TER CHBOAOSPHRRE-AI RIEPIRE CLOCE.
The accompanying engraving illustrates an inenious and useful horological novelty that has re cently been perfected by an English inventor, Mr. J. H. Overton, and which is described as an Empire clock. As the name implies, it is a universal timepiece, for not only does it give the correct time all over the world, but supplies. in a glance the difference in the times between all places on the easth's surface and the correct mean time at any town or place in the eastern or western hemisphere. Moreover, it dem onstrates the actual rotation of the earth on its axis in the twenty-four hours, as well as the actual speed of the earth.
The clock is made in two sizes and patterns, but the principle of design and operation is fundamentally the same in both instances. There is a terrestrial globe inclined at $231 / 2$ degrees similar to that used in schools and suitably mounted. The diameter of this glove varies from 3 to 4 inches, according to the size of the clock. - It completes one revolution about its axis in the course of twenty-four hours in the came direction as the earth itself revolves. Parallel with the equator is a fixed ring dial upon which are inscribed the numerals representing the twenty-four. hours with sub-divisions, the hours from 6 P . M. to 5.45 A. M. being engraved in black, and from $6 \mathrm{~A} . \mathrm{M}$. to 5.45 P . M. in red, to distinguish the twelve hours before and after meridian. The meridians of ongitude are 15 degrees apart. When any meridian is adjusted to its own mean time all the othe meridians denote their own mean time and each meridian will continue to do this correctly through out the twenty-four hours. In order to determine conveniently the time at any desired spot on the earth's surface relative to another point, such a New .York, there is an adjustable and movable guide fitted with a pointer which turns with the globe, and whereby the time is indicated in the hour ring just as the hand of an ordinary clock a any place. This guide is held in position by means of a small knob which enables it to be turned in n easterly direction without moving or changing the position of the globe, and it can be set over any own where the chronosphere is to be permanently sed. As an example, the clock is installed in New York and it is desired to ascertain the relative time n London when it is 12 noon in the first-named city. The guide is set to stop over New York, and the pointer indicates this city's mean time. The guide is moved eastward until it is brought over London and the hour 4:46 P. M. is instantly shown on the ring dial. The guide is then turned eastward and brought over New York, upon reaching which point it will stop and click, denoting tha is over the place at which it is adjusted for permanent use, when it again indicates correct New York time. The guide is easily adjusted to stop over any part of the globe where the timepiece is permanently used.
In the second type of chronosphere the ter restrial globe is of 8 inches diameter and it indi cates the relative times between any two places In this case the globe should be secured in the manner later explained before the guide is moved For instance, the chronosphere is permanently used in London. It is 1 o'clock there, and it is desired to ascertain what would be the time in Pekin when it is 3 o'clock in Vienna. The pointer is set to indicate 1 o'clock in London, and the guide is brought over Vienna. The globe is then turned to gether with the guide by means of the milled scre at the top of the sphere, until the pointer indi cates 3 o'clock on the hour ring. By tightening the milled screw, the globe is then secured in that position so that it will not revolve in either directioneast or west-and the guide is then turned until it is exactly over Pekin. Instantly the pointer indicates the Pekin time on the hour ring when it is 3 o'clock in Vienna. The top screw is released and the guide is carried eastward, until it is brought over London, when it stops. The milled screw at the top of the globe is released and the latter rotated in an easterly direction until it stops itself, so that the pointer once more indicates actual London time, that is 1 o'clock, plus the minutes that the experiments have occupied in determining the relative times between Vienna and Pekin.
The globe mechanism is so designed that after displacement from local time in order to carry out any such investigations as are described above, it will when brought by the hand back to the local time, stop itself in the correct position for the pointer to indicate actual local time once more. If desíred the guide can be easily adjusted for merely permanent use as in the smaller model. Moreover, if required, a sun attachment can be fixed in position, whereby the height of the sun in degrees above the horizon is shown for every day of the year. This fitting renders the clock capable of more extensive use in schools and colleges. The total heights of the two models
are 12 and $151 / 2$ inches respectively, so that thes oc cupy but a small space. It is only necessary to bea in mind that the guide and the globe must be turned in an easterly direction only, and when sotting time to exercise care that the guide be over the place at which it is adjusted for permanent use, and that the globe has been turned eastward until it has come to stop.
For schools and colleges the clock is especially use ul, since it enables one to demonstrate in the con crete the daily rotation of the earth from west to east the difference in time arising from such rotation cor responding to the difference in longtitude, that is 15 deg. longitude east or west, one hour's difference, or four minutes for each degree east or west of the standard meridian; and the exact relative position of every place in the world and its exact position at any time in relation to the light of the sun, that is by day or night, as well as certain phases of solar phenomen by means of the sun attachment. The clock requires winding only once a week, and its steadiness and accuracy in running are distinctly noticeable features It should prove of marked utility to steamship and railway companies as well as to other commercial enterprises having an extensive trade overseas.

