a pollen-gathering patent dedicated to the

 PUBLIC.Mr. E. Moulie of Jacksonville, Fla., has invented a pollen-gathering device, patents for which he has dedi cated to the public for the general good. Further more, he will place the device at the disposal of scien tific men who are interested in the gathering of pollen. The apparatus is suitable for universities and colleges, and such institutions where botany is taught
The importance of the invention may perhaps be gaged if we consider the previous methods of gathering pollen. With the first of his ma chines Mr. Moulié, under the most favorable cir cumstances, gathered one and a half ounces of pure pollen of the ragweed (Ambrosia Artemisa folia) in three days, and this with three charges of twigs, one for each day. It was the opinion of the late Prof. A. A. Curtiss, a prominent botanist, formerly connected with the Smithson ian Institution, that to collect that amount of pollen it would have taken one hundred per sons thirty-six hours.
Mr. Mouliés device consists of a vessel pro vided with means for holding the slips or twigs bearing the blossoms from which the pollen is to be collected. The vessel is filled with water so as to keep the twigs fresh and ripen the blossoms. The blossoms overhang the edge of the ves sel, so that the pollen falls upon a paper sheet spread closely around the bottom of the vessel, which bottom is narrower than the top of the vessel, so that the paper is free to be removed without touching the ves sel. The vessel or tank is made of sheet metal. Over the top of the tank is a sheet-metal plate supported over two longitudinal and two transverse rods, the edges of the plate being bent around the rods. This cover plate is smaller in area than the top of the tank, so that a narrow channel or opening is formed around the entire perimeter of the plate. The rods project across this opening, their ends being bent ove the rim of the tank. Into the open ings around the plate the twigs and branches are inserted, their lowe limbs being immersed in water The branches are tilted, so that their upper ends project beyond the sides of the tank. To keep them in this position, and to pre vent them from sliding too far in to the tank, the cover is cut at the center to form a pair of flaps, which are bent outward and en gage the stems. As previously stated, the tank is surrounded by sheets of paper, on which the pol len falls as the blossom ripens The ripening is brought about by the gradual rise of temperature in the room where the operation akes place When desired th water in the tank may be drawn off without disturbing the branches, through a tube connected with a stopcock near the bottom of the tank. Fresh water can be poured through an opening in the cover plate. The device renders it possible to collect the pollen of flow ers in unlimited quantity in its full state of fertilizing power, a thing impossible to be sure of by the ordinary process, hitherto the only method available. The ease with which much pollen can be col lected at practically no cost rend ers it possible to obtain a sufficient quantity for accurate and exhaustive analysis, and to add to our knowledge of that wonderful mys tery of nature, the breeding of plants. Moreover, an antitoxin for diseases such as hay fever could probably be prepared from the pol len of the ragweed. If the device served this purpose alone, it would reflect considerable credit upon its inventor.
To obtain pollen from the rag. weed, Mr. Moulié selected a room having a single window exposed to the east, two windows exposed to the south, and one window exposed to the west. The apparatus was charged with twigs bearing rag. weed flowers which were not quite open. The charged apparatus was placed upon a table extending from one end of the room to the other, with a space of two feet between the apparatus and the walls. The vessel was filled with clean water poured in through the opening at

The Yerkes telescope with floor raised to highest position

Brace spectrograph fitted to the Yerkes telescope
it has dropped during the half day and night. The door must be closed immediately for the same reason The temperature at that time ought to be between 85 and 88 deg. Fah. In order to gather the pollen, Mr Moulié took one sheet loaded with it, and placed it on a table in an adjacent room, closing the connecting door between the rooms as well as the windows and other openings. The pollen was collected by means of a feather and dropped into wide mouthed two ounce jars, similar to those in which vaseline is sold. The jars were filled to about one-half inch from the bottom. The collected pollen contains a certain amount of moisture, which must b evaporated for safe keeping. To effect this, Mr Moulie placed the jar or jars behind the win dows in the room where the apparatus was in stalled, and arranged them so that they touched the windows. The rays of the sun streaming through the window pane and the glass jar caused evaporation to take place in about thirty minutes. Then after shaking gently until ther were no more lumps, the jars were brought into the next room, and left there for one hour be fore they were corked. The corks selected were of the best quality and wrapped with a fine paraffine paper, so as to effect a tight closure Small quantities of pollen can be poured in a single jar to the height of the neck. Very few readers of this journal realize what an ounce of pollen means. Perhaps some conception of the task may be had, if one imagines the collecting of an ounce of dust from the wings of butterfies.

