THE LIFE OF A SPLASH

by percy collins.
Probably many people have at times watched the splashes caused by rain drops falling upon the smooth surface of a pool or river. Some, too, may have gone so far as to differentiate between the splashes formed by the big drops of a thunder shower and those produced by the smaller drops of a gentle rain. In the former case a conspicuous bubble floats for a moment, and then vanishes; in the latter a crystalline fountain seems to start from a surrounding coronet of lesser jets-though this is in part an illusion, for it is known that in reality the coronet has vanished before the jet appears. The image of the coronet has not had time to fade from the eye ere that of the jet is superposed upon it. Moreover, it may have chanced to the reader to note the different effects, both of sound and of splash, produced by a stone dropped into the water-these differences apparently depending upon the height from which the stone descends, and upon the condition of its surface; i. e., whether it is smooth or rough, wet or dry. But if the reader has at one time or another made such naked-eye observations of splashes, it must be clear to him that while he has seen something, he must also have missed seeing very much more. For a splash, no matter in what way it may be produced, consists in the progress of a multitude of events, compressed within the limits of a few hundredths of a second, but none the less orderly and inevitable, and of which the sequence is in part easy to anticipate and understand, while in part it taxes the highest mathematical powers to elucidate. Some fifteen years ago, Prof. A. M. Worthington, C.B., F.R.S. (Head Master of the Royal Naval Engineering College, Devonport, England), commenced a systematic study of splashes, and in order fully to appreciate the disturbance of the liquids with which he experimented, and their relations, he invoked the aid of photography. In these days of kinematographs and rapid snap-shot cameras, it might seem an easy matter to follow, by means of photography, even a splashing drop. But if the reader harbors this thought, he has failed to grasp the extraordinary rapidity of the movements which take place. As Prof. Worthington reminds us, the problem of how to photograph a splash is by no means a simple one, for the changes of form that take place are far too rapid to come within reach of any ordinary kinematograph, while the quickest photographic shutter is also much too slow.

Thus, it became necessary to have recourse to the far shorter exposure of an electric spark. It was found that the bright spark given by breaking the primary circuit of an induction coil at the surface of mercury was of much too long duration to be useful for the purpose of flash photography; so that the originals of the photographs reproduced on this page (for which we are indebted to the courtesy of Prof. Worth ington) were taken by means of a spark the duration

2.

1. Primary column succeeding a drop into running water. 2. Col umn succeeding a drop into still water. Time, 0.139 second each case. 3. Primary column caused
of which was certainly less than three-millionths of a second-a period of time which bears to the whole second about the same proportion as a day to a thousand years.
This flash is obtained by charging two Leyden jars by an electrical machine on their inner coats, one positively and one negatively. Stout wires lead from the outer coats to the dark room (where the splash is to be photographed) and terminate in a spark-gap between magnesium terminals and close over the surface of water contained in a bowl. The inner coats of the Leyden jars being now connected together, the positive and negative charges unite in a dazzling flash, and a simultaneous discharge and flash take place between the two outer coats across the spark-gap in the dark room. This latter is the illuminating spark, by means of which the photographic exposure is to be
made. The exact timing of this spark is obviously of the greatest importance. This is effected by means of a falling metal sphere which passes (outside the dark room, of course) between two terminals connected one with the inside of one Leyden jar and one with the inside of the other. These terminals are just too far apart for a spark to jump across till the timing sphere passes between them. But when this occurs the dis charge takes place, with the accompanying flash in the dark room. By means of an ingenious arrange ment of magnets and springs, for full details of which the reader is referred to Prof. Worthington's work ("A Study of Splashes"), the timing sphere can be made to fall either simultaneously with the drop or sphere destined to cause the splash to be photographed, or slightly earlier or later. In this way it is possible brilliantly to illuminate the splash for one three-mill ionth part of a second at any desired period of its progress. For example, if a particular stage of the splash is photographed when the timing sphere falls just four feet to the gap between the terminals, then by raising its releasing-lever about two-fifths of an inch, the law of falling bodies insures that the flash will be postponed by just one-thousandth of a second and the next photograph accordingly reveals a stage just so much later
From these brief particulars the reader will be able to form an idea of the way in which Prof. Worthington's photographic studies of splashes are obtained. The camera being previously focused and arranged in the dark room, the timing sphere is minutely adjusted and released, and a record of any desired period of the splash is obtained upon the sensitized plate. Yet despite the rapidity of the plates employed, and the brilliancy of the flash, the duration of the illumination is so short that the negatives are always "underexposed." Hence tedious precautions have to be taken in their development.