THE FIGUREHEAD AND ITS STORY.
From time immemorial the seagoing vessel, whether creation of wood and hemp or of iron and steel,

TEE CHROTOSPERER

Showing time ring, pointer or hand of clock, and snn attachment.
has presented herself as an almost human individuality to the eyes of her crew. From the earliest ages those little differences between craft of the same type which are only perceptible to the trained eye of the seaman were recognized to be insufficient to distinguish one individual ship from another. Hence ships were variously ornamented and named by their owners and commanders, who frequently adopted one of the numerous deities of heathen mythology as especial protector of their vessel and of those who intrusted themselves and their fortunes to its keeping. As in almost every branch of antiquarian research, we look to the ancient Egyptians for the earliest information on the subject. These wonderful people were among the very first recorded ocean travelers, and shipbuilding with them had at an early date quite attained the proportions of an art. Many of their boats were elaborately painted and decorated and among their decorations the figurehead stands out somewhat prominently. The sacred ibis, the lotus, and the phœnix were favorite designs; sometimes placed on the raised-up prow itself and at others rather behind it as in the one illustrated. Note the huge eye that is painted on the bow just below the figure. This peculiar badge is very illustrative of the general feeling that a ship is endowed with a personality of its own, and in one form or another it has maintained its position on the bows century
atter century up to the pr 8 nt day, in which it is often seen on the bows of Maltese dysos and other gaudily painted European craft, to say nothing of it lmost universal use th China. "If no have eye, how an see?" asks the Chinese sailor; and the expres sion "Right in the eyes of her" is still usual aftoat among our own seamen, meaning as far forward in he ship as possible. The ships of the Greeks awd Romans preserved the "eye" on their bows and car red a distinguishing emblem or figurehead (parse mon) at the bow while their tutelary deities wer enerally given a billet at the stern. All these ves sels had their distinguishing devices and figureheads in addition to which those named after mountain and rivers had a lion or a crocodile respectivel painted or carved in relief on either bow. Numbers of representations of these may be seen on old coins
A special class of Phœnician vessels had a figure head representing a horse and were therefore known as hippi, the idea of riding over the sea as on horse back being evidently the origin of the adornment t is interesting to note that in the year 112 B . C ne of these figureheads was found thrown up on the east coast of Africa and brought to Egypt, strong circumstantial evidence that some early Phenician mariners had already doubled the Cape of Good Hope
Ramming being the most usual form of attack among the ancients in their sea engagements, the bow decoration often took the form of the head of ram or of a wild boar the well-known buttin tactics of these animals rendering the figure very appropriate.

When Rome in the days of her decadence lost the command of the sea the most formidable navies were those of the Scandinavian sea robbers, the famous Vikings. The term "Viking," by the way has nothing to do with the English word king, a is often supposed, but is derived from vik, a cree or fiord, and ing, meaning "the son of." The wor thus should be translated "the sons of the flords:" T^{A} very good descriptive name for these Norse se rovers. Their vessels-the famous long-ships-wer adorned with figureheads. But the Viking's con ception of this form of ship ornamentation starte from a standpoint quite different from that of the ancients. It was not so much a distinctive desig or a religious emblem. Its intention was to strike terror into an enemy. What form of reasoning le up to it is well described by Baring-Gould in his "Strange Survivals and Superstitions"
"In the Egil's Saga, an old Icelandic chief is said to have taken a post, fixed a horse's head at the top, and to have recited an incantation over it which carried a curse on Norway and the king and queen; when he turned the head inland it made al the guardian spirits of the land to fy. This post he fixed into the side of a mountain with the open jaws turned toward Norway. These figures wer called nith-stangs. The nith-stang was primaril the head of the victim offered in sacrifice, lifted up with an invocation to the god to look on the sacri fice, and in return carry evil to the house of al who wished ill to the sacrificer
"The figurehead of a warship was designed in like manner to strike terror into the opponent and scare away their guardian spirits. An Icelandic law forbade a vessel coming within sight o the island without first removing its figurehead lest it should frighten away the guardian spirits of the land.'
Here, then, we have the raison d'être of the Viking figurehead, and the annexed reproduction of an old drawing in Strutt's "Chronicle of England shows not only a figurehead of this period but actually a nith-stang in combination with it.
It is obvious that the word head comes directly from the nith-stang, and although the advent of Chris tianity abolished the barbarous form of witchcraft which it exemplified, yet the figurehead and hence the "head" of the ship remain terms in constant us to this day. In the drawing referred to it will be observed that the actual bow terminates with th head and neck of some animal which is probably intended for a dragon. This fabulous monster has always been a favorite emblem in all ages and from China to Wales, in both of which widely separated countries it occupies a prominent position in the national heraldry. In all cases it probably has been taken as the symbol of malevolent power capable o inflicting evil upon the human race. In the Bible the dragon is always represented in this light, and its wings, serpent form, claws, and fire-spouting mout render it formidable in "the air above, the earth be ueath, or in the waters under the earth." With the nith-stang theory before us we can well understand the old Scandinavian sea-rovers being very partial to its use as a figurehead. The dragon, too, from its power was also frequently adopted as a mark of chieftainship or sovereignty. It was the badge of the famous King Arthur, the ensign of the Merovingians and of the Saxons at the battle of Hastings. An(Continued on page 101.)
knows that the effect of the oxygen has been overcome.
The bulb is next taken into the photo meter room for the purpose of making inal tests. It is a large dark room di stall is an induction coil, from which the stall is an induction coil, from which the
bulb is held about two feet away. The induced current from the coil passes through the body of the operator to the bulb, and causes the filament to glow faintly. If the glow is bluish gray, it shows that there is still a leak some where; although it may be so infinitesi mal that it can scarcely be measured by mils. If the glow is of a purplish hue it shows that there is air still within the bulb and that the bulb must be fur ther exhausted. This means an' operation involving many more handlings.
The next process is the measurement of the bulbs for voltage, a work of the greatest possible delicacy. Two girls working together, do the measuring. One places the bulb in connection with a cur shines through a small aperture upon a white paper screen. In the center of this screen is a faint star-shaped spot. It re
quires a certain voltage in the light to bring out this spot
When bulbs pass the tests and meas urements successfully, they are then ready for the appliances with which they are attached to the current-carrying fix tures in general use. They are taken to another part of the factory, where a girl places them in a tray. Threaded and the space between the collars and the necks is filled with plaster cement. The tray revolves through a heating oven that bakes the cement into a hard and holding mass. The ends of the wires running through the necks are cut off; small round brass plates are placed on the ends, the wires are soldered fast, and
the lamp is completed.
Once more there is a sort of farewell test for leakages that may have escaped notice or may have developed from the last handlings. This final test is very quick and simple. The sealed ends of the bulbs are held against two electri poles. If the lamps are considered ready for the last cleansing of the glass, classification, and shipment. Throughout the en tire process of development of the bulb into a perfect lamp there are scarcely ever any broken. This is really remark able when it is remembered that the bulb is not only picked up many times and placed in machines, but is heated and cooled many times.

