A POPULAR ILLUSTRATED WEEKLY OF THE WORLD'S PROGRESS

SCIENTIFIC AMERICAN

EStablished 1845

MUNN \& CO., Inc., - Editors and Proprietors

Published Weekly at

No. 361 Broadway, New York

Charles Allen Muyn, President
361 Broadmay New Tork.

thrus to slbscribers.

 ne copy, one year, to any foreign country, postage prepaid, 18s. 6d. 4.0 the scientific american publications.
Scientific American (established 1845)
 American Homes and Gardens.
Scientıfic American Export Eätion (established 18九8). 3.00 The combined subscription rates and rates to foreign countries, includ ng Canada, will be furnished upon application.
Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., Inc., 361 Broadway, New York.
NEW YORK, SATURDAY, NOVEMBER 20th, 1909.
The Editor is always glad to receive for examination illustrated articles The Editor is always glad to receive for examination illustrated articles
on subjects of timely interest. If the photographs are *hucrp, the articles short, and the facts authentic, the contributions will receive special attention. Accepted articles will be paid for at regular space rates.

PURITY OF CATSKILL WATER SUPPLY.

The special experts on the purification of water for the New York Board of Water Supply have been investigating local conditions at the Ashokan Reservoir, with a view to determine whether the surface soil and vegetation on the bottom and sides of the Ashokan Reservoir should be entirely stripped down to the clay and gravel, as was done in the larger reservoirs of the metropolitan water districts of Massachusetts, or whether some other treatment to obviate deterioration during storage was preferable. It was estimated that the stripping of the soil would cost about $\$ 5,000$,000. Messrs. Hazen and Fuller, the expert engineers, have decided that the stripping of the Ashokan Reservoir would not prevent tastes and odors in the water to a sufficient extent to warrant the great expenditure. They considered that aeration, at a small fraction of the cost of stripping the reservoir, would result in better water, and that perfectly satisfactory water can be obtained by both aeration and filtration, whether the reservoir is stripped or nōt. It was recommended that all the trees and bushes over the entire area-be cut close to the ground and burned shortly before the area is flooded, and that all the stumps and roots be taker out, so that in case of low water they would not be unsightly. They also recommend that at the outlet of the reservoir a large fountain be built, where all the water drawn out will be thoroughly exposed to light and air.

THF NEW FOURTEEN-INCH ARMY AND NAVY GUNS.

Great interest attaches to the new 14 -inch gun for the navy which has been delivered at the navy yard at Washington, where it will be rifled and the breech mechanism installed. On completion it will be shipped to the naval proving grounds at Indian Head, Maryland, for a test. The completed gun will weigh about 63 tons; its projectile will weigh about 1,400 pounds, and the latter will be propelled by a charge of 365 pounds of powder. The extreme range at maximum elevation will be more than twenty-five miles. As compared with the present navy 12 -inch gun, this will be a far more powerful weapon. It will penetrate any armor afloat, at the most distant ranges at which accurate aiming is possible. The army has also a 14 -inch gun of much lower velocity and power, which will soon be tested at the Sandy Hook proving grounds. The lower muzzle velocity (about 2,000 feet per second) of the 14 -inch gun will give it additional life over the 12 -inch gun. After some eighty discharges the rifling of the present 12 -inch gun of 2,500 foot-seconds velocity becomes so badly worn as to destroy the accuracy. In the case of the 14 -inch gun, the erosion is much less, and the gun will be serviceable for about 300 discharges.

THE NEW BRITISH AND GERMAN "DREADNOUGHTS." The biggest "Dreadnought" of Great Britain and the most powerful German vessel of the same type were put into the water on the same day. The "Neptune," the English vessel, has a displacement of 20,250 tons, will carry ten 12 -inch guns and twenty 4 -inch guns, and her total broadside will weigh 9,120 pounds. The German "Dreadnought" "Ostfriesland" has a displacement of 19,000 tons; will carry twelve 12 -inch guns, twelve 6.7 -inch guns, and twenty-two 4 -inch guns, and she will deliver 14,204 pounds in a single discharge of
all her guns. The most remarkable feature of the "Neptune" will be the extraordinary power of concentrating the gunfire. The ten 12 -inch guns will be mounted in pairs in five barbettes. One barbette will be placed in the forecastle on a high level. The two broadside barbettes will be en echélon, that on the port side being more forward than the barbette on the starboard sire By a novel arrangement the superstructure is bridged over these two barbettes, both pairs of guns being fired on eitiner side at once if required. Of the two barbettes astern, one will be raised above the other, so that all four guns can be fired direct astern simultaneously. The broadside fire of the "Neptune" will thus be ten guns, the stern fire the "Neptune" will thus be ten guns, the stern fire
eight guns, and the direct-ahead fire six guns. The eight guns, and the direct-ahead fire six guns. The
"Ostfriesland," on the other hand, has four of her twelve guns masked by the superstructure, and can fire only eight 12 -inch guns on either broadside. Her end-on fire will be six guns ahead and astern.

