burst through a boom of the latest pattern.
A section of a boom of the latest design was there fore erected across a small creek in the upper reaches of Portsmouth harbor. In addition to the spikes already described, the boom was furnished with a three-inch wire hawser stretched about three feet above the balks, with the object of shearing the masts and funnels from any destroyer which might have the audacity to charge the boom, and to force it down on to the steel spikes. Five feet below the surface there was another hawser, designed to impede the progress of the ship and to foul its propellers
The attack was intrusted to the torpedo-boat destroyer "Ferret," an obsolescent vessel of 280 tons, launched in 1893. Her engines are of 4,810 horsepower, the designed speed being 27 knots. For the purpose of the test she was strengthened by means of steel plates fixed to either side of the bow, but this was only done to give her a greater resemblance to the latest vessels of the destroyer class. Nominally her crew consisted of seventy men, but for the pur pose of the trials a volunteer crew of ten was selected Lieut. J. C. Hodgson being in command and Artificer Engineer J. Hawkesworth in charge of the engines Before starting, the whole of the crew were directed to come on deck as soon as the vessel got within one hundred yards cf the boom and to be ready to jump overboard, while a large number of tugs and launches were in the vicinity to pick up the expected pieces. These facts alone are sufficient evidence that the Admiralty officials did not expect the "Ferret" to get

The "Ferret" could easily have proceeded into the dockyard under her own steam, but two tugs took charge of her, and later in the day she was docked. An examination showed that she was quite undamaged. The hawsers had made a dent in her bows, but no plates were started, and she was making no water. It is not believed that she was strained in the slightest degree, but this will not be definitely known until a thorough examination has been made.
The experience was practically a repetition of what occurred in 1885, when the torpedo-ram "Polyphemus" charged and broke a strong boom at Berehaven in Ireland. In that case, however, the attacking vessel was a craft of over 2,000 tons, and the boom was not so scientifically constructed as that tested at Portsmouth.

It is understood that the Admiralty intend to carry out a series of tests, with the object of discovering a really efficient obstruction for harbor mouths. It is suggested that a series of wire entanglements, placed one behind the other, will next be tried. As was to be expected, the result of the Portsmouth trial has
already led to a demand for the reinstallment of the submarine mine defenses of British harbors.

THE FIRST CROSS-COUNTRY FLIGHT OF THE AERONAUTIC SOCIETY'S BIPLANE.

As mentioned in our last issue, Mr. Charles F. Will ard has been learning to fly the Curtiss biplane ac quired recently by the Aeronautic Society. Last week, in the vicinity of Mineola, L. I., Mr. Willard made practice flights early in the morning almost daily. On the 14th instant he made a flight in the shape of the letter S of nearly five minutes' duration, in the course of which he traveled about three miles. The following morning, at 5:26 A. M., he started off as usual near the fair grounds at Mineola; but, instead of circling over the plain, he drove the machine above the fair grounds some three miles across country to Garden City. At this point he turned to the left and headed for the grounds of the Meadowbrook Hunt Club, passing over a group of men on their way to work, who waved their caps and cheered. From this point he flew toward Westbury, swerved to the south, and crossed the Motor Parkway, making several turns. He traveled to the outskirts of Hicksville, whence he directed his machine straight back to Mineola. Before reaching the starting point, however, something about the motor gave out, and the machine was forced to descend upon rather rough ground. The landing was made without damage, however The machine was in the air over nineteen minutes, and covered a distance of about twelve miles. The height attained was about 150 feet. This is the second crosscountry flight made in the United States by any aeroplane, the first one being that made by the Wright machine in its government test on the 30th ultimo. Mr. Willard traveled somewhat farther than did Orville Wright and Lieut. Foulois, though the ground over which he flew was much smoother and less dangerous in case the machine was obliged to alight. This fiight surpasses any ever made by Mr. Curtiss himself, or by Messrs. McCurdy or Baldwin. In addition to being a cross-country flight, it is the longest flight yet made in the United States by any machine other than the Wright. It is probable that further exhibition flights will be made with this machine by Mr. Willard in the near future.

mr. Curtiss at rheims.

Mr. Glenn H. Curtiss arrived in France on the 12th instant with his aeroplane, which was packed in boxes. The machine was taken as personal baggage directly from Havre to Rheims, and after busying himself the following day with its erection, Mr. Curtiss announced that it was almost ready for trial. This will give him a full week in which to tune up the machine and prepare for the races, which start on August 22nd. There seems little doubt that Mr. Curtiss's new biplane will make an excellent showing against the two score machines with which he will have to compete.
the trial flight of the "baddeck no. 1."
"Baddeck No. 1," the new biplane with which Messrs. McCurdy and Baldwin are experimenting at Petewawa military camp in Canada, met with an accident when the first flight was attempted on August 13th. The machine reared suddenly in the air and (Concluded on page 127.)

The boom consisted of 12 -inch by 12 -inch logs, tied together with four lines of heavy steel cable. Three feet above and five feet below the boom were stretched two 3 -inch steel cables. At the front end and along the sides of each \log were sharp, forwardly-projecting steel spikes, The torpedo-boat destroyer struck the boom between two logs, cut the cables, and passed through unharmed.

Torpedo defense boom before the attack in Portsmouth harbor.

A RECORD CROSS-COUNTRY MOTOR-BOAT TRIP

by our spbcial correspondent

A river trip of 450 miles made in one day between dawn and dark would certainly be a recordbreaking performance. Such a trip could hardly be made with the usual type of high-speed motor boat, as neither the engine nor the hull would be likely to stand 15 hours continuous running at a 30 -mile clip. The annual French endurance race from Paris to the sea, in which a number of the fastest racers usually ea, in which a number of in fastest ro that it lasts compete, is generally run in stages, so that it lasts several days and consists of a few spurts of several hours each. When these facts are considered, one can appreciate the bold undertaking of the Dean brothers, of Cincinnati, 0 ., when they attempted to run their fast boat "Br'er Fox II." from Pittsburg to Cincinnati in one day. This boat had previously made the 1,554 -mile trip from St. Louis to New Orleans at a speed of 29.8 miles an hour, and altogether had traveled over 3,000 miles at a speed of nearly 30 miles an hour.
The start was planned for Sunday, July 10th last; but on account of low water in the Ohio River, it was necessarily postponed. A demonstration was given the Scientific American representative of the speed of the boat, however, in a round trip to McKeesport, Pa., a town 20 miles distant. The running time was 39 minutes one way and 41 the other, which was against slight This was an average of over 30 miles a slight curn. This was an average of over 30 miles n hour. Fortunately, within the next three days there was some rain, and the water rose enough in the river to make possible the undertaking of the trip, although only with the running of considerable risk, as the following account shows: The start was made from the landing of the Pittsburg Launch Club on Wednesday evening, July 14th, at Wednesday with the intention of 7:09:25, with the ine six of run aing through the six dams to Rochester, Pa., that night, in order to make an early start through the open river on Thursday morning thus avoiding the loss of time in locking through these six locks. A storm came up after passing through dam No. 1, and the boat was forced to tie up for the night was forced to tie up or the night. Another start was made early Thursday morning, and dam No. 6 at Rochester, was reached at $9: 25: 10$, the actual running time through the pools being at the rate of 25 miles per hour.
Below the pools the water was found to be so shallow that it was

Rear view of "Br'er F'ox II." traveling at high speed.
necessary to cut out four of the eight cylinders in order to reduce the speed of the engine to 500 R. P. M., or approximately half speed. Below Wellsville, O., the propeller struck the bottom of the river and was bent. It was decided to continue with the disabled propeller until deeper water was reached, as the extra propeller carried on the boat had been damaged on the trip up the river to Pittsburg. It was impossible to make any speed until Bellaire, O., a distance of 95 miles, was reached, although the engine performance was perfect. The boat grounded several times, causing a loss of considerable time, but fortunately little damage was done.

All eight cylinders were set working at Bellaire, but four were cut out again after going about two miles, and but four cylinders were used to Marietta, a distance of 171 miles. Sistersville, W. Va., was reached on Thursday evening at 6:49. The night was spent here, and a supply of gasoline and cylinder oil was taken aboard. Leaving Sistersville at $6: 37: 10$ on Friday morning, a quick run was made to Petticoat Bar, 9 miles down the river. The propeller struck the bar
while the boat was running nearly at full speed. Two blades were stripped from the wheel, and the boat was paddled to the bank, where the other propeller was put on. The shaft was bent slightly just in front of the propeller. The accident happened at 7 A . M., when all eight cylinders had been put on for a short time, as there appeared to be about three feet of water. The start was made from Petticoat Bar at 8:43:40, the engine running on four cylinders; and no further changes were made until Marietta was reached at 10:22:05, where there was considerably more water, owing to the Muskingum River fiowing into the Ohio at that point.
Full speed was maintained until near Ravenswood, 218i $1 / 2$ miles from Pittsburg, where a stop was made to replace the batteries. The boat is equipped with a magneto, but this had been disabled in the storm on Wednesday night, and was out of commission. From Ravenswood to Ironton, $1061 / 2$ miles, the engine was run at full speed continuously, and not a single adjustment of any kind was made. Had it been possible to run at this rate of speed with the same amount
justment until the Ohio River Launch Club was reached, where ten minutes were lost in taking on an extra can of gasoline, the supply having run short Cincinnati was reached at $1: 15: 45$, where the boat and occupants received a rousing reception from a large crowd. The run from Maysville to Cincinnati was made at the rate of 26.54 miles per hour, the fastest long run on the trip.
The actual running time for the trip from Pittsburg to Cincinnati was 21 hours, 35 minutes, and 25 seconds, which is a new record by water between these cities. This was at an average rate per hour of 21.25 miles, a most notable performance for a disabled boat in low water, where two-fifths of the entire distance was made under half power. At least ten per cent additional distance was covered on this trip, due to the necessity of crossing and recrossing the river in order to keep in the channel, maneuvering which would have been unnecessary had there been a sufficient stage of water to permit running straight ahead and cutting the bends and curves in the river. The crew on this trip was composed of M. B. Dean, captain; William Stevenson,

engineer; James Rowley, pilot; and George D. Steele, representing the Scientific A Meri. CAN. It is the intenCAN. It is the intention of Mr. Dean, who is one of the owners of the "Br'er Fox II.," to make another attempt at a one-day trip from Pittsburg to Cincinnati this fall, when there will be a better stage of water in the Ohio River. With proper conditions, there is but little doubt of his accomplishing the remarkable feat. The second attempt will probably be wade probably be made with another type of boat, as the Fox
Company is install-
of water down from Pittsburg, there is no doubt whatever that the run could have been made from that city to Cincinnati in one day. The performance of the engine on such high speed for such a distance is nothing short of remarkable, and is a triumph for the manufac turer of the two-cycle engine. No part of the engine heated up at any time, and not an explosion was missed. Vanceburg, Ky., was reached at 7:12 Friday evening. The boat was tied up for the night, and a supply of gasoline and cylinder oil was taken on. A fresh start was made at 7:22 on Saturday morning, and the run to Maysville, Ky., was made without stopping or slowing down the engine. The landing at Maysville was reached at 8:38:50, theus making the $301 / 2$ miles between those cities in $1: 16: 50$, and this with a bent propeller and shaft. Such a performance by a badly disabled boat is truly remarkable, and particularly when it is taken into consideration that while the "Br'er Fox II." is designed to carry a crew of but two, she carried a crew of four on this trip, and 85 gallons of gasoline instead of the 30 gallons which are generally carried.
At Maysville a telegram was received from Cincinnati asking that the boat's arrival be planned and timed for one o'clock, as the launch clubs of that city had planned a reception at that hour. The boat was accordingly held at Maysville until 10:49, when the start was made for Cincinnati, 60 miles distant. The engine was then run without change of speed or ad-

