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THE THIRD HONORABLE MENTION ESSAY IN THE 
FOURTH DIMENSION COMPETITION. 

BY '" CHARLES HENRY SMITH" (CARL A. RICHIIOND, CHICAGO, ILL.) 
[It was one of the conditions of the Fourth Dimension Competition 

that the editor of the SCIENTIFIC AXERICAN reserved the right to pnblish 

those essays which were considered worthy of honorable mention. In 

accordance with that conditIon, the essay which in the opmion of the 

JndgeR, Profs. S. A. Mitchell and H. P. Manmng, was deemed worthy of 

third place lD the honorable mention class is here printed.-En.] 

A colony of bees housed in a hive with glass walls 
so that their every movement can be observed affords 
a very instructive lesson in natural history. Such a 
glass hive may also serve as a helpful illustration In 
a consideration of the fourth dimension. Let us 
imagine a hive with its fioor and roof of horizontal 
glass plates brought so close together that there is 
barely room for the bees to move about between them, 
and, for the purpose of our illustration, let us endow 
the bees with the intelligence of men. To these bees, 
so confine<t, forward and backward, right and left, 
would be familiar ideas and tp.eir world would be 
one of two dimensions only. Debarred from upward 
and downward movement by the closeness of the glass 
plates, the words "up" and "down" would be mean
ingless to them because there would be no experience 
upon which to base these ideas. Imperfect as is the 
illustration, it suggests the conception of a world of 
only two dimensions, length and breadth. 

Plane geometry is a science which deals with such 
figures as triangles, squares, and circles. It is inter
esting to know' that it originated in Egypt where it 
was developed to facilitate t1\e measurement of land. 

'This origin of the science tave rise to the name 
geometry, which means earth measurement. Long 
subsequent to the era of its Egyptian development the 
science was extended under the name of solid geom
etry to a study of such figures as spheres, cubes, and 
cones. 

The bees in the glass hive could move around a 
square, could make triangles and circles, and to them 
plane geometry would be a practical science; but with 
their ignorance of an up-and-down direction, a cube 
or sphere would be inconceivable, and a third dimen
sion would appear to them as absurd and unthinkable 
as a f-ourth dimension does to us. Suppose we lay 
two pencils on the table so as to cross one another 
at a right angle and then hold a third pencil so as 
to form right angles with the other two. While this 
is obviously a possible thing for us to do, it would 
be impossible for the bees with their ignorance of 
the dimension of height. They could, of COUrse, have 
two slender pencils in ·their hive at a right angle to 
one another, but they could not have a third pencil 
at right angles to both of the first two. We may look 
upon the two pencils as representing the two dimen
sions of the world of the bees, and the three pencil� 
as representing the three dimensions of our world. 
Suppose, further, that some one tells us to hold a 
fourth pencil at right angles with the other three. 
In our field of experience we can find no place for it, 
just as the bees could find no place in their field of 
experience for the third pencil. This fourth pencil 
represents the so-called fourth dimension. Although 
it is impossible for us to place it, the illustration of 
the relation of the bees to the third pencil or dimen
sion teaches us that the limitations of experience 
ought not to be deemed conclusive as to how many 
dimensions space may have. 

It is a matter of pure speculation as to whether 
there is such a thing as a fourth dimension, whether 
there are beings of intelligence to whom phenomena 
are manifested in the form of four dimensions. It is 
by no means the attitude of mathematicians to in
stantly recoil from the suggestion, but they are pleased 
to go ahead and l;ltudy as accurately as possible under 
the necessary limitations what may be the properties 
of a space of four dimensions, if there is any such 
thing. The fundamental guiding principle of their 
investigation is this: Whatever they find to be the 
relations of geometry of two dimensions to geometry 
of three dimensions, they assume that there are simi
lar or analogous relations between geometry of three 
dimensions and geometry of four dimensions. As the 
circle is to the sphere, so is the sphere to some un
known body, which may have its existence in space 
of four dime.nsions. As the square is to the cube so 
is the cube to a figure in space of four dimensions 
which we may call the "cuboid." 