THE FIGUREHEAD AND ITS STORY. drom page 92 other meaning of the word dragon de notes watchfulness, so that it is no surprising to find that the drakkars, or dragon ships of the Vikings, generally belonged to their chieftains and were the largest ships in their fleets. The next largest were generally esnekkers or
"long serpents" with snake figureheads. "long serpents" with snake figureheads
In both cases the hull of the vesse played the part of the monster's body the stern often terminating in a repre sentation of its tail. But although the dragon and serpent were the favorite devices they were not the only ones tha did duty at this period as figureheads. When Sweyne, King of Denmark, made a descent on the Norfolk coast in 1004 his own ship "The Great Dragon" was made in the form of the animal whose name it bore, but the bows of the othe with the figur squadron were adorned with the figures of lions, bulls, dolphins,
and men, all made of gilded copper. and men, all made of gilded copper.
After the Norman conquest the figu After the Norman conquest the figure
head disappears from view for some cenhead disappears from view for some cen-
turies, and it is not until the reign of Henry V that we again find references to its use. Images of the saint after whom a ship was named used, it appears to be sent on board in the time of Edward III, but there is no record of thei having been utilized as figureheads. The

Pennsylvania Railroad

BULLETIN

908 Miles in 1080 Minutes

The "Pennsylvania Special" is the climax of development in railroad transportation. It is operated primarily in behalf of the busy man.

Under the train is the finest roadbed. Above the rails is the most completely equipped train. On the train is a picked crew. Alongside the tracks is the best Signal System. This combination makes for speed, regularity, safety, and utter comfort.

The "Pennsylvania Special" has made good for many years. It is an asset to the business man. He can recreate on it or work as humor or necessity dictates, but he is using the minimum of time in meeting his engagements.

Three quarters of the circumference of the clock-dial, all in the off hours, is its daily deed.

The "Pennsylvania Special," the pioneer 18-hour train between New York and Chicago, leaves New York every day at 3:55 P. M. and arrives in Chicago 8:Sork 9:45 A. M.

SMOKELESS
is the most popular powder in the world.

WHY?

Because it always does the work-
Breaks Old Records
Makes New Ones
It is the powder you should use for trap or field shooting.
Every dealer in the United States carries shells loaded with