Company is install-
hydroplane craft that
ing its 8 -cylinder motor in a hydroplane craft that it is thought will prove very speedy.
The "Br'er Fox II." was planned and assembled by Mr. A. G. Dean, one of her owners and also one of the officers of the Fox Reversible Gasoline Engine Company, of Newport, Ky. She is 40 feet in length, $41 / 4$ feet beam, and draws about 26 inches of water. The hull is of rib and carvel construction, planked all over with $1 / 4$-inch white pine, and weighs, without engine and equipment, about 625 pounds. She is built on racing lines, and was designed and constructed by Wright brothers, of Newport, Ky.
The power equipment consists of a Fox motor rated at 56 to 65 horse-power. This engine is unique in that it has eight cylinders of the two-cycle type arranged in line above an 8 -throw crankshaft. In appearance the motor is similar to the usual two-cycle engine, excepting that the cylinders are set farther apart to permit the use of wider bearings. The cylinders are all 5 -inch bore by 5 -inch stroke, and the base is a solid one-piece aluminium casting. The crankshaft is cut from a solid steel billet, and the throws are set to fire the cylinders $1,5,2,6,3,7,4,8$. At a speed of 800 R. P. M. this gives 6,400 piston oscillations per minute, and results in wonderfully steady and efficient power.

The one special feature of this motor is the design and location of an auxiliary fourth port, which is now being patented. Through this port air is drawn into the explosion chamber slightly in advance of the incoming charge of gas, and this injection of air accom
plishes the double purpose of expelling the burned gas without waste of fuel, and leaving pure air in the explosion chamber instead of vitiated gas.
These fourth ports can all be operated together by means of a lever, and when opened, result in a marked increase in both power and speed. High-tension igni tion by means of two distributors and two coils is em ployed. Lubrication is effectually accomplished by force-feed system into the journals and by a spray taken by the incoming gas to the wrist-pins, connecting rods, and pistons. A clutch of the self-locking type is used, but no reversing gear is required, since the motor is readily reversible.
As is customary with boats of this type, the exhausts are open, and extend several feet above the sides of the boat. These exhausts are $2 \frac{1}{2}$ inches in diameter.
The motor drives a 22 -inch diameter, 44 -inch pitch wheel at from 750 to 800 R. P. M. with ease, and in short test runs has turned this wheel at from 810 to 825 R. P. M. in the Pittsburg pools, giving a speed in excess of 30 miles per hour in the slight current of those pools. On the run from Pittsburg down the Ohio to Cincinnati, the engine kept up a steady speed of from 750 to 775 R. P. M. without forcing, and maintained this speed for hours at a time without per ceptible heating. This speed could be maintained easily for an entire day, or even more, were the stage of water sufficient to permit the boat to run at such speed in safety.
In the run to Cincinnati, four gasoline tanks were carried, two rear tubular tanks in the stern each having a capacity of 15 gallons; one 20 -gallon tank under the seat; one 30 -gallon tank in front of the seat; and ne 5 -gallon gravity feed tank directly over the 30 -gallon tank, making a total capacity of 85 gallons for long runs. The tanks all feed into the 5 -gallon gravity tank, a hand pressure pump forcing the contents of the lower ones to this gravity tank. Besides an individual carbureter for each cylinder, the transfer pipes of each pair of cylinders are connected to a second carbureter, so that there are no less than 12 carbureters used on the engine.
Based on rated power, the motor in the "Br'er Fox II." consumes approximately 1.4 pints of gasoline per horse-power hour, but the engine unquestionably delivers more than its rating, so that on actual wheel performance turning a 22 -inch diameter, 44 -inch pitch wheel 800 R. P. M., it is very close to a pint per horsepower hour.
The boat has a capacity of 14 gallons of cylinder oil in tanks. She is designed to carry two men averaging about 155 pounds each and 30 gallons, or about 240 pounds, of gasoline. On the trip from Pittsburg to Cincinnati she carried four men, whose combined weight was 670 pounds, and 85 gallons of gasoline, weighing approximately 600 pounds, or a total of 1,270 pounds, against 550 pounds, which is her estimated capacity when speeding.

The Current supplement.

The opening article of the current Supplement, No. 1755 , is devoted to a discussion of the wonderful Frankfort Aeronautical Exposition, which has been opened with such success in Germany. Excellent views of the exhibits accompany the text. Mr. E. F. Lake's exhaustive and instructive article on the oxhydric process of cutting metals is continued. Mr. Newton Wright explains how the size of gas and oil engine cylinders may be determined. It is a curious fact that many of the marbles employed by the Romans, Greeks, and even Egyptians, are those most highly valued by the architects and builders at the present time. Marbles and other decorative stones from the identical localities which were sought by the ancients with so much care are now to be seen in most fine modern buildings in London and other cities. This whole subject of ancient marbles and ancient marble quarries constitutes the subject of an article by Mary W. Porter. O. Bechstein contributes a wonderfully instructive article on kieselgur and its uses. The experimental evidence in support of the atomic hypothesis is set forth by R. Ehrenfeld. Maria Parloa's monograph on canning and preserving fruit is continued. Interesting electrical notes are those entitled "How to Join Electric Wires," and "The Egner-Holmstrom Telephone Apparatus." It is sometimes necessary when designing buildings or other works to construct models in order to explain intricate points more clearly than can be shown in drawings. How this is done, Mr. Stanley C. Bailey explains. Improved deepsea sounding apparatus is described by Capt. E. Moll. A report of the Sixth Conference of the International Commission of Meteorology is published. A calendar good from 1753 to 1952 is not the least interesting feature of this issue.

From the returns compiled by Lloyd's Register of Shipping, it appears that, excluding warships, there were 308 vessels of 745,705 tons gross under construction in the United Kingdom at the close of the quarter ended June 30th, 1909.

THE NUMBER OF OUR ANCESTORS.

To the Editor of the Scientific American:
The difficulty that some of your correspondents have with the ancestral puzzle is in disregarding the marriage and intermarriage of distant relatives Thus if one of B's grandparents on his mother's side was cousin to one of his grandparents on his father' side, B would have only 14 great-great-grandparents side, B would have only 14 great-great-grandparents.
The one divergent series would be extinguished and The one divergent series would be extinguished and
the number of his ancestors in any one generation the number of his ancestors in any one generation
would be $2 n-2 n-4$. If, instead, two of his eight would be $2^{n}-2^{n-4}$. If, instead, two of his eigh
great-grandparents were cousins the formula would great-grandparents ${ }^{n}-2^{n-5}$. If there were two be for any generation 2 . Is there were the formula would be $2^{n}-2\left(2^{n-5}\right)$, etc.
When we consider that our ancestors for hundreds and thousands of years lived in small and more or less isolated villages and communities and that families of as many as ten or twelve children were not uncommon, we can see that could we trace all lines of descent of any one person we would find them con stantly running into each other and merging into common ancestors. Thus in the fifteenth generation we might trace descent from two parents through any one or through all of their twelve children. And if the blood of these children had commingled at othe times in the line of descent, as it must at least in an isolated community, two persons in the fifteenth generation might represent a hundred or even sev eral thousand of B's theoretical ancestors.
Nora Springs, Iowa. W. A. Eckles.

THUNDERSTORMS.

To the Editor of the Scientific American:
The explanation of thunderstorms ordinarily given is that clouds are form minute particles of moisture, each having an electric charge on its surface. These particles agglomerate in drops of rain, and their electric charges spread over the surface of the drops with a resulting greater electric density, because the surface of a drop is much less in extent than the aggregate of the surfaces of all the particles of which it is made; the increase in surface being proportional to the square of the diameter, when the increase in volume is proportional to the cube of the diameter. For instance, the electric potential (depending on the electric density on its surface) of a drop of rain $1 / 8$ of an inch in diameter will be 125 volts, if it is formed of particles $1 / 1,000$ inch in diam. eter whose potential is one volt.