PHOTOGRAPHING A STAR SPECTRUM
 p prof. s. A. mitchell, columbia universit

If one should go to the Sandy Hook lightship off the entrance to New York Bay, and at night should see the lights of a steamer headed for the harbor, it would be practically impossible, merely by looking at these lights, to learn how fast the steamer was ap proaching. A rough guess might be made by watching the light grow gradually brighter, but it would be the roughest sort of an approximation. But the astrono mer with his telescope, observing the distant stars millions on mil lions and millions of miles away can tell to an absolute certainty just how fast a particular star is moving toward us or away from us, giving the motion accurately to the fraction of a mile per second. No is this result obtained by watching the increase or decrease in the tar's light, due to its approach or recession, for the stars are so fa distant that no change in thei brightness would be observed in a thousand years from their chang of distance alone. The measure ment of a star's motion in the line of sight is one of the new fields fo the astronomer, and many and valu able are the scientific results ac cruing from this line of work
The writer was at the Yerke Observatory last summer, taking part in the campaign for measur ing the radial velocities of all the brighter stars that can be seen from northern latitudes, and assist ing in photographing the spectra of stars with the 40 -inch telescope and its attached spectrograph And what a magnificent instrument this greatest refractor in the world is! To work with this great tele scope causes a feeling akin to aw in realizing that puny man, on thi infinitesimal speck in the universe called earth, by the aid of such an instrument, is able to fathom the depths of space, and reveal the secrets of stars millions and mil lions of miles away. Truly, ther is no science which can show the matchless power of the huma mind quite so well as does the old science of astronomy. the paren of all the sciences. A view of the largest refractor in the world shows also the high degree to which engineering skill has ad vanced in recent years, again at testing to the close union between pure and applied science.
The observatory, presented to the University of Chicago by Charles T. Yerkes, is situated seventy-fiv miles from Chicago on the shore
(Dontinued on page 495.)

Concrete Reinforced Concrete Concrete Building Blocks

 Scientifio American Supplement 1543 containg anarticie on Concrete，by Brysson Connigham．
The article clearly describes the proper com． position and mixture of concrete and give
results of elaborate tests． Scientific American Supplement 1538 gives the
proportion of gravel and sand to be used in

 tical noteg on the

 analyzee．
 $\underset{\text { Scemb }}{\text { Webif }}$

 Rach number or the Sopplement costa 1
 MUNN（2）CO．，Inc． 361 Broadway，New York City

free
 Esfre

> We have just issued a new edition
of our Catalogue of Scientific and Technical Books，which contains 144 pages，and a copy will be mailed
free to any address on application．

MUNN \＆CO．，Inc．，Pablishers of Scienti ic American

PHOTOGRAPHING A STAR SPECTRUM （Continued from page 485．） of Lake Geneva，the summer home of many of the Windy City＇s millionaires On high ground to the north of the lake， the observatory presents a fine appear ance with its great dome to the west and two smaller domes to the east of the buildings．

Passing through the main doors，one enters a fine rotunda，and go－ ing up a flight of marble steps comes nto the great dome， 90 feet in diameter， and gazes on the great telescope tower ing aloft．One beholds a massive iron stand supporting an immense steel tube of boiler plate sixty－two feet in length， five feet in diameter at the middle，taper－
ing to three and a half feet at either end． At the upper end of the tube is the ob－ ject glass，with a clear aperture of forty inches；at the other end the eyepiece and micrometer，for viewing and measuring the planets and stars，or these may be replaced by a camera attachment for photography，or by a spertrograph for
obtaining the spectra of stars，planets， or sun．The telescope tube is so long that the eye end is about thirty feet higher when an object is viewed near the horizon，than when looking at a star directly overhead．To use such a tele scope，requiring as it would a long sys tem of ladders，would be well nigh im possible，were it not for an invention of Sir Howard Grubb in making the whole observing floor an elevator．The front page illustration shows the floor at its lowest point，while another view shows the floor raised as high as possible．At Yerkes the floor，seventy－five feet in di－ ameter，big enough to seat six hundred people，can be raised and lowered through a distance of twenty－three feet，and thus the observer when working with the telescope may keep the floor at a con－ venient distance below the end of the telescope，the operating power being elec tricity．In the front－page illustration are shown two of the four counterweights that balance the floor．An idea of the size will be obtained by remembering tha the dome is ninety feet in diameter When the astronomer wishes to observe a particular star，it is necessary to turn the slit of the dome in the direction of the star，and hence the dome must be revolved．This is ninety feet in diam eter and weighs one hundred and forty tons，but again by the aid of electric motors it can be rotated at will by turn ing on the electric current from the ris ing floor．
Turning to the telescope，we find a machine of fifty－three tons in weight， wherein the movable parts weigh twenty tons．This weight the astronomer has to put in motion when he turns the tele－ scope，yet ball bearings and the refine ments of modern engineering permit him to move the great machine，using only his own physical strength．For quickly turning the telescope，electric motors are used．The telescope is set up by what is known technically as the equa－ torial mounting，one axis，the polar axis， in the meridian parallel to the earth＇s axis of rotation，the other，the declination axis，at right angles to it．Circles on these two axes give the astronomer the means of locating the star by its hour an gle and declination．When the star is once in the field of the telescope，it is kept there by a clockwork mechanism driving the telescope about the polar axis at speed exactly equal and opposite to the
earth＇s rotation．The writer of this ar ticle has used the telescope when the thermometer stood at 26 deg．below zero Fahrenheit，and yet at this temperatur which speaks wonders for the excellence of this mounting made by the well－ deed the professional astronomer has hard life of it，which requires a grea amount of physical endurance．In the summer nights when the temperature renders life comfortable，the nights are short，the astronomer might then be per mitted to join a labor union；for he can （Concluded on page 496．）