We may now glance rapidly at a few of the many interesting facts which have been established by Prof. Worthington's study of splashes. It will probably surprise the reader to learn what a lengthy series of events follows the contact of a small drop of water, falling from a height of about 16 inches, into a mixture of milk and water-the milk being added to render the photographs more intelligible. First, as the drops strikes and penetrates the surface, there arises a crater, which rapidly increases in size until, upon (Continued on page 474.)

Engine and Foot Lathes MACHINESHOP SOTETS. TOOLSE AND sebasitian lathe co.. 120 Culvert st., Cincinnati
Incorporate business anywhere. Blanks, By-Laws and forms for maling stoc full-paid for casb. property or services, free. President Stoddard,
FORMER SECRETARY OF ARIZONA. Tresident agent fo many thousand companies. Reference: Any bank in Arizona STODDARD INCORPORATING COMPANY, Box 8000 PHOENIX, ARIZONA

WORLD'S ELECTRICAL
EXHIBITION Ansmuniol 1910

WELL ${ }^{\text {drulimg }}$

WIUIAMS BROS., Ithaca, N. Y.

H-C GAS EMGIINE

 macnetosThey are made right-work right and the cost is not high.
Send for Bulletin No. 15S7. Send for Bulletin No. 1557.

THE LIFE OF A SPLASH
(Continued from page 465.) attaining its greatest proportion, its walls begin to thicken, and gradually subside to form a mere ring of lobes on the sur face, surrounding a central hollow.
Then comes a rebound, manifested in the rising of a central column which after attaining its full height and subsid ing, is followed by a secondary column ere the series of events which we term "the splash" is complete. Prof, Worth ington shows that the separation in the form of a drop of the top of the primary column ere its complete subsidence re colts in a series of events markedly dif ferent from that which ensues when no separation takes place. Moreover, the manifestation of outspreading ripples is affected by the condition of the surface; and in order to secure the most favorable conditions by cleaning the surface, a con tinous slow stream of fresh water is maintained. The contamination of the surface liquid, by the way, originates in lamp black brought down by each drop for in order to prevent the drop from ad hering to the watch glass in which it rests prior to its fall, it is found neces ary carefully to smoke the glass in th lame of a candle. But the atoms of lamp black which adhere to and are brought down with each drop serve to make clea some important points connected with the formation of the splash. They prove by their presence that the interior of the crater is lined by the original liquid which formed the drop, and thus afford useful information as to the nature of its fiow. When the primary column com mences its ascent, the atoms of lamp black are carried upward at its summit, proving that the liquid of the origina drop emerges at the head of the centra column. This is confirmed by allowing drop of milk to fall into pure water when the photograph shows that the up per part of the column contains nearly all of the milk. This fact may be easily verified by naked-eye observation, as in dicated by Prof. Worthington. Let the reader drop from a spoon into a cup o tea or coffee, from a height of fifteen or sixteen inches, a single drop of milk He will have no difficulty in observing that the column which emerges carries with it the white milk-drop at the top only slightly stained by the liquid into which it has fallen.
Upon increasing the height of the fal of a drop to about 40 inches, a new phe nomenon is registered in the photo graphs. The crater rises to a greate height; but instead of subsiding in th form of a ring, its mouth closes to form a bubble on the surface of the liquid. If the height be not too great, the closing is either incomplete or at any rate only temporary, and the bubble reopens at the top to make way for the column which rises as before from the base, but is now much thicker and hardly so high as be fore. With a very high fall, however the bubble becomes too firmly closed to reopen, and its summit is struck from within by the rising column, which be comes entangled in the liquid of the bub ble when the latter bursts. Thanks, how ever, to the infiuence of surface tension, regularity of form is soon regained, so that the concluding events of a splas after a high fall agree in essentials with those which follow a fow fall.
The facts elucidated by experiments with a sphere dropped from varying heights into liquid proved to be of great interest and importance. Prof. Worthing ton suggests that those who wish fully to grasp the significance of his photo graphs and deductions should experiment for themselves by dropping marbles from a height of about a foot into a deep bow of water, the bottom of which should be protected from the possibility of breakage by a few folds of fine copper gauze A perfectly clean and highly polished marble so dropped will enter the wate almost noiselessly with very little dis turbance of the surface. In a word, th splash is singularly insignificant. Photo

A Highway of Communication

It goes by your door. Every home, every office, every factory, and every farm in the land is on that great highway or within reach of it. It is a highway of communication and every Bell Telephone is a gateway by which it can be reached.
Millions of messages travelover this highway every day. In the great cities they follow one another like the bullets from a machine gun, and over the wide reaches of the country they fly with the speed of shooting stars.