The drops of rain in a cloud being separated by air acting as a dielectric, electrify each other by influence; the resulting influence at the center of the cloud being an enormous electrostatic strain, which is relieved by lightning.
This simple explanation is that generality given in the lecture room, but is not sufficient to explain the thunderstorms without rain frequent on the Western plains in hot dry weather. The writer has observed many in northwest Texas. One day at noon I was resting in my house, when I was startled by a sudden clap of thunder, followed by others. I had not seen a sign of a cloud a few minutes before when coming home. Stepping out doors, 1 saw toward the zenith a very thin yellowish cloud somewhat broken, from which emerged the thundering. No lightning could be seen, the glare of the sun through that misty cloud being too intense. From its rapid motion and the distinctness of the claps of thunder, I judged that it could not be very high. This phenomenon lasted about three minutes and vanished.
The appearance of that cloud was unusual for a dry thunderstorm. Ordinarily, in such occurrences there are several scattered small white clouds, embryo cumuli in shape but diaphane, they look "dry," and do not cast any appreciable shadow on the ground. They appear and vanish with more or less sharp thunders, seemingly at a high elevation. No lightning can be seen because of the sunshine through them. These electric discharges begin about noon,
to last until about two hours before sunset. During the day there are occasional flushes of breeze, but no continuous wind in a certain direction.
This condition of weather may last without rain for two or three weeks, and is generally followed by a stubborn drought, with a smoky appearance of the sky and very little or no dew in the morning. The absence of rain, the small size of the clouds, and their diaphane, evanescent appearance, indicate that other agencies besides those mentioned in the lecture room are active for the presence of electric potentials widely differing in a dry thunderstorm
Observations have shown that the electric potential of the air increases with the distance from the ground Now suppose that a portion of the upper atmosphere be brought near a portion of the nether atmosphere within a medium like mist, where electrification by influence can take place; the requisites for an elec tric discharge are present, and apply to dry thunder storms. They occur when atmospheric conditions are favorable for causing local ascending currents of warm air with a small quantity of aqueous vapor to an eletation where they meet a cold current, whose cooling effects contract the hot air and condense the vapor it contains, creating a vacuum that sucks the air from he highly electrified upper atmosphere, as shown in Fig. 1, where B is a warm ascending current, C is the initial cooling current (which has disappeared) \boldsymbol{D} is the descending current, and E the cloud formed by the condensation of the vapor in the ascending current B.
From the absence of rumbling thunder the electric discharges seem to be confined within each separate cloud, and originate mainly from differences of poten tial brought from different strata in the atmosphere
The ordinary thunderstorms with rain happen also when atmospheric conditions cause ascending currents of warm air containing aqueous vapor. There is low barometer and a preceding period of calm high tem perature; the clouds are cumuli and pile very high up, especially for hailstorms.
When rain is brought by a wind that has been blowing for a few hours or days in the same direc tion, the clouds are of the nimbus class; they over cast the whole sky, and though the drops of rain may be large, there is no appreciable thunder and lightning, the electric potential being too uniformly distributed throughout the cloud.
Pittsfield, Mass.
Henry Getaz.

THE EFFECT OF POLAR CURRENTS ON GULF STREAM

 PLANKTON.To the Editor of the Scientific American
lt was announced some time ago that very interest ing communications were to be published shortly from the pen of Prof. Frithjof Nansen and assistants upon the most recent results of the investigations which have been carried on for a series of years with a view to ascertaining the influence which the water in the polar currents has upon the water in the Gulf Stream in the way of creating very favorable conditions of existence, in the latter for plankton and higher marine life.
The results may be shortly summed up thus: From the investigations carried on during the "Fram's" voyage across the north polar basin it has been proved conclusively that in the polar water which is protected by a thick layer of ice from the influence of light accumulate matters which have a fertilizing effect upon the vegetable life in the open sea and which in the cold, dark polar water are not used. The polar basin is like a large tract of fallow land in which fertilizing matters accumulate without being used.
The warm water in the Gulf Stream, on the contrary, when reaching the northern part of the Atlantic is desert water, so to say. It has been used up and contains only scanty means of subsistence for any animal life.
The more polar water that sets in and mixes with the warm water in the Gulf Stream, the more luxuri ant seems to be the growth of plankton and higher marine life. It is the cause of colder summers in northern Europe, but the fisheries seem to be better in proportion.
The results of these investigations, of which only a short summary is just published in the press, will be issued in book form, and seem to open up pros pects of our being able to foretell good or poor fish eries aid to explain many interesting phenomena which se m to be dependent upon the temperature in the northern part of the Gulf Stream.
Christiania, Norway. J. A. Mörch.

Rubber Substitute.-According to a foreign patented process, a substance resembling rubber or gutta percha is produced by mixing gelatine, bichromate of potash, and glycerine, and molding the mass obtained. The components are used in an anhydrous state to retard the working of the bichromate of potash on the gelatine; by heating, the chemical effect may be increased or reduced.

BY THE
PARIS CORRESPONDENT
OF THE
SCIENTIFIC AMERICAN

In 1903 excavations in the island of Delos were begun on an extensive scale, owing to the liberality of the Duc de Loubat, who decided to make an annual gift to the enterprise of $\$ 10,000$, in order that the work could be carried on in a manner which is justified by the great importance of the site. The work is carried on by the French School of Athens, and M. Homolle, whose connection with the excavations at Delphi we have already had occasion to note, directed the first part of the enterprise. Since then it has been carried on by his successor. M. Holleaux, and various archæ ologists of the French School. Because of the great number of discoveries which. have been made at Delos, the archæological world is much indebted to the action which the Duc de Loubat took in aiding the excavation work.

From an early period, going back to the eighth century B. C., Delos was a center of the worship of Apollo, who had a celebrated sanctuary on the island. After passing through many political vicissitudes, Deios was completely ravaged by the army of Mithridates. Its most flourishing period appears to have been in the third century B. C.
Since Delos was a religious as well as a commercial center, it is but natural that we should find remains both of various temples and also of extensive buildings such as storehouses and wharves. In general, we may liken the site of Delos to Pompeii, because it is covered with remains of public and private buildings. But naturally it is far superior to Pompeii in the artistic character of the structures and other remains; for here is represented a flourishing period of Greek art For this reason the excavations at Delos are of especial interest, and the remains have a high artistic value. On the one hand we have specimens of sculpture which belong to the principal epochs. There are also extensive remains of architectural forms, columns, etc. Not the least in importance are the fragments of mural decorations which are found in various places. While these are not in so good a state of preservation as those of Pompeii, they give a clear idea of the decorative borders, friezes, and large wall paintings that adorned the larger dwelling houses of Delos. Mosaics of brilliant colors are also found, and some of these are in a good state of preservation.
The excavation work is carried on with a view to clearing as much as possible the streets and edifices of the site. In the quarter of the port, very extensive wharves have been disclosed, as well as large quays and storehouses, evidences of considerable commercial activity. It is evident from their extent that Delos was one of the most important commercial ports of the archipelago.
As regards the work which has been undertaken at Delos since 1903, the year when the Duc de Loubat came to the aid of the enterprise, it is one of the most considerable to be carried out in Greece, so far as the amount of material i. concerned. This is no less than 50,000 cubic yards of earth annually. As the various walls were brought to light they were consolidated to keep them together and efforts were made to preserve the stucco decorations and mural paint ings. The appearance of the paintings, mosaics, and various decorative motifs is shown in a collection of water-color drawings which were made on the spot by two artists belonging to the expedition.

Among the points which have been explored up to the present are the sacred inclosures in which was the leading sanctuary of Delos, also the quarter of the Theater. Near the inclosure is the sacred lake, a small body of water. One of the most remarkable finds is a tomb belonging to the Mycenæan epoch, to which we may assign a date between the twelfth and the fifteenth century B. C. Thus we remark the great antiquity of the early remains of Delos, showing that it flourished at even this remote period. On this spot were found fragments of pottery whish are of value
in the study of this epoch. A great terrace or esplanin the study of this epoch. A great terrace or esplanade was uncovered near the sanctuary. Here were
found five colossal lions which were set up in a range and spaced at equal distances apart along the terrace. One of our engravings shows the appearance of this site, and another one represents one of the lions, showing the considerable size and also the great antiquity oi the specimens. They rank in date after the abovementioned tomb, and from their archaic character we may place them in the seventh century B. C. M. Salomon Reinach, however, considers that the group of lions may have been offered to the sanctuary by Croesus, King of Lydia, fabled for his riches. He bases his theory on the fact that Herodotus states that Croesus had offered a massive gold lion to the temple of Delphi having a weight of ten talents, the lion being the ancestral sign of the king's family. It is possible, therefore, that the group at Delos may have come from the same source, and this would place them in the sixth century.
Coming to the remains of a later epoch, we find a street which led from the theater to the sanctuary, a very narrow street, only five feet wide. It was bordered with small houses and shops, and must have been much frequented.
As to the general character of the excavations at Delos as they appear at the present time, one of the accompanying views will give a good idea of the extent of the work. It will be observed that it covers a very wide area. Like modern buildings in some countries the dwellings of Delos consist of a central court surrounded by a portico with columns, opening into which were the various rooms of the building. some of the columns in this and other structures of a like character are in a good state of preservation, and the walls in some cases are high. The remains slightly resemble the dwelling houses at Pompeii.. One of the dwellings, which has a considerable interest, is similar to the above and is known as the "villa of Cleopatra." Here the portico is upheld by high Doric columns. There were found here the statues of the owners of the villa, Dioscourides and his wife Cleopatra (who has, of course, no relation to the Queen of Egypt). The latter statue, which is shown here, is in a good state of preservation, although the head is unfortunately missing. An inscription on the statue relates that Cleopatra, native of the town of Myrrhinonte in Attica, executed the statue of her husband, which is the accompanying one, and that he himself had offered two silver tripods to the temple of Apollo. As the inscription bears the name of the archon Timarchos, we are able to fix the date of the statue in the second century B. C. The draped statue retains some of the characteristics of the grand epoch in its treatment.

A NEW APPLICATION OF THE DIVING BELL.

by the cervin correspondent or tee scientific americal

A remarkable diving bell or portable caisson has recently been 'constructed for the German Navy Department for use in the deepening of the harbor of its naval base at Tsingtau. The remarkable features are not so much those of the bell itself, but of its connection with the imposing structure above water shown in our frontispiece, the whole making a complete and self-contained unit for excavating to a maximum depth of 15 meters below water level.

Two pontoons, each 16.5 meters long, 5.6 meters wide, and 2.2 meteis deep, are rigidly braced together bow and stern, foriving between them a well into which the diving bell may be completely withdrawn from the water. Upon the deck of the joined pon toons is erected the superstructure, from which the diving bell is suspended and operated, consisting principally of conventional I-beams and angles.

The diving bell is built of sheet iron, externally braced, and is 10 meters long, 5 meters wide, and $21 / 2$
neters high. Extending upward from the top of it are three telescopic shafts, two for the hoisting of the excavated material, each 80 centimeters in diameter, through which a bucket of 1 ton capacity can pass, and one of 1 meter diameter for the workmen. Each of these is provided with such an "air lock" as is now familiar in connection with tunnel and foundation work in New York and elsewhere, in which, as workmen enter, the air pressure is gradually raised from that of the atmosphere to that required to exclude water and mud from the interior of the caisson, being similarly reduced for those ascending from work. The air locks of the spoil shafts are identical, but the air may be compressed or exhausted much more rapidly in the hoisting of buckets of excavated material, the gradual change of pressure being necessary in the case of men only as a precaution against caisson disease
The bell is suspended by four sets of chain tackle, one at each corner, which are mounted on opposite ends of two shafts on the operating platform of the superstructure, driven simultaneously by an electric motor when it is desired to raise or lower the bell.
Higher platforms carry two cranes, which receive the buckets of excavated material from the top of the spoil shafts and deliver them into scows alongside or however desired, the cranes also being electrically driven, as are the winches inside the spoil shaft for hoisting the buckets from the interior of the bell. One man on the platform at the top of each of the latter can hoist the bucket with the winch, detach it, and hook it onto the crane, and vice versa, and also raise and lower the bell as desired. Two more operators for the cranes above are required.
On the deck are three compressors supplying the necessary air pressure to the interior of the bell, power for the whole equipment being supplied from a stationary plant on shore. Both the superstructure and the interior of the bell are electrically lighted, and communication is maintained between them and from either to the shore by telephone. Quarters for the crew are provided in the interior of the pontoons. The design of the superstructure permits of continuous operation being carried on independently of the varying height of the pontoons due to rise and fall of tides.