Important Books
Industrial Alcohol
ITS MANUFACTURE AND USES
Practical Treatise based on Dr．MAX MAEROKER A Practical Treatise based on Dr．MAX MAEROKER＇s
＂Introductionto Distillation＂as revised by Drs．DEL－
BRĚCE and LANGE．Comprisg Rew brë̈ce and LaNGe．Comprising Raw Materials，Malt－
ing，Mashing and reast Preparation，Fermentation． Distillation，Rectiffeation and Purifcation of Aleohol，
Alcoholometry，the Value and Signifcance of a Free Alcohol，Methods of Denaturing，Its Otiligation
tor for Light，IIeat and Power Production，a Statistical
Review and the United Srates By JOHN K．BRACHVO
2S Pages 105 Illustrations Price $\mathbf{8 4 . 0 0}$

Experimental Science

 Revised and Greatly Enlarged． 2 OctavoVolumes．1， 100 Pages． 900 Illustrations Cloth Bound．Postpaid，$\$ 5.00$ Owivg to the amount of new matter added the book
is now publisheri in two volumes，handsomely hoond in is now publisheu in two volumes，handsomely hound in
buckram．Of the additions which have been made，
among the most important are：A full ilnstrated de scription of 34 in．P．Flectric Motor，prepared expresily
for this edition of＂Experimental Science；chapters
on Alternating－current Machntery，and clear，concise Ox Alteraating－carrent Machtnery，and clear，concise
Expanations of Wireless Telegraphy and Telephony，
Electrical Measurlng Instrumenta，the Electric Coct Blectrical Measuring Instroments，the Electric Clock，
the Telegraphone．Higb Tension Currents，the Nernst
Lamp，and methods of measuring the heat of the stars Lamp，and methods of measuring the heat of the stars
No other work contains such a fond of trustworth up．
to－date scientige infor to－date scientific information，presented
simple style．Send for descriptive circular

The Scientific American Cyclopedia of Receipts， Notes and Queries

 Price $\$ 5.00$ in clothThis splendid work contains a careful compliation of the most useful Receipts and Replies given in the Notes and Queries of correspondents as published in
the ScIENTIFIC AMERiCAN during the past sixty jears Over Firteen Thousand selected recelpts are here represented．It is by far the of the useful arts being ume of the kind ever placed before the public．

Modern Plumbing Illustrated By R．M．starbicer

 Price $\$ 4.00$A COMPREHENSIVE and up－to－date work illus lation of Dwellings，A partments，and public Build ings，etc．The very latest and most approved
methods in all branches of sanitary installation are given．Adopted by the United States Government in its sanitary work in Cuba，Porto Rico，and the
Philippines，and by the principal boards of health of the United States and Canada． 300 pages $; 55$ full－ page illustrations．

Modern American Lathe Practice

by oscar e．perrigo，m．E．
Price $\$ 2.50$

A COMPLETE book of 400 pages on The Modern arliest times up to the present day；its modern eral and special classes of work；the quantity of its output，and its marvelous accuracy．