Of course the fourth dimension is intangible. Mathe
maticians do not ask us to imagine a fourth dimen
sion, much less do they ask us to believe in it. It is 
not to be supposed that the most skilled -student in 
this subject has a mental picture of four-dimensional 
space. Nevertheless, the properties and relations of 
figures existing in four-dimensional space may be 
investigated and stated. 

Algebra is the science of numbers. It is a very 
efficient aid in the study of geometry. Algebra deals 
largely with equations such as x y= 12, which means 
that x and y are two variable numbers that, multi
plied together, give 12, as for example, 3 and 4 or 
5 and 2 2/5: All the simpler figures of geometry such 
as the straight line an4 the circle may be represented 
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by equations; in other words, the equations are con
densed descriptions of the respective geometrical fig
ures, somewhat as a score-card is a condensed de
scription of a base-ball game. Mathematicians have 
learned that the properties of geometrical figures can 
be studied far more readily by means of their equa
tions than by means of the figures. themselves. A 
mathematician who understands this mode of study 
can look at the, equation of a curve and tell all sorts 
of interesting and useful. properties of it without ever 
seeing the curve itself-indeed, without even having 
any mental picture of what the form of the curve 
may be. 

.A 
Top view of a glass cube as seen with one eye: a 

three-dimensional figure appearing in Olle plane. 

Without going into detail, it may be stated that one 
equation with two variable numbers represents a 
plane figure, thus x' + y' = 15 represents a circle. 
One equation with three variable numbers represents 
a figure in space, thus x' + y' - z' = 0 represents 
a cone. What does one equation with four variable 
numbers represent, say, for example, x· + y' + z· + 
w'= 20? By analogy, we should say a figure in space 
of four dimensions. Although we cannot imagine such 
a thing, we can pursue our analogies and study this 
unreal figure by means of its equation, and thus we 
can deduce many of its properties. The difference is 
simply this: whereas, when we study the equation 
of a cone, we can always turn to the real cone and 
interpret our results thereon, when we study an equa
tion of a four-dimensional figure we have to be satis
fied without such an interpretation. In other words, 
although our geometry halts with three dimensions 
our algebra marches on to any number of dimen
sions and is a stimulus to imagine a geometry of 
more than three dimensions. 

We will now outline briefly a way in which algebra 
may help to give a person some faint n'otion of a 
figure having four dimensions. It is somewhat com
mon to El-tudy a figure having three dimensions by 
means of equally spaced parallel sections thereof. For 
example, if the microscopist wants to study the shape 
and structure of a germ cell, he slices off exceedingly 
thin sections and arranges them in succession on a 
glass slide. Then by looking at these sections in suc
cession he can form ·an idea of the solid structure of 

Analogous view of a "cuboid" of four dimensions 
appearing as a figure of three dimensions. 

the germ cell. Mathematicians have rules by which 
such sections of a solid figure may be constructed by 
means of equations. They start with an equation 
Which represents a solid body, for example, x' + y' + 
z' = 9 representing a sphere, and they perform certain 
operations by which they get a series of resulting 
equations that represent the successive sections of the 
solid body. It remains, then, merely to draw pictures 
of the sections from the data afforded _ by the .. result
ing equations. By looking at all these pictures, a 
person may get a fair idea of the shape of the original 
Bolld. In the case of a sphere the sections are circles 
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of varying size. As we have already stated, an equa
tion having four variable numbers, should by analogy 
represent a figure in space of four dimensions. Sup
pose we have such an equation, as x· + y' + z· + w' 

= 20. We can apply the same rules and perform the 
same operations to get sections of the figure repre
sented by this equation. Curiously but conSistently, 
these sections come out as solid figures. From the 
data afforded by the resulting equations, the mathe
maticiaI;l can model these solid figures in clay and 
lay them in a row on the table before him. Just as 
the microscopist looks at the series of sections on his 
slide to get an idea of the solid structure of the germ 
cell, so the mathematician can look at the series of 
clay models before him lj.nd possibly feel that he has 
some idea of the nature of the four-dimensional fig
ure represented by the equation with which he started. 