DU PONT SMOKELESS

E. I. DU PONT DE NEMOURS POWDER CO
Wilmington, Del., U. S. A.

ELECTRO MOTOR. SIMPLE, HOW TO

Save Money by Machinery

tilting oimos incular

Throw the Old Battery Away

Schools and Colleges Mackay School of Mines

"HOW TO REMEMBER": sopporsenime

ELECTRICITY

Practically and Individually TAUGHT

reason of their temporary disappearance
was the gradual changes in the status o navies and in the build of the ships of which they were composed. The fast oar-propelled long-ship, built only for speed and for war, gradually gave place to the round-ship, relying on her sails and built primarily for commerce and the conveyance of mail-clad nobles an their men-at-arms to the country where they intended to carry on a campaign Fierce sea fights certainly took place from time to time, but for this purpose any ships that could be assembled to gether were utilized and prepared for action by the addition of stern and fore castles, built-up stages or platforms which overhung the actual stem and stern of the ships and left no place fo a figurehead. In process of time the square bow platform or forecastle be came triangular and its foremost ex tremity once more offered a suitable posi tion for the figurehead. Gradually, too the king became possessed of a certain number of ships of his own, the nucleu of a royal navy. These vessels, thoug occasionally hired out as merchan ships, were more or less elaborately dec orated, and among other decorations the figurehead reappeared. Thus in the year 1400 the "Good Pace of the Tower" had a large golden eagle with a crown in his mouth as figurehead, and in representations of ships during the fifteenth century little, insignificant figureheads are here and there to be met with. The famous "Henri Grâce à Dieu," built in 1514, had a squatting lion as figure head, while the big French man-of-war "Grande-Françoise," built at St. Nicholas de Leure in 1527, was decorated for ward with a salamander above which was placed a statue of St. Francis. The Elizabethan men-of-war seem generally to have been ornamented with figure heads, but with some exceptions the were neither very large nor very notice able. At this time a long, almost straight projection ran abruptly out from the bow of the ship a little way ent from the gracefully curv differ which in the seventh and centuries replaced it and would not, in all probability, support any very grea weight at its extremity. Still it ofte carried a figurehead of sorts. Thus the "Ark-Royal," Effingham's flagship in the Armada fight, had a mild-looking bird as figurehead. The "Bonaventure" and others had dragons on their beakheads others had lion figureheads, one, at an rate, being gilded. The "Mary Rose" had a unicorn, the "Swiftsure" a tiger with "an image of Jupiter sitting upon an eagle with the cloudes." In Holland the "Finis Belli," the earliest ironclad, bore the figure of a man in armor at he bow. About the time of James I eques trian figures were introduced as figure heads, and in succeeding reigns thes were surrounded with other figures forming a most elaborate bow decora tion. Thus the famous "Sovereign o the Seas," launched in 1637, had on her beakhead the figure of King Edgar on The figurehead of the Commonwealth ship "Naseby" was equally exuberant, consisting as it did of the Protector on horseback "trampling upon six nations." It was evidently a colorable imitation of that borne by the "Sovereign of the Seas." Curiously enough this was the ship in which Charles II returned to England at the Restoration. In honこr of this she was renamed the "Royal Charles." She was fitted with a new figurehead, which is now in the museum at Amsterdam, the ship having been captured by the Dutch when they came up the Medway. Furtenbach in his Architectura Navalis, published a few gears earlier, gives an engraving of a very peculiar figurehead which terminated the beakhead of a Turkish pirate prigantine a class known as caramunals probably intended to represent a drag (Continued on page 102.)

Classified Advertisements Advertising in this column is 75 cents a line. No less
than four nor more t than ten lines aceepted. Count
seven words to the line. All orders must be accom-
panied by a remittance. Further information sent on read this column careflllly.- You will find Inquiries for certain classes of articles numbered ind
consecutive order. If you manufacture these good write us at once and we will send you the name and 18 no charge for this service. the information. Tbery case it is
necessary to give the number of the inguir necessary togive the number of the inquiry.
Where manufacturers do not respond promptly the
inquiry may be repeated.

BUSINESS OPPORTUNITIES.

 speciaties, patents or metal specialties whicb co
sold to the carrage or hardware trade. Answer,
full description, Cately \& Etring, Cortland, N. Y . laquiry
 Incuiry No. N918.-For many
Electro-catalytic Sparising Plug."
WILITGIVEAN INTEREST in a vending machine of fling fees in foreligo countries. For particulars addres Inquiry No. 8922 . -Wanted the addre
ington Boiler Co.

PATENTS FOR SALE
FOR SALLE.- Patent No. 89.792. Safety brake for
entevators. Fror further information address C. F. Bath,
Abilene, Kansas. linquiry No. 8921.-For the manufacturers of gil

 FOR SA LE. - Patent No. Sar.274. Latest and best
glass front post card rack Saves is prite in preventglass front post card rack, saves
ing cards from beeng soiled and
Post Card Co., Alva, Oklahoma,
Inquiry No. M41. -For manufacturers of ma
cbinery for making fy screens.
FOR SALE.
 Wash., care H. S. Emerson Company. nquiry No. 8960.-For tbe address of the Wind-
sorMig. Co. manufacturers of waterproof collars and
cuff.

SALESMEN WANTED.

SALESMAN WANTED to bandlean exceptionally at-
traetive real eastateand timber prooosition, Wbichcan be
suld on annual. semi-annual or munthl installment
 agoressive, energetic man can make desinable connec-
tion witt largest and strongest bouse in its line in the
country. Sacramento valley Imp. Co., St. Louis, Mo. Inquiry No. 897N.- Wanted the address of manu-
facturers of dry pans or crushers to grind sand for
plastering and cement works.

MISCELLANEOUS

TOBACCOHABITCUREDOR NOCOST.-- Harmless Inquiry No. N9s0. For the address of manufac-
turers of mortars and pesties that are used of drugbists.