Modern Steam Engineering

 in Theory and Practice By GARDNER D．HISCOX，M．E． Price $\$ \mathbf{3 . 0 0}$$\mathrm{T}_{\text {HIS }}^{\text {is a complete and practical work of } 487}$ pages，dealing with the care and management
Boilers，Engines，Pumps，Superheated Steam， Refrigerating Machinery，Dynamos，Motors，Eleva－
tors，Air－Compressors，and all other branches with which the modern Engineer must be familiar． Nearly Two Hundred Questions with their An－ wwers on Steam and Electrical Engineering likely The asked by the Examining Board are included． Theense．It is fully illustrated with detail engrav－ ings，not to be found elsewhere．
Punches，Dies and Tools for Manufacturing in Presses By JOSEPH V．WOODWORTH Price $\$ 4.00$
A PRACrICAL work of 500 pages fully illustrated by nearly 700 engravings，being an encyclopedia Die Making，Punch Making，Die Sinking，Sheet
Metal Working，and Making of Special Tools，Sub－ Presses，Devices and Mechanical Combinations for
Punching，Cutting，Bending，Forming，Piercing， Drawing，Compressing and Assembling Sheet Metal Parts，and also Articles of other Materials in Ma－
chine＇Tools．Two Hundred and Ten Processes are clearly described and fully illustrated．

MUNN \＆COMPANY，Inc． Publishers， 361 Broadway，New York

（Continued from page 494．）

题最范

Classified Advertisements

Advertising in this column is 75 cents a line. No less
than four nor more than 10 lines accepte. Count
geven words to the line. All orders must be accomseven words to the line. All orders must be accom-
panied by a remittance. Further information sent on
request. THIS COLUMN CAREFULLY,- You will find inquiries for certain if you of articles numbered in
consecutive order. If Write us at once and we will send you tbe name and
address of the party desiring the information. There is no cbarge for this service. In every case it is
necessary to give the number of the inquiry. necessary to give the number of the inquiry.
Where manufacturers do not respond promptly the inquiry may be repeatea.

MUNN \& CO., Inc.

BUSINESS OPPORTUNITIES

 LOCAL REPRERENTATIVE WANTED.-Splendidincome assured right man to act as onr representative
after learniog our business thoroughyb mail. Former

 Inquiry No. 8918 .- For man
Electro-Catalytic Sparking Plug.' ITALY. Tmportant technical onfice having widest
connection in Italy, is prepared to treat with a frst
class Machine-mulut acturing firm. For fuil informa-

EDUCATIONAL.

CIVIL SERVICE EMPLOYEESS are patd well foreass, sample questions and Booklet to describing positions
and telling easiest and quickest wast toserure them free.
Washington Civil Service School. Washington, D. C.

PATENTS FOR SALE.

PATENT FOR SALE.-Something New, Automobile
Automiatic DORp Brake. For further particulars, ad-
dress Box 45, W. Enfeld, Maine. Inquiry
facturers
cu re sticks.

FOR SALE.

 Inquiry No. 9016.-Wanted, machinery necessary
for installation of a plant for refling salt by a

WANTED.

WANTED TO BUY Water Cooled Stationary Gaso-
line EnTines, from
sa'ne to
 Inquiry No. 90:33.-Wanted, to buy silk machines
from re-reeling , Wisting, doubling, to the final process
of making it into clothes. of making it into cloth

LISTS OF MANUFACTURERS. COMPLETE LISTS of manufacturers in allininessup.
nilid short notice at moderate rates. Small
special lists compiled to mader at various prices. pied at short notice at moderate rates. pmail and
pepecial list compiled to crder at various priaes. Es.
timates should be obtained in adrane.
Muun \& Co., Inc., List Department, Box 773 . New Yoress. $\xrightarrow[\text { manufacturers in }]{\text { In }}$ Germany.
 Inquiry No. 9029.- Wanted, catalogues and all
informatyon on mathinery for bradding straw in manu-
facturing straw bats. lngniry No. 9034.-For manufacurrers of machin.
ery that could reauce stumps to kinding wos d . Inquiry
manufacturers of
9036.- Wanted,
Cy Inquiry No. 903x.- Wanted, the address of the Inquiry No. 9042 .-Wanted the address of Farnes
Safety Razor Co. Inquiry No. 904 4. - Wanted to buyoutits neces.
sary for agate polishink. Inquiry No. HpA6.-Wanted, machinery used for
the manupacture of anlinds of fruit boxes, baskets and
crates. Inquiry No. 9048 . - Wanted, address of manufac-
turers of metai table sides for extension tables. lnquiry No. 9049 .- Wanted, to
suitable for a shoe shining machine. Inquiry No. 9052 . - Wanted, to buy machinery, etc.
for a beer plant, that manufact ures beer by means ot
glucose. Inquiry No. 9053.-Wanted, address of firms who
install plants to manufacture nitrogen. Inquiry No. 9054.-Wanted, address of manufac
turers of articles made from mica. Inquiry No. 9055.- Wanted, add
terested in Log Cleaning Machines.
shades.
Ingnity No. 905%. For manufacturers of plass
andanira balls. used as
ning rod equipment, also weather ornaments vanes for same pur-
Dose.
Inguly No. 9058 .-Wanted, firms who make ma-