THE FIRST CROSS-COUNTRY FLIGHT OF THE AERONAUTIC SOCIETY'S BIPLANE.
 (Concluded from page 124.)

fell backward, breaking the rudder and propeller and damaging the running gear. Mr. McCurdy, the aviator, was unhurt, and the engine was not damaged. The accident is said to have been due to the engine being placed too far to the rear. The machine will be repaired in about a week, when further flights will be attempted
m. SOMMER'S RECORD FLIGHT.

The record endurance flight of 2 hours and $271 / 4$ minutes in France, mentioned in our last issue, was wrongly attributed to M. Gaudart. This flight was made by M. Roger Sommer with a Farman-type biplane, and although unofficial, it is probably the longest ever made with an aeroplane.

In an article appearing in the American Machinist on annealing high-speed steel, the author states experiments have been carried on looking to electrical annealing and to bright annealing by immersion in a bath of fusible metallic salts, somewhat after the manner of the barium-chloride process for hardening. Moderately successful results have in some cases been obtained; but the methods are not as yet sufficiently developed for commercial use. The two methods have also been combined, with results apparently good, the salts bath being heated by the passage through it of a bow-tension electric current.

One of the lions－possibl

Group representing Aphrodite，Pan，and Eros（2 B．C．）
The terrace
回回回 \square 5 5

CONJUNCTIONS OF THE PLANETS.

The purpose of this article is to treat of only that art of the general subject of planetary configuration which relates to a comparison of the planets when they have the same right ascension; i. e., when they are on the same celestial meridian.
Six conjunctions of the planets occur during the latter half of the present year. One illustration is a plot of the orbits of the terrestrial planets, showing the positions of the earth and of the planets at each conjunction. The other shows the apparent diameters and phases magnified. In order to compare the figures, they are all drawn to the same scale. The apparent distance between the planets at each conjunction, however, cannot be represented on this scale, because the figures would be separated by a measurement which would fall beyond the limits of the drawing; but the distance seen, by the naked eye, is given in the text. The date of conjunction is Washington mean time.
conjunction of mercury and neptune.
July 23d. 0 h . The distance between the planets is a little more than twice the moon's diameter, which subtends an angle of about $1 / 2^{\prime}$ deg. Neptune's diameter is nearly eleven and one-half times the diameter of Mercury ($=34800 / 3030$). At this date Neptune's distance from the earth was about thirty-one times the mean distance between the earth and the sun $(=30.9$ × 92.9 million miles) ; while Mercury's distance was only one and one-fifth times this unit $(=1.195 \times 92.9$ million miles). The apparent diameter of a planet is proportioned to its true diameter, and inversely as its distance from the earth. The result of a simple computation shows that Mercury subtended a very much larger angle than Neptune.

The plot shows that the planets are morning stars, ind that Mercury's phase is gibbous. In this and in the illustrations which follow, the arrow drawn with the full line shows the direction of the planet as seen from the sun; and that drawn with the dash line as it is seen from the earth. On account of the great dis tance to Neptune, the convergence of these visual rays is scarcely perceptible in the drawing.

CONJUNCTION OF VENUS AND JUPITER.
August 11d. 14h. Jupiter and Venus are evening stars. The former is daily receding farther from the earth, and will be in conjunction with the sun on September 17th, after which date Jupiter will be morning star. Venus presents the gibbous phase; and at the time of conjunction, the relative diameters of the planets appear as shown in the illustration. The computations for these figures are similar to those which have been explained. The great difference between the equatorial and polar diameters of Jupiter are apparent. The planets are separated by a distance equal to two-fifths of the moon's diameter

CONJUNCTION OF MERCURY AND JUPITER.
August 24d. 19h. The planets are evening stars, and are at a distance apart equal to one and a third times the moon's diameter. Mercury shows the gibbous phase, the dark edge being opposite from that shown on July 23rd.
conjunction of venus and
uranus.
November 23d. 8 h . The planets are evening stars, and may be seen a long time after sunset. Venus is rapidly approaching the earth, and as a consequence the planet's diameter is increasing. An inspection of the plot shows that a little more than one-half of the illuminated surface is visible. Venus will soon present the half-moon phase, which will be succeeded by the crescent phase, when she will be the most beautiful object in the evening sky. The planets are separated by a distance equal to about five times the moon's diameter

CONJUNCTION of mercury and uranus.
December 27d. 15h. The planets are evening stars Mercury shows the same phase as that of August 24th; and since the distances from the earth are very nearly equal, the apparent diameters are equal. The diam eter of Uranus is about ten and a half times that of Mercury; but its distance from the earth reduces its apparent diameter to that shown in the figure. Th distance separating the planets is equal to about three and a half times the moon's diameter.
conjunction of mars and saturn
December 31d. 2h. Again the planets are evening stars. Mars shows the gibbous phase, and his dis tance from the earth is about equal to that between the earth and the sun. The apparent distance between
the two planets is nearly six and a half times the moon's diameter. The great difference between the equatorial and polar diameters of Saturn is very apparent. Although Jupiter's diameter is scarcely one and three-sixteenths times that of Saturn, the diameter of the latter is very much reduced on account of its greater distance from the earth.

An American Exposition in Berlin in 1910.
What promises to be a unique event in international commerce will take place under distinguished auspices in Germany's capital next year.
In a recently erected permanent exposition building known as the Exposition Palace near the Zoological Gardens, in the best section of Berlin, an exposition

Mercury Venus Jupiter Uranus Uranus Mars

of American products exclusively, among which tools and machinery will form an important part, will be held during the months of April, May, and June, under the patronage of Prince Henry of P'russia.
This exposition is designed to stimulate and strengthen our trade with Germany, a trade the importance of which may be gaged from the statement that Germany bought nearly $\$ 277,000,000$ worth of goods from the United States in 1908 and is America's second-best customer. Prominent men on both sides of the Atlantic will co-operate to make the undertaking a success.
The exposition commends itself particularly because of the fact that there will be no drudgery connected with it for the exhibitors. The space rental will include all incidentals, such as the decoration of the booths, foundations for the exhibits and carpeting, janitor service, the storing of the packing material, protec-

CONJUNCTIONS OF THE PLANETS IN 1909

tion, insurance, etc. The large steamșhip companies have granted substantial freight reductions, and ex hibits will be admitted into Germany free of customs duty.

Some of the most prominent manufacturers in the United States are signatories to an invitation to par ticipate in the exposition. For the exhibitors' con venience an office has been established in the Hudson Terminal Building, New York city.

The "Parahyba," the sixth of the ten destroyers ordered by the Brazilian government from Yarrow \& Co., Limited, of Scotstoun, ran an official full-speed trial a few days ago on the Skelmorlie mile. She attained a speed of 27.29 knots.

Poisonous Honey.

by prof. karl sajo.
Illness, and even death, are sometimes caused by eating natural honey, free from all adulterations. The writer is not aware that any fatal cases of poisoning have occurred in Europe. They are reported exclusive ly from America and Asia. Almost all cases are caused ky the use of honey derived from the flowers of plant of the Alpine rose and heath families (Rhodoracee and Ericaceæ). The matter is somewhat puzzling, because cases of severe poisoning are very rare. For example, the American cases, which are attributed to Falmaia angustifolia and K. latifolia, are only two in number, although these plants are common in America Even in Europe, illness is sometimes produced by eat ing honey. I have myself witnessed several mild cases one of which appears to throw some light upon the subject. Some children, who were watching their feacher cleaning honeycomb, asked him the nature of he dark and acrid paste with which some of the cell were filled. The teacher explained that this was bee bread. The children asked if it was fit to eat, and the teacher carelessly answered, "yes." The children ate the bee bread freely, despite its unpleasant taste, and all became extremely ill.
The reader doubtless knows that bees fill certain cells partly with pollen, which is necessary food for the development of the young bees, as it contains albumenoids, while honey contains only carbohydrates. This pollen is known as bee bread. It is usually stored in certain special groups of cells, which can be easily separated from the honey cells. Sometimes, however, the bee keeper, to his disgust, finds in the honeycomb, intermingled with the honey cells, many cells which contain pollen. Often the lower part of a cell is filled with pollen, and the upper part with honey. In the case above cited, the poisoning was evidently due to the pollen, for persons who ate the honey from which the bee bread had been removed experienced no ill effects. I know, from personal experience, that the eating of honeycomb which contains bee bread often produces unpleasant symptoms and loss of appetite.
Several possibilities suggest themselves. The pollen may be naturally poisonous, for many pollen grains contain toxines, as was proved by Prof. Dunbar in his investigation of the cause of hay fever. It is possible, also, that the pollen stored in the cells may become decomposed, and thus produce disease germs and poisonous substances. If the bees wish to preserve their stores of pollen, which are not usually protected by large additions of honey, they are obliged to add large quantities of a secretion containing formic acid, and it is not impossible that, in this operation, large doses of the alkaline poison of their stings may also be added
In view of these facts, it appears probable that the cases of poisoning attributed to honey are really caused by pollen. If this is true, the frequency of such cases should be diminished by modern methods of bee keeping, in which a compartment of the hive is reserved exclusively for honey, and the bee bread is almost entirely deposited in cells attached to the broodcomb, in another compartment. Furthermore, honey is now seldom pressed from the comb, but is almost entirely extracted by centrifugal separators, in which the semi-liquid honey flows out of the cells, leaving the more solid bee bread behind. In the case of honey in the comb, the presence of bee bread cells is easily detected by inspection or by the taste, and a little care in removing them will prevent any evil consequences.Translated from Prometheus.

Washable Water-color Paint

Washable painting in water colors can be executed by mixing the pig ments with plaster, a fusible salt, a suitable glaze, and an acidulated solution of gelatine. The paste thus formed is applied like paint and, after it is dry, is hardened by heating the painted objects. The following proportions and method are recommended:

Ten parts of glue are dissolved in 100 parts of hot water containing a little acetic or other acid. After this solution has cooled it is rubbed up with 5 parts of plaster, 5 parts of soda, potash or borax, 30 parts of lead oxide or zinc white, and the necessary quantity of the water color pigment desired. The coating, when dry, is heated by means of an alcohol or other smokeless flame. The finished coating resembles enamel. It is not affected by rain or heat and may be lacquered without difficulty.