ACCELERATION OF LONG-DISTANCE EXPRESS SERVICE.
Hitherto the trip from New York to St. Louis has been a rather trying one. Now, however, conditions are ameliorated by two through trains which make.a schedule run from New York to St. Louis in twentyfour hours. The New York Central train leaves at 2:45 in the afternoon, and the Pennsylvania train at 6:25 P. M. The Central's train is a duplicate of the "Twentieth Century Limited," and the Pennsylvania's is a duplicate of its eighteen-hour "Chicago Flier." The Central train is due to arrive in St. Louis at 1:45 P. M. which allowing for the difference in time makes a run of just twenty-four hours. The time saved is about five hours, and both of the trains are luxurious in the extreme. There are now seventeen trains daily each way on the New York Central and Pennsylvania systems.

THE LIMIT OF RAPID TRANSIT.

If all mechanical difficulties could be overcome and sufficient horse-power could be developed, what would be the minimum time in which passengers could be transported say from New York to Philadelphia? At first glance, one is apt to overlook the fact that the freight to be transported is not mechanical, but human and this is a very important factor in the problem, because the safety and comfort of the passengers must be considered. It is really a question of starting and stopping that imposes a limit on the reduction of time consumed in transit. A very interesting discussion of the question has been received from one of the readers of the Scientific American. He points to the fact that the quickest way to get from one place to another without shock on jar is to travel faster and faster until half the distance is covered, and then to slow down until the destination is reached. When the rate of ac celeration is just such as can be borne with comfort, the limit is attained. The affect on the passengers would be a continuous pressure against the back of the seat, of the sort experienced when a car is started suddenly, for the first half of the journey, and then in order to prevent them from pitching out of their seats, the chairs would have to be turned in the opposite the chairs would have to be turned in the opposite
direction for the rest of the journey, during which the same sensation would be felt. If an attempt were made to make the same time by any other method involving uniform speed throughout the greater part of the journey, an unpleasant jar or pressure would be experienced in starting and stopping. The highest speed attainable would therefore be proportional to the distance traversed.
Our correspondent draws a fanciful picture of the railroad of the future, which would permit of such rapid transit. The trains would have to run in a vacuum, to prevent them from being heated to incan descence by the resistance of the air. They would also have to be held in suspension in the vacuum tube through which they travel, for the slightest contact with the sides of the tube would result in enormous friction. The cars might be held in suspension by the repulsion of opposing magnets on the cars and tube respectively. When thus isolated, they could be pro pelled only by the magic power of magnetism. Under such conditions, the energy consumed in propelling the car would be quite low. The running time on such a road between New York and Philadelphia or New York and Boston would be a matter of a few minutes The time for each half of the distances could be calcu
lated from the well-known formula, $S=-a t^{2}$, where
S is the distance, here half the whole journey; a, the acceleration, or change of speed each second; and t, the time in seconds. Taking an acceleration of 11 feet per second each second, which would bring to rest, in 4 seconds, a train moving at 30 miles per hour (44 feet per second) he finds that the time from New York to Philadelphia (85 miles) and from New York to Boston (190 miles) would be 6 minutes 44 seconds and 10 min utes 4 seconds respectively.

This may indeed be considered the absolute limit of rapid transit; for the passengers would be traveling
each half of the distance one-third as fast as they could fall through the same space under the attraction of gravity.

THE OTHER HALF OF THE CULLINAN.

It is reported in African papers that the original stone, of which the Cullinan was a portion, has been found in the possession of the Kaffirs of the Magatos tribe in Zoutpansberg. The dimensions of this second Cullinan stone have been given as 4,323 karats.

This story has been denied by the Transvaal Department of Mines, and an official of the treasury in Pre toria states that the origin of the legend can undoubt edly be traced to the belief that enormous quantities of diamonds were buried by command of the celebrated chieftain's wife Majatje during the Boer war. These diamonds became the spoil of the Kaffirs when they returned to Kimberley. But these treasures are lost, for the Kaffirs who buried them are dead and search for them has been without result.
The possibility of finding still larger stones than the Cullinan in the soil of South Africa is, however, by no means remote. G. A. Molengraaff, professor of min eralogy in the Technical High School at Delft, re cently stated that the Cullinan is only a portion of a much larger stone, the original form of which can only approximately be indicated. Four pieces must hare been broken off from the original stone by natural crystal cleavage, which is evident from the cleavage planes. Each of these pieces must have been of con siderable size. Accordingly, the natural end planes (called "nijf" in the language of the diamond workers) are only partially shown in the Cullinan. Most of the crystal planes are cleavage planes. The original por tion of the surface shows only a single octahedral face; it also has an irregular curved front surface bear ing some resemblance to the six faces of a dodecahed ron, and a very irregularly formed cubical (hexahedral) surface, in which the quadrangular impressions can be recognized. These quadrangular impressions are characteristic of minerals such as diamonds, which occur in the octahedral form. The Cullinan consists of a single crystal; there are no traces either of a twin crystal or of twin lamellæ; it is completely transparent and colorless. Its transparency can be best compared with that of very pure ice, or with the complete clear ness of the variety of opal known in the mineral king. dom as hyalite (principally consisting of silicic acid). It is true that the Cullinan contains a few impurities ir. the shape of inclosed grains, also some internal cleavages of fragmentary character, called "glessen" in the Dutch diamond trade, but their situation is such that they do not injure the value of the stone as a jewel. In any case the Cullinan is the purest of all large, precious stones hitherto found