The Bell service carries the thoughts and wishes of the people from room to room, from houseto house, from community to community, and from state to state.

This service adds to the efficiency of each citizen, and multiplies the power of the whole nation.
The Bell system brings eighty million men, women and children into one telephone commonwealth, so that they may know one another and live together in harmonious understanding.
A hundred thousand Bell employees are working all the time on this highway of communication. Every year it is made longer and broader, and its numerous branches are more widely extended. Every year it is furnished with a larger number of telephone gateways and becomes the means of greater usefulness.

The Bell Long Distance Telephone will meet your new needs and serve your new purposes. It means - one policy, one system, universal service. Every Bell Telephone is the center of the System.

American Telephone and Telegraph Company And Associated Companies

ON THE PRESS!

THE FOURTH DIMENSION

SIMPLY EXPLAINED
with an introduction by HENRY P. MANNING
Profesor of Mathematics, Brown University

Price, $\$ 1.50$ net.

260 pages illustrated

Anon-matheme Scientica American's donated a pizze of $\$ 50.00$ or or the best simply-worked Col. G. D. Fitch, U.S. A. This essay, together with three others which were accorded honorable mention, was published in the columns of the Scientific American. As a result, so much interest was aroused in the subject of the Fourth Dimension that it seemed advisable to parts of the world.
The present work presents twenty points of view, all of them interesting and no two quite alike. Each essay is 2500 words in length. The reading of one essay does not involve the reading of the entire work, yet the entire book gives a comprehensive view of what the layman wishes to
know about the Fourth Dimension. No abstract mathematics will be found in the volume. The essayists endeavor the explain to Fourth Dimension both by imagining ound in the volunsporting an ordinary third-dimensional human being into fourth-dimensional space and also by explaining a third-dimensional man's possibilities in one and two dimensional space.

Professor. Manning, the leading American authority on the subject of the Fourth Dimension ontributes an introduction in which he explains how the concept of the Fourth Dimension gaine mathematical prominence, and swiftly reviews the work that has been done in the field. He ha
also edited the essays and supplied explanatory footnotes where required.

ORDER FROM YOUR BOOKDEALER OR FRON
MUNN \& COMPANY, Inc., 361 Broadway, NEW YORK

CONSULTING ENGINEER.

SOUTHERN STAMPING \& MFG, CO.

[CIMACHINES

MODELS $\underset{\text { Inventions deveioped. Special Machlvery. }}{\text { M EXP }}$. E. V. BAILLARD CO.. 24 Frankfort Street. New York.

RUBBER
$\underset{\substack{\text { Expert } \\ \text { Fine Jobbing Works }}}{\text { Manart }}$
HYPNOTISM
Learned at home, small cost io stamp for partionars
Aeroplanes wad Motors
 We also build several kinds of light-weight aeronautic
motors and propeliers. Particulars and prices furnished moter
undenication a EROPLANE ANO AIRSHIP CO.
BOX 773, New York.

The WONDERFUL NEW POST CARD PROJECTOR

Prices-\$4.50, \$13.50, \$23.00

 Send for list of our projectors, Magic Lanterns and SlidesTHE BEST CHRLSTMAS G1FT FOR BOYS Practical. Qutet, Safe, कֶ0.IW and upwards.

WHAT WE WO HOW WE DO IT

MOEFT \& COMPANY

Learn Watchmaking formerit took years. IJoes away with tedious apprere-
ticeship. Money ear while studying. Positions se-
cured. Easy term. Send for catalog.

w Le TOOLS M NATIONAL STAMPING AND ELECTRIC WORKS
2i6-220.S. Jefferson Strect, Chicago, III.

MARK TWAIN'S WORKS

at ONE-HALF former price

It has been Mark Twain's ambition
to have his books in every American
home and he has made a great per-
sonal sacrifice, which brings about
this remarkable situation-for the
first time in the history of publish-
ing, copyrighted books are sold at
the price of non-copyrighted books.

AUTHOR'S NATIONAL EDITION

25 Beautiful Volumes

Mark Twain is the youngest man of his day. All his books are imbued with his spirit-they are new books; to own them is always to have new books, a fountain of youth. They never age because humor, kindliness, and truth never grow old. They are books for young people of all ages.