A NOVEL SOLUTION OF THE PROBLEM OF TELEPHOTOGRAPHY.

Many inventions have recently appeared for the tele graphic transmission of handwriting, drawings, and photographs. Ingenious though they be, nearly all of these devices have never passed the experimental stage which circumstance is partly due to the extraordinary sensitiveness and complicated construction of the mechanism employed. The main difficulty met with in solving this interesting problem, however, lies in the means of obtaining and maintaining a perfect agreement between the working of the transmitting and receiving stations. In fact, an accurate reproduction cannot be obtained except by causing identical parts of the original and reproduced pictures to pass at equal times in front of a given point. On the other hand, the two picture rollers should perform their respective motions in equal intervals of time.
These difficulties, it is claimed, are successfully overcome by the "teleautocopist," an apparatus recently invented by Laurent Sémat and constructed by F. Ducretet and E. Roger of Paris. Moreover, the machine is well adapted for the transmission of musical notes, shorthand records, prints and-a matter of especial importance for the criminal police-sketches or anthropometrical data.
The roller used at the transmitting station has a larger diameter than the receiving roller. A motor which requires no superintendence is used to actuate both. Different in diameter and accordingly different in peripheral area, the rollers, nevertheless, reproduce a picture exactly the size of the original.
On the smaller roller of the transmitter (represented in Fig. 1) is wound a metal foil on which the picture to be transmitted is drawn or printed. The style which touches this foil serves to throw into the circuit the current.impulses that will reproduce the picture. Whenever a conducting portion of the metal foil is struck, the circuit is closed, and on passing over an ink-coated portion the circuit is opened.
On the larger roller (at the receiving station, similar to Fig. 1) is wound a sheet of carbon paper and upon this, a sheet of ordinary paper. Assuming the difference in the peripheral areas of the two rollers to be $1 / 8$, the reproduction of the original picture on the larger roller will take up only $7 / 8$ of its peripheral area. The peripheral speeds of the two rollers are chosen at the opposite ratio of their peripheral areas; that is, the smaller roller performs a full revolution in $7 / 8$ of the time of revolution of the larger one. Again, the first-named roller, after completing one revolution, is stopped and is not started again until the other roller has moved on through the disengaged eighth of its peripheral area. The process is repeated with each revolution. When starting from a given point, the two rollers re accordingly seen to pass in front are accordingly of the style, at equal times through
equal lengths of their peripheral equal lengths of their peripheral area; the longitudinal displacement is identical on the two rollers in the reproduction of original dimensions. In order, however, to reproduce in a magnified or reduced size, the relative diameters and displacements of the rollers are displacements of altered.
Besides the advantages afforded by the simplicity and perfection of synchronism, the Sémat apparatus dispenses with any selenium cells and photographic views, all opera tions being performed in full day light, merely by means of mechani cal devices. No special knowledge is required for adjusting the ap paratus, which is readily connected paratus, which is readily connected
with any ordinary telegraph or with any ord
telephone line.
The speed of transmission is easily raised to five minutes in the case of pictures measuring 7×12 centimeters.
The inventor, who is an official of the Egyptian railways, has recently made some successful ex periments on this apparatus, at the Khedival Palace at Cairo, when the telephotographic record reproduced herewith was obtained. The apparatus was then installed at the annual exhibition of the French Physical Society and there demonstrated.
The mechanism for obtaining accurate synchronism comprises an armature which arrests a peg fixed to the transmission rolier as long as its electromagnet is excited. At the receiving station is installed an interrupter, which opens the current each time it is struck by a cam rigidly connected with the roller.

As the speed of rotation of the (smaller) transmission roller is higher than that of the (larger) receiving roller, the former, after each revolution, is ar-
rested by the armature striking the peg until the large roller (which turns at a correspondingly lower speed), by interrupting the circuit, allows the electromagnet to relieve its armature and accordingly the stop.

Cement from Blast-Furnace Slag.
Cement is made from blast-furnace slag by various methods. Among the newer processes are the following:
Canaris Process.-The slag is granulated in a milk

Fig. 1.-View of the transmitting apparatus, identical in appearance with the receiving apparatus.
of lime made from freshly-slaked lime in a vessel provided with a stirrer. Two parts by weight of anhydrous lime (CaO) are employed for each 100 parts of siag.
Collosseus Process.-Slag in the fused state is treated with solutions of salts of calcium, magnesium, or aluminium. The action is twofold. The physical structure of the slag is altered and chemical changes are effected by which the injurious ingredients, especially sulphur, are made harmless and even conducive to proper setting and hardening.
Muller Process.-For certain purposes it is advantageous to substitute salts of barium or strontium for the salts of calcium, etc.
Grau Process.-A jet of dry superheated steam is

Many soaps sold as spot-removers are ordinary cocoa nut oil soaps, and remove only the spots which are prepared for the purpose by the vender. For example, spots made by daubing cotton goods with a mixture of tar and acid can be removed with pure water, and completely disappear when washed with ordinary soap. True spot-removing soaps contain ox gall and turpentine, which can be detected by their characteristic and powerful odors, even if the soaps are scented.
A good spot-removing soap may be made by mixing 20 parts by weight of good hard white soap, in very small pieces, with 8 parts of water and 12 parts of ox gall. The mixture is allowed to stand over night and is then heated gently until solution is complete. The heating is continued a little longer, in order to evapor ate some of the water, and $1 / 2$ part of oil of turpentine and $1 / 4$ part of benzine are stirred in, after the vesse has been removed from the fire. The still liquid soap is then colored with a little ultramarine green, dis solved in ammonia, and is poured into molds, which are at once covered.
The following process is also recommended, but it requires some care, as the soap is easily separated by agitation, especially if the ox gall is not fresh. In a vessel heated on a water bath, 28 parts by weight of cocoanut oil are thoroughly incorporated with 5 parts of talc or fuller's earth, $1 / 10$ part of brilliant green and $1 / 50$ part of ultramarine green. The mixture is allowed to cool to 90 deg. F.; 14 parts by weight of lye of a strength of 38 Baumé are then added and, after saponification is completed, 5 parts of ox gall are stirred in. If any separation takes place, the vessel is closely covered and heated on the water bath until the mixture becomes uniform. Finally $1 / 4$ part of turpentine and about 8 parts of benzine are added and the soap is poured into molds.

Natural Synthesis.

In an address to the chemical congress recently held in London, Prof. Paterno, of Rome, called attention to the evolution which is taking place in the synthetical processes employed in the commercial production o organic chemical compounds. There is a tendency to substitute, for the crude, tedious, and complex methods hitherto used, processes of an entirely different char acter, in which the desired chemical changes are ef fected at ordinary temperatures, without the employ ment of violent reagents. As chemical science de velops it allows an approximation to the ideally per fect methods of synthesis by which nature produce vast quantities of compounds in infinite variety. Duclaux has wittǐly rallied those chemists of to-day whose ambition and efforts are wholly directed to the comparatively easy production of new compounds, even if these compounds serve no other purpose than to enlarge dictionaries of chemistry. Manufacturing chemists will assuredly discover and utilize new and more natural methods of synthesis. The researches of the past half century in connection with ferments, microbes, toxines, diastases, catalyzers and the colloidal state of matter have indicated very interesting possible applications of these agencies t.o the processes of technology. Some of these agencies have long been known. Many kinds of fermentation, for example, have been utilized from time immemorial, but the mechanism of their action was unknown. Now that it is better understood it is safe to predict that the practical employment of that action in chemical synthesis will soon follow. Very important applications of this newly acquired knowledge of biological chemistry have already been made. Yeast, which only converts sugar into alcohol and. carbon dioxide, has been, to some extent, displaced by mold fungi, which also convert starch fungi, which also convert starch
into sugar. Agricultural experi-
an fused slag in such a manner that the slag falls in the state of powder and forms a pile which is allowed to cool slowly in order to prolong the effect of the heat and steam.

The new process of Dr. Ekenberg for converting raw peat.into fuel is based on the fact that after the peat has been heated in the presence of water to 150 deg. C. about 90 per cent of the water in the peat, which ordinarily cannot be separated by mechanical nieans, can be removed by moderate pressure. By then applying a small amount of artificial heat, a fuel free from water can be obtained.

Fig. 3.-Portrait of Arago transmitted by the teleautocopist. ments have demonstrated the great fertilizing power of infinitesimal quantities of catalyzers, and a new and valuable method of saponification has been devised by Dr. Nicloux.

Electrical illumination will be a great feature of the Hudson-Fulton Celebration-from September 25th to October 9th. Over a million incandescent lamps, 10,000 arc lamps, and searchlights aggregating $1,800,-$ 000 candle-power will be used in addition to the reg. ular lighting of the city in New York alone, not to mention the illumination of the Jersey shore and numerous special advertising signs.

RECENTLY PATENTED INVENTIONS.
Pertaining to Apparel.
garment-Rack. - Fannie Wolf, New York, N. Y. This invention relates to im provements in garment racks, and more paring the hangers and permitting of their rota tion, to expose the garment to view from al sides. The invention involves features of con struction substantially the same as certain of
the modified forms illustrated in a prior apthe modified forms illustrat
plication filed by F. Wolf.

Flectrical Devices.

INSULATOR FOR THIRD RAILS. - L Steinberger, New York, N. Y. Among the many objects of this invention may be named
the provision of means whereby a movable portion of the insulator may be connected with the rail and so arranged as to turn relatively
to a stationary portion of the insulator ; the to a stationary portion of the insulator; the
means for securing the insulator to a separat means for securing the insulator enabling the operator to handle the entire device as a single unit ; and mechanism for taking up pounding action otherwise taking place between insulator and base, owing to the alternate depression and rebounding
tie when a train passes over it.
tie when a train passes over it.
Circuit-closer.-o. m. Tustison, Bainbridge, Ind. The main purpose here is to pro
vide a closer which can be operated only by a vide a closer which can be operated only by a
special key, and which, therefore, is not cap able of being operated by any one other than the possessor of the key. The actuating mem the possessor of the key. The actuating mem thereby rendering it impossible for a separa tion of the circuit closing contacts.
CONTROLLER.-H. Smith, Suffern, N. Y The more particular object of this inventor is
to provide a type of controller in which there to provide a type of controller in which there
is a revoluble drum carrying resistance windis a revoluble drum carrying resistance wind
ings upon its periphery, these windings being adapted to dip into a body of free mercury and being movable at will by aid of the drum for the purpose of varying the ohmic resist ance of the windings.