(Concluded from page 495.)
work but eight hours. But he would be obliged to resign from the union in the in the evening and continues till seven the next morning, fourteen hours without a break. And how pleasant this is with the thermometer twenty-six degrees be low zero! It needs quite a deal of enthu iasm to keep one from freezing to death? To photograph the spectrum of a star a spectroscope or rather spectrograph is attached to the eye end of the tele scope. The object glass focuses the star's light on a fine slip not more than one hundredth of an inch in width and one-eighth of an inch in length. After the light passes through this slit it passe hrough the collimating telescope, the the star's light up into its component colors or spectrum, then through the cam era lens and is finally brought to a focus tained a trum. Much careful thought and many refinements were necessary before the spectroscope was brought to its present great degree of precision. To mention a few of them. How is it possible to
keep the great telescope tube so accurate ly directed to the star that its light is focused on the center of the slit onehundredth of an inch wide, for if the light does not pass through the slit it will not fall on the photographic plate This was made possible by making the slit jaws of polished silver, and watching the stray light reflected from the silver jaws by combining prisms and lenses in keeps his eye at an eyepiece where he can see the star image on the slit, and causes the star image to remain centered there by using the slow motions of the tele-
scope. The exposure necessary to make a photograph depends on the brightness of the star and may last from a few minutes to two, three, or five hours, or in some few cases to eight or ten hours During this long exposure the tempera ture has probably fallen a number of de grees, and the instrument has been af fected by all its parts contracting. This might result in a change in the prisms with the consequence that the photo in as good definition as it might be. To overcome these difficulties, the whole spectrograph was inclosed in a tight alu minium case lined with glass work so as to be non-conducting. Fine wires exposure was being made a thermometer inside the case was watched through a glass window, and if the temperature dropped, a current of electricity wa turned through the wires inside the case, and kept turned on till the proper tem perature was reached. Within the past year a thermostat has been introduced and the temperature is automatically kept constant. And hence while the exposure is being made the spectrograph is kept at a constant temperature, there is no change in its several parts and a sharply-defined spectrum will result. A wonderfully accurate instrument this makes leading to results of the highes degree of precision.

AN AERIAL PASSENGER RAILWAY

(Continued from page 488.)
haulage. From the haulage cable, which is one and one-half inches in diameter, the buckets are suspended, their entire weight being sustained by two steel fourinch flanged wheels running over the stationary cable.
These buckets are constructed of heavy wrought iron, six feet long and four wide, with a door opening on the right side, which door is securely bolted when the bucket is en route. There are twenty-six buckets on the line, carried by the haul(Concluded on page 499.)

Aeroplanes modors

SOUTHERN STAMPING \& MFGG CO. R. B., Nashville, Tenn.

RTBBERRE $\begin{gathered}\text { Expert Manufacturers } \\ \text { Fine Jobbing Work }\end{gathered}$

MASON'S NEW PAT. WHIP HOIST

MORE FUN than a barrel of MONKEYS.

 Experimental \&Moddel Work

Magical Apparatus.

INCORPORATE - Arraona Thass mogt ilieral

Instructive Scientific Papers
 on timely topics

Price 10 Cents each by mail
 paper of 1mmense practical value to the
architect and builder. SCIENTIFIC AMERITHE SHRINKAGE AND WARPING excellent presentation of modern views;
fully illustrated. SCIENTIFIC AMERICAN CONSTRUCTIONOF AN INDICAT-
INGORIRECORDINGTIN PLATE
ANEROID BARONETER. BY N. ANEROID BAROMETER. By N.
ANEROR HOpkins. Full illustrated. SCIEN-
MIFIC AMEEITCAN SUPPLEMENT 1500. DIRECT-VISION SPECTROSCOPES.
 written, instructive and copiously illustrated
article.
MENT
SIENTIFIC AMERICAN SUPLE
HOME MADE
AMERIAN SUPLEMENTS 161 and 600 con
tain excellent articles with full drawings LATING DYNAMOS. SCIENTIFIC AME-
RICAN SUPPLEMENTS 720 and 793 de-
scribe their construction so clearly that any
DYNAMO AND MOTOR COMBINED. AMERIIAN SUPPLEMENT 844 and 865.
The machines can be run either as dynamos or motors.
ELECTRICAL MOTORS. Their Construction at Home. SCIENTIPIC AMERICAN
SUPPLEMENTS 759, 761,767,641.
Price 10 Gents each, by mail MUNN \& COMPANY. Inc. 361 Broadway

