The weather is always with us. Upon its condition depends our physical comfort, our material welfare, our food supply, our outdoor amusements, our sports, and to a certain extent the prosecution of our business enterprises. Because men are so intimately, so profoundly affected by environment, the study of climate is receiving more and more attention from progressive governments.
Each day wears its appropriate dress, summer or winter; and the observation of this daily individuality of the weather constitutes a major part of the duties of weather observers. The United States Weather Bureau forecasts the weather the weather issues storm warnings, dis plays frost, cold wave, and flood signals; receives, tabulates, and distributes meteorological information for the benefit and s a f e guarding of agriculture, commerce, and navigation. About two hundred regu lar observing stations are maintained in the United States and the West Indies, each in charge of a trained observer, who telegraphs to Washington the weather conditions from his local office twice a day -8 A. M and 8 P. M seventy - fifth meridian time.

On these observations are forecast $t h e$ weather conditions for the ensuing thirty six to forty eight hours. All of these stations have mercurial barometers, ther mometers wind vanes, rain and snow gages, and a n emometers. Many of them have in addition, sunshine recorders, bar ographs, ther mographs, that register, automatically and con tinuously, the changes of the weather. Thegovernments of Mexico, Canada, England, Ger-
many, France, Portugal, and some others, more or less effectively, maintain similar services, so that, by exchange of information, the weather conditions that obtain over North America, North Atlantic Ocean, and West Europe are very thoroughly observed, and forecasts made with dispatch and accuracy.

The art of predicting the most probable condition of the weather for the ensuing twenty-four to fortyeight hours depends on the observations over a considerable area, and on the experienced judgment of the forecasters in predicting conditions likely to follow those at the time of taking the observations.

HOW WEATHER DATA ARE COLLECTED FOR THE WEATHER BUREAU BY AMATEUR OBSERVERS.
eral government supplies the co-operative observers with thermometers, a shelter in which to house them, and a rain gage. Some may have a larger equipment but these comprise the customary number.

It is required of co-operative observers that they read the thermometers once a day, at 7 P . M. The temperature is read on thermometers exposed to free air. Two thermometers are necessary to obtain the highest and lowest temperature, named, respectively, the maximum and the minimum thermometers. The minimum thermometer registers the lowest tempera ture for the past twenty-four hours. It is filled with alcohol, and its registering of the lowest temperature is accomplished by means of a double-headed, pin-like object, called an index, that slides freely in the alcohol within the glass tube. Solely because the index remains in the alcohol, it is enabled to go down and reg. ister the lowest temperature of the period since it was last "set." (Fig. 1.)
For instance, if, during the night, the temperature falls from 85 to 50 degrees, the alcohol column descends, of course, toward the bulb. Then the end; or top surface, meets thehead of the index, and takes the index down with it. While the index will not suffer the alcohol to pass on down, and leave it in the vacuum above, it will allow, the alcohol to flow above it, meanwhile remaining at rest at the lowest point reached by the top of the column of alcohol. It is obvious that because the index will not permit the surface of the alcohol column to flow past it on the way to the bulb, but will lie still when the column of alcoumn of alcohol flows upward with the increase of warmth, the lowest temperature is registered. The
take. The great extent of the territory of which it is necessary to have reports, would render impossible any large corps of observers if they all had to be paid. Fortunately, hundreds of people are interested enough to volunteer their services to the government. This enables the Weather Bureau to multiply its observers at little more cost than that' of supplying the instruments and the stationery, all of which are lent to responsible and experienced volunteers. The co-operative observers, as a whole, although serving without pecuniary compensation, display much interest and care in their work. Through its principal stations, the Fed-
maximum thermometer is designed to register the high est temperature of the preceding twenty-four hours. It is filled with mercury, which, owing to a stricture in the tube near the bulb (Fig. 2), can flow freely from the bulb as the temperature rises, but when the temperature falls, it cannot easily flow back. Thus imprisoned above the stricture, it registers whatever degree was the highest attained by the temperature for twenty-four hours.
The words "top" and "bottom" are used advisedly, as the minimum and maximum thermometers are (Continued on page 418.)