Special Features of this Edition

Mark Twain himself has written a preface to the edition. Brander Matthews

 has written the biographical criticism of Mark Twain and his work. There re portraits of the author from photographs and paintings taken at periods when the different books were in process of writing. This edition includes his later collected writings such as "A Dog's Tale," "Eve's HARPER \&BROTHERS Franklin Square
New York City There are beautiful pictures by such artists as Brown, Frost, Newell, Beard, Dielman, Smedley, Thulstrup, Clinedinst, Mora, Weldon, Kemble, Gilbert, Du Mond, Merrill, Opper.

(Continued from page i, i,.)
raphic records show that the liquid, stead of being driven away from the surface in the form of a crater (as is the case when a drop or a rough sphere strikes the surface) now rises in a thin, closely-fitting sheath which completely envelops the sphere even before its summit has reached the water level. A comparatively insignificant column consti. tutes the subsequent splash. Moreover,
and as a result of the rapidly closing sheath, practically no air is carried into the water by the smooth sphere. This point, as well as many others of great importance, was shown photographically by means of illumination behind a thin glass vessel with parallel sides-an arrangement which rendered it possible to photograph the splash both above and
below the surface of the fluid. Most of he photographs reproduced were taken in this way.
So much for the splash caused by a smooth sphere. If the reader will now ish out the marble with which he is con ducting his simple experiments, roughen its surface with sandpaper, and again rop it from a height of a foot or so into the water, he will find that a totally diferent splash results. There is now a great noise of bubbles, which may be seen rising through the liquid, while a all jet is seen to be tossed into the air. Photographic records of the surface disturbance closely resemble those which have already been described, caused by the fall of a drop. A crater is formed, and subsides, and a graceful jet rises from its depths, gathers volume from below, and rises ultimately as a tall col umn whose height may be even greater than that from which the sphere fell Photographs of the descent of the sphere below the surface show us how this col umn originates. The sphere as it de-
scends drags with it the surface film of scends drags with it the surface film of deepening pocket or bag which ultimately forms a long cylindrical hollow. This eventually divides, and the lower part is dragged down by the sphere to the bottom (no matter what the depth), whence it rises to the surface as a bubble. Mean while, the upper ha-f of the cylinder rap-
idly fills up; and this running together of the liquid is responsible for the grea velocity of the upward-spurting jet o column.
On increasing the height of the fall of a rough sphere, a higher crater which closes and forms a bubble is obtained just as when the height of fall of a liquid
drop is increased. With a fall of two
feet, this bubble is almost immediately destroyed by an upward jet. But if the height of fall be increased to four or five feet, no rebounding jet will be projected into the air, notwithstanding the fact that much air is still carried down by the roughened sphere. To the naked eye,
a curious "seething" appearance at the surface is apparent; and Prof. Worthing ton admits that he was at first disposed to regard this as evidence of the entangletanglement likely to produce confused motions which could not be profitably studied. However, the persistence with which the seething motion again and again returned when a stone was dropped or thrown into the river, led him to sus pect that something required investiga tion. The remarkable change of proce dure revealed in the series of photographs which was subsequently taken will be best described by a word for wor quotation from Prof. Worthington's writ ings. "The earlier figures show the very rapid rise of the crater and its closing as a bubble, much before the entrapped column of air divides. Before the divi sion takes place, the liquid now flowing in from all sides closes over the upper end of the long air tube, separates it from the air outside, and forms a down ward jet which shoots down the middle of the air tube in pursuit of the sphere.
The first formation of this jet is not easy to observe, because the view is obscure (Concluded on page 477.)

RUBBER STAMP MAKING.-THIS

PATENTS

in Manufacturing and Business EDWIN J. PRINDLE
What is Patentable
What Protection a Patent Affords. Rules Governing Infringements and Contests.
Patent Relations between Employers and Employees.
Tells you how to do wisely and well the things often done wrong before you think of
going to the Patent Attorney or Patent Office.