Of Interest to Farmers.

STALK-CUTTING ATTACHMENT FOR VEHICLES.-R. B. Human, Chickasha, Okla The cutting attachment is complete in itself in combination with cultivator disks, and
which can be expeditiously applied to the forwhich can be expeditiously applied to the for-
ward or rear axles of an ordinary farm wagon, or to a similar vehicle, and provide means for lowering and raising the cutter and cultivator disks.
BEET-PLOW.-L. Brenneis, Oxnard, Cal An object of this inventor is to provide a
plow with bell crank levers pivoted to the frame, the levers having treadles on one se of terminals with a yoke pivoted to the frame
the yoke having a pin which engages the draf the yoke having
bar to shift it.

Of General Interest

animal-Trap. - G. J. Miller, Marco, Mont. When the jaws are sprung, and the instantly killed or disabled, he naturally seek to escape by crawling out under the jaw. To
prevent escape in this manner, each end of the body of the trap is provided with a fang which will ordinarily pierce the skin or body of the animal when the trap is sprung,
prevents his movemrent in any direction.
disappearing table.-G. h. Witthaus New York, N. Y. This table is adapted fo biles, and railway cars. One object of the biles, and railway cars. One object of the
invention is to provide means whereby a remov able section of a floor may be utilized as a
table, reclining couch, bench, or a settee. Ar table, reclining couch, bench, or a settee. Ar
ticulated members support the floor section ticulated members support the floor section,
which may be received within a pit below the which may be receiv
surface of the floor.

Machines and Mechanical Devices.
flying - machine. - P. v. Wadleigh Needles, Cal. The invention relates especially to machines of the aeroplane type. The ma the same to the desired elevation, and having independently operated propellers for advancIng the machine. The invention resides in the construction of the lifting and propellin mechanism, and in the guiding mechanism.
Welting-Machine.-J. Larsen, Vester gade 11, Copenhagen, Denmark. The inven-
tion relates to means for handling welts in welting machines and in other forms of ma chines for sewing leather, the more particula welt is fed to prowe into a whition the able for enabling it to be pierced by th needle.
Valve.-A. Paul, New York, N. Y. The roduce an efficient type of valve suitable for use in connection with liquids or gases, and especially adapted for handling illuminating gas. The invention comprises details of con struction whereby the closure of the valve is
rendered positive and the general efficiency of rendered positive and the gen
the valve is greatly increased.
wire-frame machine.-A. Piaser and 1. CoHn, New York, N. Y. One object of the
invention is to provide a machine which is capable of a plurality of adjustments to permit frames of widely different forms to be
fashined thereon, and which can be operated fashioned thereon, and which can be operated
to release a frame after the latter is formed
without destroying or altering the form of the SPE
SPEED-CONTROLLING DEVICE. - C. E. very little attention and is covice require revolving part of the device to be controlled with a view to cause the device to run at al times at a sure, steady, even speed, although the power or the load may increase or di-
minish instantly or gradually. minish instantly or gradually
Flying-machine.-M. B. Sellers, Balti more, Md. The weight of this machine is sup ported by the air impinging on one or more
surfaces, inclined at a small angle of incidence and in motion relative to the air, whethe and in motion relative to the air, whethe
this motion is produced by movement of air or by gravity, or by propelled mechanism When by gravity, the machine is known as
cliding machine, but it is equally suitable as gliding machine, but it
power-driven machine.
concrete-mixer.-W. D. Clough, e. S Clough, and J. G. Clough, Quincy, III. The invention has reference to machinery for work ing concrete and the like, the more particula
purpose being to produce a concrete mixe especially adapted for continuously admixing concrete in successive charges of limited volume The machine., 5 to a great extent self-cleanin and is not liable to do any pounding.
REGULATOR FOR THE FLOW AND
OF uz, New OF LiQUIDS.-P. SUTherland, La seful in devices used in irrigating channels. ining ditches and other water supply conduits provides a regulator which is absolutely au
tomatic in operation, and which can be ad tomatic in operation, and which can be ad different levels and at different rates of flow. Lathe-head_G. F Fisher, Torreo Mexico. More particularly the improvement re lates to the means employed for driving the chuck or face plate at any one of a plurality
of different speeds. The intention is to pro of different speeds. The intention is to pro-
vide means whereby the ordinary belt-driven lathe having a cone pulley may be converte into an all-gear lathe
ROAD-MACHINE.-M. M. Sickler, Pala Cal. The supporting wheels are operated b
gearing, particularly worm gearing, instead of y chains, and the various supporting wheel can be independently operated for steering the machine, and the bed may be raised or low-
ered, thereby achieving results on a hillside ered, thereby achieving results on a hillside
not ordinarily obtainable since the machine not ordinarily obtainable since the machin
can be practically level upon a decided slope. COUPON CUTTER AND COUNTER.-E. H cartow, New York, N. Y. This device may be and is adapted to sever or shear rapidly and venly. The device has a visible dial upo which is registered each coupon as cut, an
by means of which all the coupons may gathered as cut, in a removable receptacle. TYPE-WRITER RIBBON-SPOOL. - J. F
'ConNor, New York, N. Y. This improve COnNOR, New York, N. Y. This improved typewriter ribbon spool is provided with a cast
hub to which the flanges are riveted, thus permitting quick, convenient and accurate assem ling of the parts without the aid of skille acturing to a minimum.

Pertaining to Vehicles

tire-armor.-W. J. Belyea, Port Huron Mich. The invention relates particularly to improvements in a guard armor or protector
for rubber tires of automobiles, although may be used on rubber tires of other vehicles, the object being to provide an armor that ma be readily placed over a tire and absolutely
protect the same from wear or abrasion, and also enable the use of a brake directly to the read of the wheel
lock for cycles.-J. m. Barrett, fosoria, Ohio. The invention comprehends a lock mounted upon the framework of a bicycle and
provided with a movable bolt adapted to pro ject through the sprocket wheel, the bolt being o arranged that when in its normal positio he bicycle cannot be used, the bolt being
withdrawn from the sprocket wheel by aid of wey carried by the operator
TRANSMISSION APPARATUS. - J. 0 ORGER, New York, N. Y. The object of thi the rear or driving wheels of a motor vehic can be placed thereon without in any way altering the motor vehicle, and the power from the driving of such wheels will be applied to a powe
luggage-carrier.-L. E. Draper, Santa Cruz, Cal. One of the objects in this inven ion is to provide an adjustable luggage carri ing trunks, bags, or other receptacles, secur against accidental displacement or loss, th carrier when not in use being adapted to be folded together.
armored tire.-S. T. Moser, Huntdale, . C. The improvement is in that class of tires which are armored and in which an ain the outer tube. The aim is to provide a tire the outer tube. The aim is to provide a tire
and means for protecting the air tube from puncture and also to provide means for pre venting "skidding" or slipping of the wheel and further to increase the traction and prolong the life of the tire.
Note.-Copies of any of these patents will Please state the name of the patentee, title of

NEW BOOKS, ETC.
To and Fro the Key to London. Lon don: Simpkin, Marshall, Hamilton Kent
Price, $6 d$.
Few people are aware of the many and await them in London, practically at thei very doors, in the shape of the general public conveyances, and fewer still know how - to
completely avail themselves of these facilities o as to reach any part of the British metropo The wresent volume is published with the ob The present volume is published with the object of enabling them to make full use of thes
advantages. Great strides have been made in the past year in effecting rapid transit in London, and the guide before us enables the best advantage to be taken of the opportunities af forded. The work of compiling a book of this ature is colossal, and the publishers can be
book.
ffe in the Navy. By Thomas Beyer 246 pp. Price, 25 cents
This book is published by special authorit This book is published by special authority is indorsed by ex-President Roosevelt, Admira Dewey, and Rear-Admiral Evans. It contains vast fund of useful information which will prove of value to all
terested in the subject.
Catalogue of a Loan Exhibition of Rare Views of Old New York. New
York: Lloyd Title Insurance and
Trust Company, 1909.
pages; illustrated.
pages; illustrated.
We are indebted to Mr. J. H. Jordan, the ompiler, for this excellent monograph on the prints which were exhibited a few months ago
at 160 Broadway, New York city. The idea of the exhibition was a most novel one and the exhibition attracted wide attention. The qual ity of the prints was of the very highest, an many of them were practically unique. Th present volume is beautifully illustrated, and with a number of half-tone engravings showin
the prints in situ. The book is beautifull printed on French deckle-edge paper. The resent catalogue will be warmly welcomed b all collectors.

> How то Cook Vegetables. By Olive Green. New York: G. P. Putnam' Sons, 1909. $\$ 16 \mathrm{mo}$. $\$ 1$.