Fundamental Principles of Chemistry.
An Introduction to All Textbooks of An introauction to All Textbooks o Chemistry. By Wilhelm Ostwald. Translation by Harry W. Morse New York: Longma
$1909 .{ }^{8 v o}$.; pp. 349.
Prof. Ostwald's name is one to conju with in almost every branch of science and in chem-
istry particularly. It would be difficullt indeed istry particularly. It would be dififcullt indeed to the advancement of his science in our time, or one who occupies a more eminent position
as a teacher. In this book Prof. Ostwald has presented with remarkable ingenuity and simplicity the actual fundamental principles of the science of chemistry, their meaning and connec tion, and stripped them so far as possible of
irrelevant additions. irrelevant additions. The book may be regarded as an attempt wor sational scientific systrem under wout fringing in the properties of individual substances. Hence, it has been necessary to restate clementary principles in a new light, and to bring out many new connections in regions
hitherto untouched. That is why this work will be found different in its treatment from any other work on chemistry that has ever been written. The pedagogic value of the preceding can be judged only by the instructor of
chemistry. But to anyone familiar at all with chemistry. But to anyone faminar at an with impartial consideration of the book.
a Hand Book of Practical Calculation
AND APPLICATION of Reinforced Con-
crete. Kahn System Standards. Com-
piled and published by the Engineer-
ing Department of the Trussed Concrete Steel Company. 12mo.; 126 pp . The rapid growth of reinforced concrete construction makes necessary a band book on design, similar to those in use for the ordinary
classes of building material. The object of this classes of building material. The object of this
hand book is to present to the designer tables and information in such form as to and information in such form as to be made
immediately available for use in actual designs, and at the same time to have these tables founded on scientific formulx approved
by our best engineering practice. The work as presented deals mainly with the Kahn
trussed bar. The Kahn system of reinforced concrete, however, uses in its application several other types of reinforcement, incluaing
rib metal, hy-rib, cup bars, column hooping. rib metal, hy-rib, cup

HOW TO OBSERVE AND RECORD THE WEATHER.

(Continued from page 412.)