$\$ 2.00$ Postpaid

THE ENGIHEERING MAGAZINE 142 Nassau Street, New York

Two Good Books for Steel Workers
Hardening, Tempering, Annealing and Forging of Steel

The American Steel Worker
By E. R. MARKHAM
Size $53 / \times 8$ inches. $\begin{gathered}\text { 367 } \\ \text { tions. }\end{gathered}$
HIS is a standard work on selecting, annealing hardening and tempering all grades of steel has had twenty-five years' practical experiollected much of the material for this book. Care-
ful instructions are given for every detail of every
ool. Among the subjects treated are theselection of steel to meet various requirements: how to tell
teel when you see it; reasons for different steels now to treat steel in the making of small tools, taps,
reamers drills. milling cuters; hardening and tem-
pering dies; pack-hardening; case-hardening; an nealing: heating apparatus: mixtures and baths,
he best bind. and why; and in fact everything that

OUR SPECIAL OFFER : The price of these each, but when the two volumes are ordered from
ns at one time, we send them prepaid to any address
in the world on receipt of $\$ 4.00$.
MUNN \& COMPANY, Inc. Publishers
(Concluded from page 476.) by much splashing and turbulent vortical motion resulting apparently from the streams that converge from all sides of the axis of the air tube at its upper end, but (when) the turbulence has cleared away from the upper part, and from this stage onward the jet is well seen in all the figures, and it persists long after the segmentation of the air column has taken place. The reader must not suppose that this jet is a mere falling of the water under the action of gravity, for the rapidity with which it advances is far greater than could be ac-
counted for in this way. . . . The great initial momentum of the sphere causes it to continue in rapid motion after the bubble has closed, thus the sphere acts as a sort of piston, which by increasing the length of the air tube diminishes the pressure in it and so sucks in the bubble, which is driven down by the greater atmospheric pressure above. The converging horizontal inflow near the mouth of the air tube cannot, of course, produce the downward-directed jet without an equal and opposite generation of momentum upward; but this is now expended, not in producing a similar upward jet, but in balancing the excess of atmospheric pressure. The reaction, in fact, to the projection of the jet downward is the force which holds up and slowly raises the roof of the long air shaft." The rising of the roof is well shown in some of the accompanying photographs.
Thus, as Prof. Worthington points out, the formation of a downward jet is not, in a sense, a new phenomenon, but one which, having existed unnoticed before, is now rendered visible by reason of its being produced in air instead of water. An increase in the height of fall to $223 / 2$ feet was found to produce but little
change in the phenomena coincident to the resulting splash.
As an illustration of the possible application of knowledge gained from a study of splashes in an unexpected quarter, Prof. Worthington draws attention to the fact that photographs of the splash of a projectile on striking the steel armor plate of a battleship bear a close resemblance to photographs of splashes caused by a sphere falling into liquid. There is the same slight upheaval of the neighboring surface, the same crater, with the same curled lip, leading to the inference that under the immense and suddenly applied pressure the steel has behaved like a liquid. The professor suggests that from a study of the motions set up in a liquid in an analogous case, it may be possible to deduce information about the distribution of internal stress, which may apply also to a solid, and thus lead to improvements in the construction of a plate that is intended to resist penetration.
In conclusion it should be said that the number printed below each photograph here reproduced gives the time in decimal parts of a second which has elapsed since the first instant of contact.

CARNIVOROUS PLANTS OF THE FUTURE. (Continued from page 469.)
edge of the leaf in certain species is seen to curl slowly inward. Now we can imagine that in the very far-away future with which we are dealing the Pinguicula will develop leaves which will hardly be less than five or six feet in length. These lying along the surface of the ground will make a special appeal to grazing animals. Perhaps as with the sundew the allurement will be in the form of some pleasant-tasting secretion which is peculiarly attractive to sheep and goats. We can imagine how these animals on first coming across the plants wourd start to regale themselves at the prepared feast. The strong sticky substances would take a firm hold of the hairs surrounding the mouth parts of the creatures, and in their endeavor to free themselves the animals would become more entangled. Gradually, too, the sides
(Continued on page 478.)

THE DYNATAK
An absolutely new instrument for Automobiles and Motor Boaks. Locates and shows up missing cylinders at once. Indicates Correct Carburretor Adjustment, SPEFDOMETER and is in addition a precision your dealer cannot supply you, write us direct. Handsome Scientific Booklet fully descriptive sent upon request. DEPARTMENT "S"
The Electic Spaedommeter and Dynammometer Manuractiving Co. 1317-1319 New York Avenue, Washington, D. C.