LISTS OF MANUFACTURERS.
 timates sbould be obtained in adrance. Addres Inquiry No. 89S4. - Wanted the
-manufacturers of Cypress wash tubs.
 Inquiry No. X98\%--W anted, the manufacturers of
the Van Winkie, Woods \& Sons, and the Weber power
meters. Inquiry No. N990.-For information regarding
sboes not mate of leather but similar to the same and
are as durable. Inquiry No. 8996. - Wanted addresses of manu-
facturers for machinery for working orange wood mani-
cure sticks. Inquiry No. Ng9\%-Wanted the address of th
manufacturers of bread or cake boxes. Inauiry
No. Sined clotbes and clothes pin manaf receptacte. Inqniry No. 9001.-Fo
Inqniry No. 9003. -For the address of parties
who make "Invar" or other metals baving a low co-
efficient of expansion Inquiry No. 9004 . Wanted to buy machinery
suitable for grinding. sifting and
cereals; also packeparing same in cartons. Inquiry No. 900.5.-For tbe addr

 luquiry No. 900s.

Wer transmitting mechanism, co
owil
oil well, Shiray \& De Forest.

Pul
Pul

Relay, electrical, E. E. Clement
Relay, frequency, D. J. Mcarthy
Resistance cup. F . Gottschalk
Rhosth

 Screen. See Glass shade screen.
Screen. N. Ell wart
Screm thead cuting mechanism, Ailen
Henry


```
\mathrm{ support,}
```


Si
Si
Si
Si

Your Summer Vacation

I OW RATES and special advantages in train service via the Chicago \& North Western Ry. Special itineraries and plans for your ${ }^{\text {trip }}$ to California, Exposition, Yellowstone Na Pacihc Exposition, Yellowstone Na -
tional Park, the Yosemite, Colorado, Utah, and numerous charming lakes and resorts of Wisconsin and northern Michigan; also to the South Dakota Muchigan; also to the South Dakota
Hot Springs, located in the heart of the Black Hills and endorsed by the U. S. Government as a national sanitarium
 For descriptive booklets,
rates, train schedules and
full particulars address W . rates, train schedules and

full particulars address W. | B. Kniskern, Passenger |
| :--- |
| $\begin{array}{l}\text { Traffic } \\ \text { Manager, } \\ \text { Jackson Blvd., Chicago, Ill. }\end{array}$ | Jackon Bld., Clicago,

Pou USE GRINDSTONES ? representation of the royal arms embel lished with scrollwork and other devices, and that which adorned the "Victory" at Trafalgar, which was also the royal arms with the figures of a seaman and a marine as supporters. Some years afterward these were transformed into a pair of cherubs. But the full-length---or more often the three-quarter length-figure continued to ornament the bows of all classes of men-of-war right up to the beginning of the ironclad period.
The French were ahead of everyone in launching the first seagoing ironclad"La Gloire." She had no figurehead, but the "Warrior" and the "Black Prince," a pair of sister ships, which England constructed in reply, were ornamented with two of the finest figureheads that have ever been made. But both these ships had overhanging or "swan" bows, while their successors had the ram bow, which did not lend itself so well to this style of decoration, and a shield or coat of arms surrounded with more or less elaborate scrollwork became the vogue for the bows of an ironclad. There were exceptions, of course, especially in ships of low freeboard. Thus, the figurehead of the old "Royal Sovereign" turret ship (which by the way, was an old wooden line-ofbattle ship cut down) was unique in having a lion standing at the top of the stem above the medallion of Queen Victoria, which was below it. The "Rod ney" and "Centurion" both had bust figureheads illustrative of their names, while the French battleship "Brennus" was decorated in the same way with a very fine piece of wood carving. At this period there were plenty of small craft among the warships of the world which still preserved the swan bow, and with these the older style of figurehead still preserved its supremacy. H. M. S. "Iris," for instance, had a beautifully designed angel, while the unfortunate gunboat "Serpent," wrecked off the Spanish coast, bore a snake. Toward the end of the nineties the figurehead began to disappear altogether from the British and the French man-of-war. The principal reason alleged for the abolition of the figurehead in England was that it got in the way when rigging out the torpedonet defense, which on its part often damaged the ornamentation, necessitating an expenditure on repairs. Probably the initial cost was also thought to be an extravagance. But the practical and economical Germans have retained the
figurehead in their new and formidable navy and have evolved some very handsome specimens despite the ram bow. What, for instance, could be more decorative and appropriate than the fine figure of Germania on the bow of the "Deutschland," one of their very latest battleships? The scrollwork on the cruisers "Bismarck" and "Eber" is also very artistic. The probability is that the German Admiralty regards esprit-decorps as a very valuable and practical asset and thinks that nothing is illspent which in any degree serves to stimulate this feeling. Certainly in the old days seamen venerated the figurehead of their floating home in much the same way that a regiment adores its special and distinctive badge. "So, now, my lads," said Capt. Hall when in command of a frigate on board of which there was an epidemic of bickering and quarreling among the ship's company, if this be not put an end to, and hearty good-will restored, I'll blacken your figurehead and put the ship in mourning." The threat had a most salutary effect, and the handsome bow-ornament shone resplendent to the end of the commission.
In the far East the Japanese and Chinese have one uniform bow decoration for their men-of-war, the former using a conventional representation of the Imperial chrysanthemum and the latter the national dragon with the head of a camel, the horns of a deer, the eyes of a rabbit, the ears of a cow, the neck of a snake, the belly of a frog; the claws of a hawk, and the palms of a tiger.
In the United States the figurehead has followed much the same lines as in Europe. That of the "Chesapeake," famous for her duel with the "Shannon," can be seen in the gardens of Ashford House in Woolmer Forest. That of the "Delaware," representing the Indian chief Tecumseh, is in the grounds of the naval academy at Annapolis, and is saluted by every cadet when he passes it, lest haply the omission to do so should bring him ill-luck in the passing-out examination. Though not on so elaborate a scale as in the German navy, the United States ships, even of the newest types, are still decorated with scroll-work at the bow and in some cases a new departure has been made in placing a handsome fulllength figure or figures of bronze on the foremost turret between the two bow guns. The "Massachusetts," for instance, has a most handsome and decorative figure of a Winged Victory which was presented to her by the State whose name she bears, while the "Kearsarge" and "Alabama"-whose former namesakes fought so desperately with each other off Cherbourg in 1864-have similar decorations symbolizing in the figures the North and South clasping hands, a reunited country.
This seems an excellent idea and one that might well be followed in all navies. A bronze figure on the foremost turret would more than replace the figurehead of former days. It would, unless destroyed in action, be practically everlasting and be passed on from one ship to its successor of the same name. It would be a far better and more appropriate heirloom than the services of plate which it is becoming the custom to present to various ships. Being carried inboard instead of outboard it can be seen and admired day after day by the ship's company, which was not always the case with the figurehead even in its palmiest epochs. May we in conclusion express a hope that the time-honored figurehead may in this form rise "phœnix-like from its ashes" and be once more promoted to a place of honor in the world's war navies?