Thus we see how the fourth dimension may be 
studied by means of the equations which algebra fur
nishes. There is another bolder way. We have seen 
that we can hold three pencils so that each one of 
them will make a right angle with each of the others. 
Instead of saying that it is absurd to suppose that a 
fourth pencil can: be held in a position so as to form 
right angles with each of the first three pencils, let 
us assume that it can be done. Without any further 
assumptions a complete geometry of four dimensions 
can be built up by pure reasoning. Many of its con
clusions are no more obvious to the senses than is 
the fundamental assumption with which it starts. 
Still that is the only assumption; all else may bll 
deduced ft:om that one assumption and from the prin
ciples of our well-known plane and solid geometry. 

An illustration of a special method in the study of 
space of four dimensions may serve to show how 
mathematicians reason about such things without be
ing able actually to imagine them. We procee4 by 
ascertaining the relations between two dimensions and 
three dimensions, and then establishing these rela
tions by analogy between three dimensions and four 
dimensions. Suppose we have a glass cube resting 
on the table before us and we close one eye and look 
straight down upon it with the open eye. Its appear
ance will be as shown in the accompanying drawing. 
This drawing is really a plane figure, of two dimen
sions; and it might have been produced in the follow
ing manner; namely, by drawing one square inside 
of another and then drawing lines connecting the cor
responding corners. All this could be done without any 
thought of three dimensions. The bees in - the glass 
hive could draw such a figure as the one here on the 
paper before us. Nevertheless, on this figure many of 
the properties of the cube can be studied. By count
ing the four-sided figures (ABGD, EFGH, AEFB, 
BFGG, GGHD, DHEA) , which we find to be six, we 
learn how many faces the cube has. By counting the 
corner points, which are eight, we . learn how many 
corners the cube has. By counting the lines, which 
are twelve, we learn how many edges the cube has. 
Just as starting with the squares we are able to get a 
two _ dimensional figure, which, for the purposes of 
investigation, may be taken as representing the cube, 
may it not be possible that starting with cubes we 
can get a three-dimensional figure which shall repre
sent the four-dimensional figure which we call the 
. cuboid ? Just as we drew a smaller square inside 
of a larger one, so we should'think of a smaller cube 
inside of a larger cube, and just as we drew lines 
joining the corresponding corners in the case of the 
squares, so we should make planes joining corre
sponding edges in the case of the cubes. The figure 
so formed is somewhat imperfectly pictured in the 
accompanying drawing, and for the sake of clearness, 
let us suppose we have such a solid glass figure before 
us. In the case of the squares, to find from them how 
many square faces the cube has, we counted the big 
outer square, the small inner square and the four sur
rounding figures and got six as the result. So in the 
case of the cubes, to find from them how many cube 
faces the cuboid has, we count the big outer cube, the 
small inner cube and the six surrounding solid bodies 
and thus get eight as the result; this indicates that 
the cuboid has eight cube faces. A further study of 
this representative figure discovers that the cuboid has 
24 plane square faces, '32 edges and 16 corner points. 
This shows how we can get a representation of a four
dimensional body, and on this representation we can 
study its properties. There are many considerations 
which we have not space to present which confirm the 
accuracy of the deductions that have just been stated. 

What is the use of such generalities, abstractions 
and speculations? About the same as to know whether 
the earth goes around the sun or the sun goes around 
the earth. Space. is as properly an object of scientific 
study as are planets or geological strata. Moreover, 
the study of these fundamental things in geometry 
throws light on the nature of . .our own mental equip
ment. We learn better what is the nature of reason
ing. processes and how knowledge is built up from 
simpler and more fundamental elements. Such specu
lations sometimes lead to very useful results. 

If you hold 5 marbles in your hand and are told to 



take away 8 of them, this suggestion seems as un
thinkable as the suggestion of a fourth dimension. 
But when men chose to represent by -3 the result of 
subtracting 8 from 5, instead of simply saying it was 
impossible, then the foundation was laid for the enor
mously useful science of Algebra. 

The assumption of a fourth dimension has not as 
yet led to any noteworthy useful results, but it is by 
no means impossible that the scj.ence of four-dimen
sional geometry may come to haV-e useful applications. 
It has been suggested by Prof. Karl Pearson that an 
atom may be a plaee where ether is fiowing into our 
space from a space of four dimensions. It can be 
shown mathematically that this would explain many 
of the phenomena of matter. At the present stage, the 
suggestion is regarded, even by its author, as merely 
fanciful, though it is not as fanciful as the proposi
tion of the German spiritualists who regard the fourth 
dimension as the abode of their disembodied spirits. 