No more unique or welcome aid to a brain little series of handbooks in their plaid ging am covers, comprising such a large number o ried recipes. The book is beautifully printe on light-weight paper, and it is really a de
light to handle it. There are directions fo ooking tasparagus in 45 different ways. 55 ways, cabbage 105 ways, celery 32 ways chestnuts 19 ways, corn 87 ways, mushroom 95 ways, although mushrooms are not reall vegetable, but fungi. There are 20 ways of cooking the toothsome okra. There are 336
ways to cook potatoes, which is certainly a ways to cook potatoes, which is certainly a
most remarkable showing. There are 100 ways nost remarkable showing. There are 100 way
to cook tomatoes, and 46 different ways to ook turnips. There are besides dozens vegetables. The other volumes of the serie deal with "What to Have for Breakfast,"
"Every-Day Luncheons," "How to Cook Shel "Every-Day Luncheons," "How to Cook Shel orthy of a large sale
The Exploration of Egypt and the Old
Testament. By J. Garrow Duncan
B.D. New York: Fleming H. Rev
ell Company, 1909. 12mo.; 248 pages Price, $\$ 1.50$ net.
The present work is a summary of the re
ults obtained by explorations in the present time, with a full account of those exploration in Egypt under the direction Mr. Flinders Petrie have abundantly qualified Dr. Duncan to write on this interesting sub-
ject. Many readers will feel grateful to him or explaining the processes of exploration his general plan of writing is at once popula
and accurate. He speaks as an explorer on the many singular facts about them. The illustra tions and drawings add a great deal to the
vividness of the story, combining to give a book that has long been needed for the average reader.
Italian Highways and By-ways from a
Motor Car. By Francis Miltoun
Boston: L. C. Page \& Co., 1909
12mo.; pp. 380. Price, $\$ 3$. A delightful book, sumptuously printed and with his Italy, and makes a most entertaining book of it. He has visited many of the out-of-the-way places with which the peninula is filled. The illustrations are particu arly interesting and approphate
The Geology of the City of New York.
By L. P. Gratacap. New York:
Henry Holt \& Co., 1909. 8vo.; 232 pages. Price, $\$ 2.50$,
This is the third revised and enlarged ediion, and is accompanied with 65 illustrations
and 4 maps. There is no one better. fitted to treat of this subject than Prof. Gratacap, whose long connection with the American
Museum of Natural History has given him
exceptional opportunities for the study of valuellently made, and is well illustrated by is ex tone engravings and diagrams. The facts pr sented and the statements have been brough ogether from many sources and have bee lassified. The book will certainly tend to evelop and complete a correct geological con is to be congratulated upon a highly successful cientific book.
as Engine Theory and Design. By A. C. Mehrtens, M. E. New York:
John Wiley \& Sons, 1909: 12mo.; John Wiley \& Sons, 1909; 12 mo .
pp. 256. Price, $\$ 2.50$. It has been the aim of the author to pre ngines-students, draughtsmen, enzineers, as well as the men who operate gas engines of any ind, and wish to become better acquainted with he theory and the why of many things. Th ook should be of special interest to th pared for the engineering classes at the Michi an Agricultural College, since no suitable text ook could be found. The reading matter throughout has been arranged carefully and with a definite object in view. The large number of figures illustrating the text have
been made as simple as possible. It has also made as simple as possible. It has als
been the aim of the author to make the treat ment clear and concise, and for this reason every paragraph should be studied-not merel read ovet.
An Hstorical Review of Waterways Yobk State By Henry Whalen Hell LL.D. Buffalo: Buffalo Historica Society, 1908. 8vo.; 549 pages.
The present volume is a critical study dealing with various phases of the history of New er of the present work has been written b ore. The book, which is beautifuily bound is filled with papers and documents of all
kinds. It is a mst votuminous compendium of valuable facts which are particularly interest ng at the present time when the subject of terway construction in the Em State is of paramount importance. The Hon
Mr. Hill is to be congratulated on the com letion of so laborious a work.
The Lure of the Land. By Edith Lor $\begin{array}{lll}\text { ing Fullerton. New York: } & \text { Long } \\ \text { Island } & \text { Railroad Company, } & 1909\end{array}$ 8vo.; 160 pages.
The present attractive work is a history of market garden and dairy plot which wer fertile section of Long Island. The sectio ertile section of Long Island. The section
was so bad that it was designated as "scrub oak waste." This work was carried on by the Long Island Railroad Company at Exper ment Station No. 1. The author has also writ ten a most valuable book entitled "How To Make A Vegetable Garden." Mr. and Mr
ullerton are well known as promoters of ag ulture along the latest scientific lines. Th book contains a graphic description of the leared and the when the under until th arm was in its full fruition and they wer hipping "home hampers" to the city contain ing an assortment of fresh vegetables picked efore daylight and delivered before dinner
The book is charmingly illustrated and de The book is charmingly illustrated and de-
scribes the method of procedure which could scribes the method of procedure which could
be utilized in almost any territory. Tables and figures prove that agriculture is far from being
with
Bruss Brussels sprouts at $\$ 500$, asparagus at $\$ 550$ gooseberries at $\$ 900$, quinces at $\$ 1,500$; and ther attractive crops may be grown at sim ilar profits

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued
for the Week Ending August 3, 1909,

al Notices			
Munn \& Co., 361 Broadway, New York, or 625 F Street, Washington, D. C., in regard			
on Patents will be sent free Oldest agency for securing pate	cindes co..		
MUNN \& CO., 36 I Broadway, New Yor Branch Office, 625 F St., Washington, D. C.	Hess		
			Lememe
	STODDARD INCORPORATING COMPANY, Box 8000 PHOENIX, ARIZONA		
			Lemid
		920.sit	
ficemimim			
attaedimen			dell
			边
			yiter
	¢amaxay	(ex	
cimimian: ${ }^{\text {a }}$	Stion	,iter eiteme	
			Netyl
			Nefins
स\%			yite
	A Home=Made 100=Mile		
	Wireless Telegraph Set	ane wat	80
		dind	
		Asee	Nom
	=	,	
		20	
calendar holder, sheet metal,			
Clow	20 Years a Favorite!		
		Hat	
${ }_{\text {a }}$			
and			rap
aid			
	\%		
,		ceat	
	Schools and Colleges		
		Heamis	
eir mantac			det
		Hase	
	Ster		

Classified Advertisements Advertising in this column is 75 cents a line．No less
than four nor more than ten lines accepted．Count
seven words to the line．All orders must be accom． seven．words to the line．All orders must be accom－
panied by a remittance．Further information sent on
request． request．
READ
READ THIS COLUMN CAREFCLLY．－You will ind conisecutive order．If you manufacture numbered in
woods write us at once and we will send you the name and
address of the party desiring the information．There address of the party desiring the information．There
is no charge for this service．In every case it is necessarge for give the nummber of the inguiry．
neere manufacturers do not respond promptly the
Wher Where manufacturers do not respond promptly th
inquiry may be repeated．\quad MUNN \＆CO．

BUSINESS OPPORTUNITIES
 lnquiry No．8868，－Wanted to buy nickeloid for
buttons．
AN ESTABLISHED BU SINESS with tools，patents
and copyrights，for a necessary sheet metal engine room specialty．
with modendid opportunite for young man
capital，or for manufacturer to add with moderate capital，or for manufacturer th Inquiry
Electro－Catalytic S Sparibing Plug．＂ COMMERCIAL COMPANY in Chicago will ionsider
the manuacture or inks，mucilage pastes，sizinigs or
other prof other prodtable spociatios．Bank references furnished，
Address Chicapo，Box Tr73，New York． $\underset{\text { paper．}}{\substack{\text { Jnquir } \\ \text { pat }}}$

 Inquiry No．S922．－Wanted the address of Worth－
ington Boiler Co． FOR SALLE．Flying machine tubing． 10.000 feet

PATENTS FOR SALE

 Inquiry No．X931．－For parties who ma
the western Stump Borer for boring stumps．

chinery for maining fy screens．${ }^{\text {Nanafacturers of ma }}$ YALUABLE CANADIAN PATENT FOR SALE．
Address J．Coudon，Aikin，Md．，U．S．A． lnguiry No．8960．－For the address of the Wind－
sor Mfg．Co．，manufacturers of waterproof collars and
cuff．
 HELP WANTED．
LOCAL REPRESENTATVE WANTED．－Splendid

 Inquiry No．N966．Wanted the address of the YOUNG MAN，graduate of some school in mechani－ small Tennessee town．Good opportunity for advance
ment．State experie．ice．if any and salary．Answer
＂Position，＂Box 7 is．New York．and

SALESMEN WANTED．

SALESMAN WANTED to handle an exceptlonally at
tractive real estate and timber proposition，Which can be
suld sold on annual，semi－annual or munthly installments．
We furnish inquiries and strong literature．Capable
ageresive gagressive energe itic man can make desirable connec
tion with lareest and strongest house in itsline in th
country．Sacramento Valley Imp．Co．，St．Liouis，Mo． Inguiry No．8974．－For address of arms inter

SITUATIONS WANTED．

WANTED－Situation by an experimental mechanic
of executive ability faniliar with electricity．gas and
steam motors．A－1 model maker．Aeronautical line of executive ability familiar with electricity．gas anc
steam motors．A－1 model mater Aeronautical line
preferred．Address ci．E．，Box 773 ，New York． Inquiry No．S977．－For manuffacturers of ma
chinery for manufacturing denatured alcohol．

MISCELLANEOUS

TOBACCO HABIT CURED OR NO COST．－Harmles
home treatment．Ni－Ko Works，Wichita．Kansas． Inquiry No．8998．－Wanted the address of manu－
facturers of dry pans or orvedhers to grind sand for
plastering and cement works．

LISTS OF MANUFACTURERS． COMPLETE LISTS of manufacturers in all lines sup－
 lnguiry No．8980．－For the address of manufac－
turers of mortars and pestes that are used by druggists． A LIST OF 1,500 mining and consulting engineers on
cards．
Price．
\＆15．00．
 Inquiry No．8984．－Wanted the address of the
manufacturers of Cypress wash tubs． Inquiry No．©987．－Wanted，the manufacturers of
the V San Winkle．Woods \＆Sons，and the Weber power
meters． Inquiry No．
sboes not madee of leather but similar to the
are as durable． Inquiry No．8996．－Wanted addresses of manu
facturers of machinery for working orange wood mani－ cure sticks．
Inuiry No． $\mathrm{Z99} \mathrm{\%}$－Wanted the address of the
manufacturers of bread or cake boxes． Inquiry No．9001．－For

Inquiry No． 9004 ．－Wanted to buy machinery Inquiry No．9007．－Wanted，a tin churn for chur ng milk that．has a ．Wire siring at top and bottom
nhurn and operated by pressing the wire springs．
 Vice which is held to the outside of a show window b
rubber cups． Inquiry No．，9010．－Wanted to buy a＂Rector Inquiry No．9011．－For the manufacturers of
patent sewing neadee that is made to sio over the
thread；the eye is split so as to open and rece the thread；the eye is split so as to open and receive th Inquiry No． 901 s．－Wanted to buy papier mache
boxes in the shape of water melons，colored to resem－
ble melons，elc． Inquiry No． 9013 ．－For the address of the manu－
facturers of double edge safety razor blades．
 chinery，supplies，etc．，to equip a samill plant for the
manuta，
fountain pens． manutacture
Inquiry No．9015．－Wanted the address of the
manufacturers of at solid link inain made without
welding，made in brass，several different sizes，made on wenuracturers or a
welligng，made in brass，
an automatic machne．

 Pitching machine，Penningh \＆Kleiner．．．． Plane，Mitchell \＆Schade．．．i．．．．．．．．．．．．

 Plastic product，Desvaux \＆Ailiaire．．．．．．．．．．
Plate，hot，w．J．Jordan．
Platens，work hoider for fiat， \mathbb{G} ．W．Wo Plow attachment．．．．．．．．．iristiannon．

 Printing mechanism，F．G．Jahn．．．．．．．．．．．．．
Printing medium，Charres．\＆Fresses．ink－supplying apparat
for，H．D．Washurn．