A 7 -foot flywheel upon a Russel engine went to pieces the other day at the station of the Allegheny Valley Lighting Company, at Creighton, Pa., causing about $\$ 3,000$ worth of property damage, but no p

Telephonic apparatus, E.............................

$$
\begin{aligned}
& \dddot{\text { E. Beli }} \\
& \hdashline \cdots . . .
\end{aligned}
$$

$$
\underset{\mathrm{s}:}{\text { Cotrineil. }}
$$

$: 928,904$
coiliapsibie
 Vaviv
Valv
Valv
Valv

Wat
Wat
Wat
wat

Wrenches.
monkey.
pipe-griping
For
Gorman. \qquad
 nis oftice for 10 cents, provided the name and
number of the patent desired and the date be
given. Adress Munn \& Co., 361 Broadway, New
York. York.
Canadian patents mav now be obtained by the in
ventors for any of the inventions named in the fore-

SOUTHERN STAMPING \& MFG, $\mathbf{C O}$.
rs of special and patent.
B. S., Nasliville, Tenn.
ICEMemex

MODIS AEXEERMENAL Wonk

PARKER, STEARNS \& C0., $288-290$ SbeffieldAv., B'klyn,N. y.

MODELS \& EXERRMENTAL WORK
Crass.E. Dressler \& Co., Metrooolitan Blag, 1 Madison Ave., Mew York

Experimental \& Model Work

MASON'S NEW PAT. WHIP HOISTS
 Manfd by Votiver w. Mi.

EXPERT WANTED

By old established Banking House and reports on public utility porations. Applicants must possess business ability, technical engineering knowledge and experience, and be prepared to give entire time. Write fully giving age, eduperience and references, together with salary expected. S. A. Room 1600, 2 Rector St., New York.

Engineering News
 The Leading Engineering Paper of the World. For Civil, Mechanical, Mining and Electrical Engineers

 100 to 125 pages, $9^{n} \times 13^{n}$, weekly. Send ten cents for sample copy..
If you cannot locate desired engineering equipment write our "Readers Want "department.
the engineering news publishing co.

Before the Fire or Atter?

$W^{\text {HEN are you soing to find out whether the fire insurance you }}$ have paid for is really good or not-before or after the fire which makes it due and payable? You cannot change it after the fire. It will be too late then, but before the fire you can readily, at no extra cost select an insurance company whose record and strength guarantee the liberal fulfillment of its obligations.

Upon foundations of commercial honor The Hartford Fire Insurance Company has built up the largest fire insurance business in the United States. It has paid more than $\mathbf{\$ 1 2 5 , 0 0 0 , 0 0 0}$ to its policy-holders. Its popularity is the reward of merit, and the result of nearly a century of honorable dealing with its patrons.