mounted very nearly horizontally. These two instruments are usually supported as they appear in Fig. 3.
The minimum is read and then "set" by raising it gently until the index slides to the surface of the alcohol (Fig. 5). The maximum must be lowered to a vertical position before it is read (Fig. 4). After this reading is taken and recorded, the thermometer is then "set" by gently swinging it up and down, until that
amount of mercury is shaken back into the bulb that represents the difference in temperature between the maximum and the present, if any. When no more mercury can be returned to the bulb, the thermometer is allowed to hang vertically, and a second reading is taken. The mercury now gives the temperature at the time of reading; and this reading is recorded as "set maximum." In other words, the maximum thermometer serves records the highest temperatures during the twenty-four hours; and secondly, when it is set, it gives the temperature at 7 P . M.-the time of reading.
Exposure.-The marked variation between the readings obtained from thermometers owned by private persons and Weather Bureau thermometers is due much more frequently to the difference in the manner of exposing them than to difference in quality, accuracy, or cost price. Thermometers exposed against buildings, on verandas, in windows, can not often be trusted to give even approximately the true temperature of the atmosphere. For the air is not a stationary body, but is a continuously intertwisting, expanding, and contracting gas perpetually seeking an equilibrium, which is seldom even momentarily gained, than it is instantly lost. All gross inaccuracies attending exposure of thermometers are overcome by the shelter adopted by the Weather Bureau and provided to all observers (Fig. 9)
The outside dimensions are 42 inches long by 36 inches wide by 36 inches least height, and a second roof, 6 inches above, has two ends open. The air has iree ac-
cess to the interior, for the four sides of the shelter are louvered; that is, com ap, and have a pitch which enables them to shed water, and intercept also the rays of the sun, even when level at sunrise or sunset.
Shelters ought to be placed in a large open space, or upon a house top or othe high building, where the circulation of the air is unimpeded. Correct temperatures are recorded only when the air hows freely round the shelter as well a through it. When the shelter cannot be
situated in an open area, it may be set situated in an open area, it may be set
up on the north side of a building, with a space not less than four inches interven ing.
Sunshine does not give the average temperature of the air, but the highest and so a thermometer, hung in the sun, alsifies or greatly exaggerates. If the temperature is 87 , a thermometer in the sun will run up to 100 or more. The con-
fiding observer, suddenly aware how hot it apparently is, grows faint from the imaginary heat, runs for a fan, and rapidly raises his bodily temperature by his vigorous gesticulations trying to cool him elf.
Instruments that measure the depth of the fall of rain are neither well known by sight, nor is the method by which Fig. 7 shows the essential parts of ain gage, which are a receiver, a meas uring tube, and an overflow. The rain is caught by the receiver, the bottom of which is funnel shaped, and falls into the measuring tube. Should the amoun that falls be excessive, and more than flows into the outer cylinder The rain gage is designed to catch the precipita tion of rain, and to facilitate the read ing of the amount by mechanically mag nifying the quantity. The diameter of a Weather Bureau rain gage receiver at the
top is 8 inches; the diameter of the meas uring tube is 2.53 inches. In conse quence of this difference in area, the water in the measuring tube stands ten times deeper than if spread over the area of the receiver; so that a rainfall of one nch in the receiver stands ten inche in the measuring tube. The scale by
which the water is measured is graduated in hundredths of an inch; but that nch on the scale is really ten inches long (Fig. 8).
In the normal temperate climate, there are only a few rains in a year when a
reading of one inch is observed. A fall of rain amounting to two inches is uncom mon; a precipitation recording three or more inches is the exceptional record of decade or two. Some rains, attended by strong wind, vivid lightning, and ap parently heavy downpouring of sheet rain, give a reading as low as twenty five to sixty or seventy hundredths of an
inch; while other rains, not so accompanied by electric phenomena and aeria disturbances, occasionally give a reading of an inch or more. Only an experienced observer is competent to make a fairly close guess of the amount of precipita ion; and at best his guess is subject to the errors that so commonly invalidat all suppositions.
Snowfall is caught in the large cylin(Continued on page 419.)

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending November 23, 1909,
AND EACH BEARING THAT DATE

Legal Notices

PATENTS

INV ENTORS are invited to communicate with Mnnn \& Co., 361 Broadway, Aew York. ur 62J F Street, Washington, D. C., in regard
to securing valid patent protection for their inventions. Trade-Marks and Copyrights registered. Desi
Patents secured.
A Free Opinion as to the probable patentability of an invention will be readily given to a ay a brief description of the device in question. All commanications are strictly

Hand-Bo request.