..... � . 

SOME NEW WARSHIPS AND THEIR EQUIPMENT. 

(Ooncluded from page 56.) 

been entered upon seriously, and four battleships were 
laid down simultaneously in Baltic"yards on June 
16th. The "Sevastopol" and "Petropavlovsk" are 
building at the Baltic works and the "Poltava" and 
"Gangut" at the new Admiralty yard, the English firm 
of John Brown & Co. being in charge of the work. 
On a displacement of 23,000 tons they will carry 
twelve 12-inch guns, arranged as shown, as well as 
sixteen 4.7's and four torpedo tubes. The speed will 
be 24 knots and the horse-power 42,000, which is very 
high for battleships. Meanwhile four other battle· 
ships which were laid down in 1903-the "Imperator 
Pavel" and the "Andrei Pervozvanni" in the Baltic 
and the "Ioann Zlatoust" and "Evstafi" in the Black 
Sea-are still incomplete. 

It is only four years since the first all-big-gun ship 
was laid down; but the following table will show how 
completely the idea has seized upon the naval powers. 
It shows the number of battleships of this type com· 
pleted, under construction, or to be laid down this 
year: 

TABLE SHOWING TOTAL GUN POWER OF "DREADNOUGHTS." 
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Ten 11-in .... .. Hr } ... .... . .. . . ... . . ... .... . . . 

Eight 12-in ... 4 2 3 13.? . . 
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Tot'l in ships 152� 
156 �80 f8 � 48 of this type or ro or 86 24 24 24 20 20 
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We also present a table which analyzes these ves· 
sels according to their main armament. It will be 
seen that, but for her four ships of this year's pro
gramme, British designs would "put up a poor show." 

Battleships. CruiserS. 
Great Britain............. 12* 4 
Germany. .. .. . . . . . . .  .•.. . .. . . . .... • 10 3 
United States....... •......••••.•••.• 8 0 
Austria .. . . . . .  .•••••. . .  .•••• ... ....• 4 0 
Italy .. , . . .  _ ..... •••• ••••••••••••• . . .•• 4: 0 
Russia .. ........ .................... 4. 0 
Brazil ' 0 '  . . . • . . . .•.• .••••••••••• .. ••••• 8 0 
Spain _, . 0 .. . .. .. ... ..•.. ..•.••... . S+ 0 
China........ ........•••• ............. 3:1: (projected) 0 

. Japan .................... ............. 2 0 
Chili. • . • . . . . ••••... " •••• •. •••••••• • • • •• 2 (projected) 0 
Argentine....... . . .••••••••••••• •••....• 2 0 

67 7 

* Besides four "provisional" ships. tEight 12-inch. U5,OOOtons. 
Query" Dreadnought" type. 

OPENING OF THE DOWN·TOWN HUDSON TUNNELS. 

(Ooncluded from page 57.) 
ing the eye, must afford a contrast generally garish 
and out of harmony with the otherwise excellent and 
subdued decoration. 

This is doubtless a considerable .source of income, 
difficult to forego in these commercial days; but con
sidering. the dignity and lack of ostentation with 
which the Hudson Companies have carried out both 
delicate negotiations and difficult engineering feats, 
coqsidering also the immense profits likely to accrue 
from their undertakings, one might have hoped that 
they would omit this rather cheapening feature. 

Stairways lead down from the concourse to the five 
pl!!otf�rms below, at -each of which in rotation, separ-
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ated by only 1% minutes during "rush" hours, trains 
arrive by the southern and depart by the northern 
tube, there being no switching, and everything tend
ing to the most rapid handling of traffic. Each train 
discharges its passengers upon the platform on one 
side of it and receives its new load from the platform 
at the other side, an arrangement which entirely sep
arates incoming from outgoing passengers. 

Again, below the rail level are extensive baggage 
and store rooms, and a subsidiary power station, mak
ing the Hudson Terminal Building a veritable city 
in itself, with clubs at the top, multitudinous business 
offices in between, a post office, telegraph office, and 
numerous shops below, and a railway station and 
power station in the basement, all inclosed within four 
walls. 