It has published a book, "Fire Prevention and Fire Insurance," which contains valuable information for Householders, Merchants and Manufacturers. It ousht to be in the hands of every property owner in America. It may save you thousands of dollars, no matter in what company you are insured. It is free. Send for it

HARTFORD FIRE INSURANCE CO

Hartford, Conn.
Send me your Book, "Fire Prevention and Fire Insurance,
advertised in Scientific American.
Name

1. An ancient Egyptian figurehead. 2. The bow of a Greek galley, B. C. 294. 3. The nith-stang of the Vikings. 4. A Saxon dragon-ship. 5. Figure on the "Mora," the ship in which William the Conquero crossed to England. 6. A seventeenth-century Turkish caramunzel. 7. Italian war galley of seventeenth and eighteenth centuries. 8. Figurehead of "La Couronne." 1661. 9. The bow of the "Fighting Temeraire." 10. H. M. S. "Queen," 1794. 11. Figurehead of the "Vriheid," eighteenth-century Dutch ship. 12. Figurehead of U. S. Prigate "Tecumseh," now at Annapolis,
2. Figurehead of H. M. S. "Centurion." 14. The bow of H. M. S. "Royal Sovereign." 15. H. M. S. "Serpent." 16. Bow of U. S. S. "Castine." 17. Figurehead of French battleship "Brennus." 18. "Germania" at the bow of the German battleship "Deutschland." 19. Bow of the German gun-vessel "Eber." 20. Bow of the German cruiser "Bismarck." 21. A Japane

A Partial Solution of the Problem of

 Tele-Vision.
on our bebin correspondent

The problem of tele-vision has long been a favorite one with enterprising inventors. The many telephotographie apparatus which have been made known in the course of the last few years are the outcome of their endeavors. But the transmission of photographs, drawings, and handwriting over a telegraph wire is incomparably more easy than the instantaneous rendering of the moving objects situated at the transmitting station.
lt is true a solution of the problem could be attempted on the very principle underlying the construction of these tele-photographic apparatus. The various sections of a picture would be produced-not successively, as in the case of tele-photography, but simultaneously, as well as instantaneously, without any lag, and would become visible immediately without any photographic process. There are two diffculties in the way of a practical realization of this idea, viz., (1) the extraordinary costliness of such an outfit; (2) the sluggishness or inertia of the vital organ of most systems, viz., the photo-electric selenium cell.
Mr. Ernest Ruhmer, of Berlin, well known for his inventions in the field of wireless telephony and teleg. raphy, has succeeded in perfecting what is probably the first demonstration apparatus which may be said actually to solve the problem. The writer has had an opportunity of inspecting this curious machine immediately before its being sent to Brussels, in order there to be demonstrated before the promoters of the Universal Exhibition planned for next year. In fact, a complete and definite tele-vision apparatus, costing the trifing sum of one and a quarter million dollars, is to be the clou of this exposition. The demonstration apparatus has been produced at a cost of $\$ 1,250$, and by reason of its more elementary construction, lends itself only to the reproduction of the pattern, consisting of squares arranged in different combinations.
The pattern is thrown on a screen hung on a wall, which screen is a square divided into 25 square sections. Behind each of these sections is arranged a highly sensitive selenium cell in which, by a novel process, inertia has been eliminated so far as possible. It thus responds instantaneously to any variation in lighting it is exposed to.
At the receiving station is arranged a similar screen, divided into the same number of sections, each of which communicates with the corresponding section on the transmitting screen. While the actual system used in transmission is kept secret, this much may be stated, that a highly sensitive mirror galvanometer reconverts the fluctuations of current produced by fluctuations in luminous intensity on the transmitting screen, into corresponding light-variations. An accumulator battery supplies current to the tele-vision circuits.
As soon as a perforated pattern is inserted in the projector, a telegraphic reproduction of the picture appears at the very moment it is thrown on the transmitting screen. The sluggishness of the cells has been overcome to such a degree that the telegraphic picture will respond practically instantaneously to any motion. In fact, a reproduction obtained at most in a few minutes with the photo-telegraphic apparatus so far constructed is here achieved in a fraction of a second, so that several phases of a motion can be reproduced within a second.
It is hard to realize what an amount of laborious work has been expended in constructing even this comparatively simple apparatus. In fact, each section, with its selenium cell and mirror galvanometer device, is an instrument of precision in itself, while the final apparatus will be composed of 10,000 elements of the same kind. Each selenium cell will have to be wound personally by the inventor, who never intrusts this work to anybody else

Drawn glass is constantly becoming more widely mployed in machine construction because of its extiaordinary strength. it is little affected by sudden change of temperature, and resists the effect of fire, heavy loads, and violent shocks. Tests of the effect of loads show the great influence of the thickness of the sheet of glass, a variation of $1 / 25$ inch producing a considerable change of strength. Glass broken by overloading exhibits numerous cracks radiating from the center to the edge. In regard to the fire-resisting qualities, official tests are made at Breslau by the following method: The glass is first heated during 87 minutes, then it is sprinkled 1 minute, and receives the impact of a strong jet of water for 2 minutes. The glass is required to show no crack under this treatment. Drawn glass is easily cleaned and transmits much light. It is made in sheets about $11 / 3$ inches thick, measuring about 9 by 10 inches and 13 by 14 inches, and capable of supporting, respectively, 23,000 and 30,000 pounds per square inch.

THE CEMENT WORK OF THE MUD WASPS.

by s. f. $\triangle A R O N$.