Handy Man's Workshop and Laboratory

Compiled and Edited by A. RUSSELL BOND
12mo. 467 Pages. 370 Illustrations. Price $\$ 2.00$ postpaid.

 has been confronted many times with unexpected situa-
tions calling for the exercise of considerable ingenuity.
The resourceful man who has met an issue of this sort successfully seldom, if ever, is averse to making public his
methods of procedure. After all he has little to gain by methods of procedure. Atter, all he has little to gain public his beping
the matter to himself and, appreciating the advice of other practical men in the same line of work, he is only too glad to contribute his own suggestions to the general fund of information About a year ago it was decided to oper a department in
the Scientific American devoted to the interests of the handy
man. man. There was an almost immediate response. Hundreds of valuable suggestions poured in from every part of this country
and from abroad as well. Not only amateur mechanics, but
professional men as well were eager to recount their easperiprofessinal men as well were eager to recount their experi-
ences in emergencies and offer useful bits of ittormation, in-
genious ideas, wrinkles or "inks, as they are called. Aside
from these, many valuable contributions came from men in from these, many valuable contributions came from men in other
wallis. of life-resourceful men, Who showed their aptness at
doing.things about the house, in the garden, on the farm. The
electrician and the man in doing.things about the house, in the garden, on the farme. The furnished another tributary to the to ood of ideas. Automobiles, motor cycles, moto
boats and the like frequently call for a display of ingenuity among a class of men who boats and the like frequently call for a display of ingenuity among a class of men who
otherwise would never touch a tool. These also contributed a large share of suggestions
that poured in upon us. It was apparent from the outset that the Handy Man's Work shop Ipepartrment in the Scientific American would be utterly inadequate for so large
a volume of material ; but rather than reject any really useful ideas for lack of space We have collected the worthier suggestions, which we present in the present volume
They have all been classified and arranged in eight chapters, under the following headings: Fitting up a Workshop; II, Shop Kinks; III, Soldering of Metals; IV, The
Handy Man in the Factory; V, The Handy Man's Experimental Laboratory; VI, The Handy Man, In the Fiactory, V, The Handy Man's Experimental Laboratory; VI, The
Handy Mans Electrical Labortory; VII, The Handy Man About the House; VIII,
The Handy Sportsman; IX, Model Toy Flying Machines. Index. Handy Man's Electrical Laboratory; VII, The Handy Man Ab
The Handy Sportsman; IX, Model Toy Flying Machines. Index.

THEODORE ROOSEVELT'S OWN STORY OF HIS African Hunting Trip
 NOW RUNNING IN SCRIBNER'S MAGAZINE

is as popular as the man himself.
Every one wants to read it. The first article appeared in the October number and the entire first edition of that number was sold out in four days. The Scribner presses are taxed to the utmost to supply the demand. The articles are fascinating, full of adventure, and reflect the wonderful personality of Mr. Roosevelt.

We will send Mr. Roosevelt's First Article

 in Booklet Form and Two Big Numbers FREE all to Scientific American Readers who Subscribe to Scribner's for the Year 1910 to any reader of Scientific American, who subscribes for one year from January, 1910,
the November and December, 1909, nombers FREE; also an attractive pamphlet conthe November and December, 1909, nambers FREE; also an attractive pamphlet con-
taining Mr. Roosevelt's first article in the October, 1909, number FREE. We make this offer so that subscribers may have Mr. Roosevelt's complete story.

THIS offer is good for a short time only and should be accepted at once, before the great demand exhausts our edition. Write to-day, inclosing $\mathbf{\$ 3 . 0 0}$, and get Mr. Roosevelt's story from its beginning.
CHARLES SCRIBNER'S SONS, 153-157 Fifth Ave., New York City

AN AGENT WANTED IN EVERY TOWN Send for Booklet Gioing Terms and Special Offers

Send This Coupon With Yoar Order
 ROOSEVELT offer no. 330

Refrigerating apparatus, J. Heinrich, ${ }_{\mathbf{9 4 2}, 445 .} \mathbf{9 4 2 , 4} \mathbf{4}$

Roof entilator, W. W. W. Birntect
Roofing package F . C. Overbury.
Rotary engine

Rotary steam engine, J. W. Johnson
RRotary steam engine, W. E. Minue.
Rule, Jewell \& Westcott.

Sapphires and other precious stone
Sashine for copping, J. L. Wennstr
Sash holder and ock, K. F. Deskins.
Sash holding device, o. M. Ewards.
Saw setting machine, A. C. Ambler.
Saw setting tool, J. L'hote. Amb.
Saw
Saw
Scaat
Scal

$\mathbf{9 4 2 , 5 7 1}$
$\mathbf{9 4 2 , 5 0 6}$
$\mathbf{9 4 2}$
$\mathbf{9 4 2 , 8 4}$
942,31
942