it was established over sixiy years agu.
MUNN \& CO., 361 Broadway, New York

Branch Office, 625 F St., Washington, D. C,

der by removing the funnel and tube. It is measured by first melting the snow, then pouring the water into the measur ing tube, and ascertaining the quantity exactly as for rain. The measuring tube may be filled to the brim with warm water, and this poured on the snow, which will soon melt. The measuring tube is filled once, and then emptied; the remainder of the fluid represents the precipitation from the snowfall. A third way of arriving at the snowfall is to cut a section of snow by turning the receiver down over it where the snow is level and not blown away nor drifted by wind. The section is then carefully lifted by a small shovel or paddle board, melted, and measured. To learn approximately the depth of water in a snowfall, one-tenth of the thickness of the layer of snow is taken, ten inches of snow being estimated to contain one inch of water; but this gives too little if snow is wet.
Exposure of Rain Gage.-It will not do to set up a rain gage anywhere and expect to get exact measurements of precipitation, for the rainfall varies as much as thirty per cent below the normal according to location, owing to the action of wind currents, to the intervention of buildings, trees, or fences unduly near the gage. A roof must be at least sixty feet square, and level, ere the wind action on the side walls of a building is eliminated from influencing the rain gage in the center.
Wind brakes are desirable around an instrument; the rule being that obstructions must be removed a distance equal to their height. For this reason, a fence surrounding a rain gage, four feet high and four feet away, will favorably overcome the wind, so that on a large open space more water will be caught by the receiver. For it is to be understood that the fluctuations of amounts caught between two rain gages near each other is to be ascribed to the wind. Consequently, rain gages protected at a suitable distance from the violence of the wind by bushes, fences, trees, or buildings catch more water than unprotected rain gages. This may be attributed partly to side currents whirling near the ground, and partly to the splashing of the drops of rain if they strike the gage through these intertwisting ground currents (Fig. 10). River Gages.-A river gage is a scale by which the height of water in a stream may be measured; and the stage of water, whether low or high, may be observed and recorded. The Weather Bureau endeavors to get reliable data of all streams hat affect inland navigation. It so happens that it is sometimes important to receive reports of the condition of the upper reaches of certain tributaries that are themselves unnavigable, but whose flooding may seriously imperil towns below, and materially swell the high water of the navigable rivers into which they empty.
A river gage can be a simple contrivance, and answer all practical purposes for creeks and small rivers. A graduated board extending below the lowest known level, fastened against a bridge abutment, is unexcelled, if it be convenient to read it at all times. The stone facing of an abutment itself may be smoothed and graduated, and be made to answer almost as well as an elaborate device (Fig. 6)
Strips of brass or of lead, securely inset or marks burned in, will do for graduations. The "feet" should be plainly numbered, lest in reading the gage, when the water is very high, a mistake is made. Great care must be exercised to graduate the sloping timbers of this style of gage; or which nothing less than an engineer's evel is sufficiently accurate for governmental requirements. The illustration explains how this may be done with a carpenter's level.
The book in which the observations are written is called the "Meteorological Record." The pages of this record are ruled for date, maximum, minimum, range, set maximum, precipitation, prevailing direc-
(Concluded on page 420.)

A Clean Shave

BELLE ISLE Marine

LUFKIN
TAPES AND RULES

Free
Catalogue of
Scientific and
Technical Books

We have just issued a new edition Technical Books, of Scientific and 44 pages, and a which contains free to any address on application.

\qquad
 wind is that direction from which the four. The character of the day refers to e sky, whether it is cloudy, partly freedom, or more, from clouds is said to clouds, is called "partly cloudy"; none to 20 per cent without clouds is accounted "cloudy." In the column for remarks sual pescriptive of unusual phenomena, such as severe storms,
meteors, killing frosts, remarkable depths of snow, floods in the streams of the vicinity, aurora borealis, deaths by lightning. To make the record valuable by the uniformity of its keeping, it is highly mportant that the readings be taken at the same hour each day, preferably at 7 P. M., seventy-fifth meridian time. A olumn for the water gage may be added, served.

TESTING THE MAN-ENGINE.
 (Continued from page 413.)

is gaged by another attachment electrically joined to this clock. At the height of the subject's shoulder are arranged, upon a bar, two small hinged uprights. His hand is placed against one of these little posts and he is told to move it as quickly as possible in the direction of the other and to knock both of them down in the least possible time. The clock measures the time interval between the fall of the two uprights, and thus it is possible to time the swiftest movement of the arm in passing through a yard or foot of space. Men are found to be twice as rapid in this movement as women; Indians much slower than whites; negroes more constant than whites in rate of movement.
Another ingenious man-engine gage is a cylinder revolved by clockwork and covered with paper against which rests a marking point moved by air pressure exerted through a tube connecting with any number of attachments. This apparatus is used largely in comparing the workings of the body while under normal conditions and during hard thinking or strong emotion, or after great intellec ual or physical effort. Thus when en (Continued on page 421.)