The cocoon-making habit is so common with insects, that there are only comparatively few species that do not possess it in some form or other. It amounts simply to making use of a salivary secre-

The mud mason wasps and their nest.
a is the balky stone-like nest construction of a species of Odyneras and from which the adult wasps have escaped; b, same broken open showing cells within, natural size; c, larva, and d, the adult in sect that makes the nest, both enlarged, the latter brown with yellow markings. The jug-like single cell of Eumenes fraterna is shown at e, natural size; black or brown with pale yellow markings.
tion, which hardens and toughens upon exposure to the air. Silk is a common illustration, and the spider web is similar, though spun from the posterior of the animal. Many insects spin this thread-like substance; others spread the saliva as a coating within the larval cell or boring; still others make an

A broken nest of blue mud dauber wasp and the larva, pupa, and cocoons taken from it.
The nest is the work of the adult wasp. The cocoons, brown and parch-ment-like, are the work of the full-grown larve and within which they go through their further transformation.
independent, parchment-like cocoon within the larval cell. Many Hymenoptera, as the bees, social hornets, ants, mason wasps, etc., commonly employ the last method. Many species of most orders use the salivary secretion as a glue, and remarkable illustrations of this can be seen in caddis fly cases under water, for the saliva is cold waterproof when hard-

The common blue mud dauber wasp, Pelopæus corruleus.
The color of the insect is a bright metallic or steel blae, the wings clouded. The body is about 34 inch long. An allied species, Sceliphron cementarius, with similar habits and as common, is brown with yellow markings.

THE CEMENT WORK OF THE MUD WASPS.
ened. An effect of warm water upon the insect salivary secretion is commonly illustrated by the reeling of silk from cocoons softened in warm water, and any insect cocoon is so affected.
The making of strong-walled, hard-baked earthen cells does not seem to be a sufficient protection for the mud mason wasps in their larval state, and hence a cocoon is spun within the mud cell. While all in sect cocoons are made by the larvæ, certain adult insects possess the power to secrete saliva and use it for nest building and as a means of protection against their enemies.
The hard, compact, durable, and waterproof mud nests of the mason wasps, superior in construction to the mere hardening of mud put together when moist was always a mystery to the writer until after watch ing a blue mud dauber wasp at work on the habita tion for its offspring.
The wasp makes certain off motions with its head close to its work after adding the mud in its proper place, and it was evident that this was a gluing opera tion for the purpose of holding together the particles of earth. Upon closer examination, immediately after the wasp had finished a portion of its work, it was found that the clay was slightly sticky, as if a viscid material had been mixed with it. Finding where the wasp obtained its clay, I procured a bit of this, and forced it together on a smooth surface in such a way that it would be under no strain and would naturally adhere, then dried it carefully in the air, and found that it by no means made as strong substance as the wasp's nest. Another experimen was to drop part of a mud nest into hot water, and the other part into cold water, and note the result The latter piece merely softened but remained intact after soaking for nearly half an hour, while the other in part disintegrated, showing the presence of the salivary secretion through the clay. Upon taking a piece of this dissolved nest and forming it as the raw clay above mentioned was formed, it was found that the material adhered far more strongly when dry The salivary secretion, therefore, is probably through the clay and within the cells of certain species, and makes the lining thereof. In what manner, however the small and slender-bodied wasp can secrete sufticient saliva to glue together the numerous particles of its bulky mud nest is beyond understanding Waterproof animal glue in yery small quantities, mixed with clay or sand, makes a material hard to surpass for the purpose needed. The clay nest of a species of Odynerus saddled on a twig or vine in the woods is almost like a stone, and even harder than many sandstones, and is impervious to the water It is difficult to understand how the little wasps can burrow out of the cells when sufficiently warm weather has brought them through their transformations.

An Electric Rat Destroyer.

A new method for destruction of rats by the electric current has been lately put in use by the municipal electric station of Charlottenburg, near Berlin. The method is a patented one, and is invented by M. Von Biederheim. A special kind of trap on the electric ystem which was constructed is said to give very good results. The current used in this case is three phase current, working at a tension of 120 volts which voltage seems to be sufficient to kill the rats Direct current at 220 volts can also be employed. The animals to be destroyed, rats, mice, etc., are at tracted by bait and enter the trap. By doing this they close a circuit which turns on the current. A set of wires is arranged so that they come in contact with the animals. The creatures are killed instantly. There is no appreciable combustion in the present device. A number of appliances of this kind can be mounted together in a large box. At the electric traps it is advisable to use a method of a special contact which is put on and rings an electric bell or lights a lamp so that it can be noticed when to readjust the trap.

To Distinguish American from Russian Petrolenm.
American petroleum can easily be distinguished from Galician and Russian petroleum by the action of colorless nitric acid; that is to say, acid which is not colored yellow by nitrous fumes. The acid should have a density of 1.4 and should have been freed from nitrous vapor by heating it with a little urea. Equal parts of acid and petroleum are mixed in a cylindrical glass jar provided with a ground glass stopper. The mixture is shaken violently for a minute or two. American petroleum assumes a violet color, while the acid upon which the oil floats becomes yellow. Galician and Russian petroleum, on the contrary, turn yellow and the acid becomes brown. When all three varieties are mixed together, the mixture first assumes the violet coloration, which changes suddenly to yellow after long agitation. The reaction is so sensitive that the presence of 10 per cent of Galician petroleum in American petroleum can be detected.