ぞ紋

THEODORE ROOSEVELT＇S

own and exclusive account of his

begins in the October Number of Scribner＇s Magazine

Abstract

The start of the famous expedition－－the wondeful railway jounney through a county that was like a＂great zoologicila gaden，＂his meeting widh Selous，the famous hunter of big game，descipioions of the black tribesmen of his caravan，his ouft，guns，tents，etc，etc．Most interesting obserations spon the ffects of the English，Geman，and other white settle－ ments．The illustations foom photographs by Kemit Rosesevel and others． These articles will run a year，and subscriptions should be sent at once to secure the full narrative．

Any person who can secure subscriptions can make money on Scribner＇s this year．Liberal cash commissions and cash prizes．Write NOW for particulars． $\$ 3.00$ a year． 25 centa a number CHARLES SCRIBNER＇S SONS，NEW YORK

The Scientific American Cyclopedia of Receipts Notes and Queries revised edition

15，000 Receipts
734 Pages
Price $\$ 5.00$

MAILED TO ANY PART OF THE WORLD

T
 NOTES AND QUERIES has had an unprecedented sale．It has been used by chemists，technologists，and those unfamiliar with the arts，with equal success，and has demonstrated that it is a book which is useful in the laboratory，factory or home．It consists of a careful compila－ tion of the most useful receipts and information which have appeared in the －SCIENTIFIC AMERICAN for more than half a cen－ tury．Over 15,000 selected formulæ are here collected， nearly every branch of the useful arts being represented． Many of the principal substances and raw materials used in the arts are described，and almost avery inquiry re－ lating to formulæ will be found answered．It is more than a receipt book，as in most cases it gives all the standard and special formulæ，thus enabling the reader to find a receipt which fits his peculiar need． alphabetical arrangement with abundant cross references makes it an easy work to consult．Those who are en－ gaged in any branch of industry will find this book of the greatest practical value，and we especially commend it to those who are in search of an independent business，as they will find many formulæ for the manufacture of salable articles which will be worth many times the cost of the book．The Appendix contains the very latest formulæ as well as 41 tables of weights and measures，and a Dictionary of Chemical Synonyms．

Send for Full Table of Contents Mailed Free on Request

MUNN \＆COMPANY，Inc．，Publishers 363 BROADWAY，NEW YORK

Home-Made Experimental Apparatus

 A ferw of tbe many valualle articles on the
makking of experimental apparatus at home are ELECTRIC Lighting for amateurs

 the construction of

 TEUR'S USE is so plainly described in Scien
titic American Supplement 1572 that anyone cellt
thate in

 RUBBER BAND is the sulljief of an article is
Scientific American Supplement 1578 .
 EXPERIMENTS WITH A LAMP CHIMNEY.

 foree
I583.

AN EASILY MADE HIGH FREQUENCY AP. RAIN EITHER DARSONVAL OR OUDIN CUR RENTS is des.

 nents 1363 and 1381 .
THE LOCATION ANDERECTION OFA A 100 , clearly explained. with the help of diagrams,
in Scientific A merican Supplement 1 I622.
 FIT, illiustrated with1
can supplement 1623
$\underset{\text { WIRELESS }}{\text { THAKING AND }}$ THELEGRPH Instrated witb diagrams, Scientific America How To MARE A MAGIC LANTERN, Scien-
tific American Supplement 1546. THE CONSTRUCTION OF AN EDD
Scientific American Supplement 1555 . THE DEMAGNETIZATION OF A WATCH is plement is61.
CAOW AE MALORIC OR HOT ATR ENGINE with the help of illustria
American Supplement 1573 .
THE MAKING OF A RHEOSTAT is outined
 hro contained in Scien
i494, 1049 , and 1406 .
How AN ELECTRIC OVEN CAN BE MADE
is explained in Scientific American Supplement
${ }^{\text {the }}$ the building of a storage battery
is described in Scientific A merican Supplement
1433. ASEwwing-MAchine Moror or simple piement 1210 .
A Whearstone bridge. Scientific Ameri-
can Supplement 1595 .

 How TO MAREA TELEPHONE is
iu Scientific American Supplement 966.
 How To MARE A THERMOSTAT is ex-

AAEROID BAROMETERS, Scientifc American
Supplements 1500 and 1554.

VALUABAP LATHE WPON WHRCH MUCH

Eacb number of the Scientific
plement costs 10 cents by mail.
MUNN \& CO., Inc.. 361 Broadway, New Yor

S.

Thbill sou
Ther mo

Threshi
This
Tin
Tin tria

Torpedoes, start ting device for the con
pressed air motors of self-propelied,

\qquad
\qquad
\qquad

In Touch With His World

The railroad president to-day spends the greater portion of the summer at his country home renewing his energy. He keeps in touch with his railroad system over the telephone.

He may be one hundred miles or more away from headquarters, yet his office and the principal business centers of the country are within talking distance.

He is notified immediately when anything important occurs; his advice and direction are asked and given over the telephone; the machinery of the road goes on.

Each day, at the noon hour or in the early morning or late afternoon, he conducts his business over the long distance line.

He is in touch with his world.

Through the day he has been renewing his energy-sailing, driving, or playing golf-making himself more fit for the busier season and able at all times to handle a larger system and a larger volume of business than the president of two decades ago.

This is simply an illustration which applies to every busy man, whether he be railrcad president, merchant, manufacturer or profes sional man

It shows the importance of universal service, which is the constant aim of the Associated Bell Companies-of onesystem, extending to every nook and corner of the United States, keeping all localities within speaking distance of one another.

> Long Distance Bell Service is universal in two ways-
> in its extension to all localities and in its application to all human activities. Whatever your interests, it will advance them economically, certainly, constantly.

The American Telephone and Telegraph Company And Associated Companies

One Policy, One System, Universal Service.

SOUTHERN STAMPING \& MFG, CO.
NOVELTIES \& PATENTED ARTICLES Manufactured by yentract. Punching Dies and Drawing Work
New IOlk FLATIBON Co. Belle Mead, N. J.

MODELS \& ExpErimental
Chas. E. Dressler \& Coo., Metroopolitan Bldg. 1 Madis ison Ave. New Yor

MODELS \& EXPERIMENTAL WORK
$\frac{\text { M. P. sche LL, } 1739 \text { Union street, san Francisco }}{\text { ExDerimental \& Model Work }}$
MASON'S NEW PAT. WHIP HOIST

Magical Apparatus.
 arlor Tricks Catalogue. free.

CROBET Swiss Files in "The Tool-Monger.", Sent free if you mention this paper when writing montgomery \& co., 109 Fulton Street, New York City
 Curtiss Motorcycles

MOTORCYCLES

ทou USE GRINDSTONES?

The CLEVELEA ND STOVE CO.

SENSITIVE LABORATORY BALANCE By N. Monroe Hopkns. This "built-up" laboratory
balance will weikh up to one pound and will tury with,

WE WILL MAKE manuiacture of any metal novelty. Automatic mau-
chinery tools, ides and expert work our specialty.
AUTOMATIC HOOK \& EYE CO. Hoblen

Running Water Where You Want If
Den't be w ithout the convenience of in the eountry. If there's aspring or st
on the kround installa
Niagara Hydraulic Ram
It will pump water $=$ 椣 Hinitom
 sivacosumaitis

The Hartford Fire Insurance Company mad

The National Association of Credit Men
The National Association of Credit Men, representing the leading mercantile houses of the United States, in addressing merchants throughout the country on the need of adequate and responsible fire insurance protection, says
"Through the guarantee which it has given you an insurance com pany may suddenly become your debtor. Might it not be well to know ahead of time what kind of debtor it is likely to be?'

The points which the Credit Men say ought to be considered in selecting a fire insurance company are given below. See how well they describe the Hartford.

What Credit Men Ask

1. "What is the net surplus above capital and all liabilities?
2. "Hasit(the insurance company) a record of paying its debts (losses), promptly and without unjust deductions?
3. "Are the men who manage its affairs men of character and hish standing in the community, upholding the principles
of business which assure a long and of business which assure a long and

What the Hartford Is The Harftord's surplus January 1 st, 1909 ,
above capital and all liabilities- $\$ 5,061$, above
592.
After San Francisco, in putting the Hart ford on its Roll of Honor, this same N tional Association of Credit Men said, "Considering that its gross loss was the immense sum of $\$ 10,275.000$, the com-
pany is worthy of the hishest commendation."
3. The Hartford's reputation for commercial honor is ist most cherished asset, and its
continued observance of sood faith with its polic.--bolderers is attested by its popu-
larity and success. $1 t$ is 99 years old and does the larsests fire insurance business in the United States.
The service which the Hartford affords the public continues throughout the year and is not limited to payment of losses. It has published a book, "Fire Prevention and Fire Insurance," with separate chapters for Householders, Merchants and Manufacturers, showing each how danger of fire may be reduced in his particular property. The book also gives valuable advice concerning insurance and may save you thousands of dollars no matter in what company you are insured. It is free if you mention the Scientific American. Send for it.
The Hartford Fire Insurance Company Hartford, Conn.

A RemarkableCar for ${ }^{\$ 2,000}$

OR the first time the automobile
market offers you a car of estabthe priched reputation at a price so near the price of cheap, untried cars, that you cannot afford to "economize"will in want to trade
off in another year off in another year
for a more satisfacfor a more satisfac-
tory car. Real economy-
and perfect automobile satisfaction, for either the man
who has never had who has never had a car or the man who has had manyis found in this big 1910 sensation-the
new Haynes Model ig for $\$ 2,000$. No other automobile with reputation and character approaching this new Haynes Model has ever been sold at under $\$ 3,000$.
It is the first time the manufacturer has ever offered the public a thoroughly has ever offered the public a thoroughly
high-class car at anyzuhere near the price asked for cars that are more or less of an experiment and that are made to sell in big quantities.
is through Haynes is for the man who to avoid it) and who ing (or who wants moderate price for a car of proven quality. is built for the hundreds of convative, long-headed buyers who want
a car that they knoze will give perfect car to run-a simple car to handlecar to run-a simple car to handlethat breaks down the cheap car-and a car that can be used with pride in the
company of the
highest priced automobiles.

Whether youn
buy this car or buy this car or
not, you owe to
yourself to investigate i A Haynes at $\$ 2,000$ is certainly too good a proposition to ignore if you are Mail coupon below and we will send booklet giving full details of this superb car, and will advise you where you can

Haynes Automobile Co.
124 Main Street Kokomo, Indiana

MEAD CYCLE COMPANY, Dept. Li75, CHICAGO, ILL.

Engineering
 News

The Leading Engineering Paper of the World. For Civil, Mechanical, Mining and Electrical Engineers 100 to 125 pages, $9^{\text {" }} \times 13^{\text {" }}$, weekly. Send ten cents for ssmple copy.
THE ENGINERRING NEWS PUBLISHING CO.