• 1 •• • 

THE SCIENTIFIC WORK OF THE LATE PROF. SIMON 

NEWCOMB. 

-Prof. Simon Newcomb died on July 11th in Wash
ington at the age of 74. His death has removed not 
only the most distinguished astronomer that America 
ever produced, but a man who is honored the world 
over for his monumental scientific achievements. 

All Newcomb's work fOllowed up with rare persever
ance has constantly tended to this ideal end: First, 
to arrive at a more exact knowledge of the magnitudes 
serving as points of reference and then to establish 
the theory not only of all the planets but also of their 
satellites on a system of constants as precise as mod
ern observations permit. 

Shortly after he graduated from the Lawrence 
Scientific School at Cambridge, he be'gan the first 
important problem with which his name is asso
ciated, namely, the motions and orbits of the asteroids 
which revolve about the sun between Mars and Jupi
ter. It was once thought that perhaps these numer
ous bodies might be fragments of a large planet which 
had been shattered by explosion or collision. Were 
this true, the orbits would pass through the point at 
which the explosion occurred. As more and more 
asteroids were discovered, the coincidences of orbits 
became less marked. Still the theory was adhered to, 
because it was thought possible that the attraction 
of the larger planets might have caused perturbations. 
In order to decide for or against the theory, it was 
necessary to discover general formulre by which the 
positions of the orbits could be determined at any time 
in the past, so that it could be ascertained whether or 
not the orbits ever did pass through a common point 
of explosion, in which case it would be possible to 
give an approximate date for the catastrophe. As a 
r�sult of Newcomb's painstaking investigation, he con
cluded that the orbits had never passed through any 
point of common intersection. Later inves.tigations 
based on Newcomb's work have shown that the hypo
thetical cataclysm never occurred, and that the aster
oids probably always existed as minor planets. Tbe 
I,aper which Newcomb read on the subject at the 
Springfield meeting of the American Association for 
the Advancement of Science in 1859 was the first that 
brought him into prominence-a young man of but 
twenty-four. 

When Newcomb commenced his work at the Naval 
Observatory in 1861, the problems of the moon's mo
tion had attracted astronomical attention. The most 
perfect lunar tables at the time were those of Han
sen. Hansen had 'only a single assistant and 
could not, therefore, make the .great number of ob
servations required in the case of a body moving so 
rapidly as the moon. For a year or two Newcomb's 
observations showed that the moon seemed to be fall
ing a little behind her predicted motion. This soon 
ceased, . however, and she gradually forged ahead in 
a most remarkable .way. In five or six years it was 
apparent that this acceleration was becoming perman
ent. Astronomers were puzzled to account for the 
phenomenon. For half a century the moon had ap
parently been running ahead and had then relaxed 
ber speed so far as to fall behind again. Hansen had 
suggested that the planet Venus might be responsible 
for these inequalities, He showed that for 130 years 
the moon would thus be made to run ahead and for 
130 years to fall behind. For 100 years the moon 
seemed to have followed Hansen's theory. Yet New
comb found that the' mOon was deviating. To ascertain 
whether or not Hansen's tables represented the motion 
of the moon perfectly since 1750, as astronomers sup
posed, Newcomb undertook an examination of the occul
tations of the moon with bright stars. It was not 
until the telescope had been introduced and used for 
finding the altitude of a heavenly body and not until 
the pendulum had been invented by Huyghens that 
the time of an occultation could be fixed with the re
quired exactness-a task first systematically performed 
by French astronomers of the eighteenth centurY. 
Newcomb suspected that some accurate observations had 
heen made before their time, which he might use in 
checking up Hansen's tables. He found that a few 
such observations had actually been made between 
1660 and 1700 and discovered to his surprise that Han
sen's tables were evidently much in errOl". But to de-
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termine the cause of the errors was impossible witil
out more observations. Newcomb planned a thorough 
search of the old records of Europe. On the occasion 
of the solar eclipse of 1870, he was sent abroad to 
observe the phenomenon for the Naval Observatory. 
He seized the opportunity to go to Paris and consult 
the old records of the observatory there. After a 
search he found that the very observations he wanted 
had been made in great number by the Paris astrono
mers, both at the observatory and at other points in 
the city. Three or four years were spent in making 
calculations on the basis of these Parisian researches, 
when it was found that seventy-five years were added 
in a single step to the period during which the his
tory of the moon's motions could be written. Before 
Newcomb's work this history was supposed to com
mence with the observations of Bradley at Greenwich, 
about 1750. Now it was extended back to 1665, and 
with a less degree of accuracy farther still. Hansen's 
tables were found to deviate from 'the truth in 1675 
and subsequent years to a surprising extent. But the 
cause of the deviation is not entirely unfolded even 
now. 

In i877 Newcomb took charge of the Naval Almanac 
Office. He thoroughly reorganized the office and placed 
it upon a more scientific footing. He mapped out a 

programme of work which involved a discussion of 
all the observations of value on the positions of the 
sun, moon, and planets, and incidentally on the bright 
fixed stars, made at the leading observatories of the 
world since 1750-a programme which involved a repe
tition, in the space of ten or fifteen years, of an im
portant part of the world's work in astronomy for 
more than a century past. It was impossible to 
carry out this plan in all its completeness, so that 
Newcomb was obliged to confine himself to a correc
tion of the reductions already made 'and published. 
For all that, the task was one which, in magnitude, 
probably exceeded any ever before attempted by any 
astronomer. The number of meridians observed on 
the sun, Mercury, Venus, and Mars alone numbered 
62,030. Still other branches of the Nautical Alma
nac Office work involved the computation of formulre 
for the perturbation of the various pi\tnets by one an
other. 

Important among the troublesome ']Jroblems with 
which Newcomb had to deal while in charge of the 
Nautical Almanac was that of universal time. There 
was a day when every railroad had its own meridians 
by the time of which its trains were run, which had 
to be changed here and there in the case of the great 
trunk lines and which seldom agreed with the local 
time of a place. The passenger was constantly liable 
to miss a train, a connection, or an engagement by 
the doubt and confusion thus arising. All this was 
remedied in 1883 by the adoption of our present sys
tem of standard times of four different meridians, the 
introduction of which was one of the great reforms 
of our generation with which Newcomb's name is as
sociated. When the change was made, Newcomb was 
in favor of using Washington time as a standard,. in-. 
stead of Greenwich. But those who were pressing the 
measure thought it advisable to have ·a system for the' 
whole world, and for this purpose the meridian of 
Greenwich was the natural one. 

By 1&94 Newcomb had succeeded in bringing so much 
of his work as pertained to the reduction of the ob, 
servations and determination of the elements of the' 
planets to a conclusion. So far as the general .planets 
were concerned, it remained only to construct the 
necessary -tables which, however, involved sever'al 
years' work. Before Newcomb's time, the confusion 
Which" pervaded the whole system of exact astronomy; 
arising from the disclosures of the fundamental data 
employed by the astronomers of the various countries 
and various institutions in their work, was such that 
it was rather exceptional to base any astronomical 
result on entirely homogeneous and consistent data. 
To remedy this state of things and to start the exact 
astronomy of the twentieth century on one basis for 
the whole world, was one of the plans which New
comb had mapped out for himself when he took charge 
of the Nautical Almanac Office .. Dr. N. W. Downing, 
superintendent of the British Nautical Almanac, was 
animated l:)y the same motive. He had especially in 
view the avoidance of- duplicate work which arose 
from the same computations being made in different 
countries for the same result. The field of astron, 
omy is so vast and the quantity of work required to be 
done so far beyond the power of any one nation that a 

combination to avoid all such waste was extremely 
desirable. When Newcomb published his prelimi: 
Lary results in 1895, Downing took the initiative 
in putting the idea into effect by proposing an inter
national conference of the directors of the four lead
ing ephemerides to agree upon a uniform' system of 
data for all computations pertaining to the fixed stars. 
This conference was held in Paris in May, 1896. 

In 1902, when the Carnegie Institution was organ
ized, it Jl.!ade a grant to supply Newcomb with com
puting assistants and other facilities necessary .tor 
the completion (if his study of the moon's motions. 
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