The question now arises whether there is a possibility of fincing the pieces broken off by crystal cleavage. That they can be found is certain, but it is im possible to predict whether they are now in diamond mines or elsewhere. The diamond is formed, as is known, at great depths by the decomposition of carbon, dissolved in the molten, basic, plutonic magma of the earth. (The so-called "blue-earth" is formed at a later period from this rock.) The carbon was then, under enormous pressure and at the very high temperature prevailing at these depths, deposited from the molten rock in the form of diamonds. During the volcanic discharges of the masses of rock the diamond was forced upward with tremendous force, and the very great friction to which the mass was exposed during its passage through the crater shaft caused the cleavage of the stone according to crystallographic laws to which we have referred. It is therefore not impossible that the broken-off fragments of the Cullinan are scattered over a wide space, and that they may one day be found on the surface of the earth, but it is just as possible that they are still reposing in the depths of the mines. Sir William Crookes has also lately expressed the opinion that the Cullinan is the smaller portion of an octahedron broken by crystal cıeavage.

New applications of electricity are being discovered daily, but not every new application is of as much interest or importance as one recently developed for purifying the air of reading rooms, theaters, and other close places where large numbers congregate. The apparatus referred to is the ozone generator installed recently in the Chicago Public Library to purify or ozonize the 10,000 cubic feet of air per minute that is forced into the main reading room. After the installation of the ozonizing apparatus it was found that the main reading room was completely deodorized, the air being freed of that disagreeable and deleterious odor which for years had so thoroughly permeated all papers, books, furnishings, etc., in this large room. The fresh sterilized "mountain" air in the room reduced the humidity during the hot, oppressive days of summer, and greatly increased the comfort of the readers and employees. The installation renders the dis infecting of all books, periodicals, papers, etc., on the shelves, racks, tables, etc., an automatic process, kern ing them constantly in a hygienic condition.

ENGINEERING.

The North British Locomotive Company has recently completed and tested the tirst steam turbine locomotive, and it is said to be entirely successful.
The great shops of the Pennsylvania Railroad Company at Altoona, employing 12,000 men, are now working full time. This is the first time since the financial depression of 1907 that all departments of the great shops have been operated.
A non-shrinking alloy can be produced by melting together 50 pounds of tin and 50 pounds of zinc. This gives a hard alloy if a good grade of zinc is used. Two pounds of bismuth will render it very fluid and enable it to be poured at a lower temperature.
Work is being pushed on the Cape Cod Canal. A big granite breakwater is being constructed in Cape Cod Bay to protect the end of the canal and furnish anchorage for shipping. At the other end, in Buzzard's Bay, work is also proceeding at a fair rate.
A new trolley car is being experimented with in New York city. The new car is operated by gasoline, and is also supplied with an electric equipment. In the event of a blockade or accident on the road, the new cars can be switched over to another track and be run by gasoline. Riding in the car is very much like riding in an automobile, there being an entire absence of the jerk which is so disagreeable in electric cars. The radiator is on the roof.
A twenty-four-hour test of the "North Dakota" at a 12 -knot speed was finished November 7th. The consumption of coal and water was well below the guaranteed mean amount. The consumption tests of this battleship are therefore in keeping with the remarkable speed shown in her special mile trials. It has been found that her turbine engines have developed a greater top speed and generated power for a low speed at less expense for coal and oil supplies than did the reciprocating engines of the "Delaware."

The Board of Estimate of the City of New York has approved the action of the Public Service Commission in awarding contracts for the construction of the Fourth Avenue subway in Brooklyn, and work on this very much needed improvement will proceed at once. The contracts were sent to the Board of Estimate over a year and a half ago, and have been held up ever since. As the building of subways under the best conditions cannot keep pace with the increase in population, it is to be hoped that there will be no such senseless delays in authorizing future subways.
An exhibition was recently made of Mr. Louis Brennan's monoroil car which, it will be recalled, is held in upright position by means of gyroscopes. Since the first announcement of his invention, Mr. Brennan has been at work developing the car to practical dimensions and the present model is large enough to contain forty passengers. The car was operated both on a straight and a circular track, and maintained its equilibrium perfectly. So sensitive was it to the shifting of the center of gravity, that when the passengers all crowded over to one side, the car immediately righted itself and maintained its horizontal position. Mr. Brennan overcomes the precession by means of frictional devices acting on the gyroscope wheels.
The Baldwin Locomotive Works has just completed for the Atchison, Topeka, \& Santa Fé Railway the most powerful passenger iocomotive now in use. Apart from its tender this locomotive weighs 376,450 pounds, and is 65 feet long. The tender carries 12,000 gallons of water and 4,000 gallons of oil, which will be used as fuel. The length of the locomotive and tender is 105 feet. The tractive power of the locomotive is 53,000 pounds. There are five pairs of driving wheels, 73 inches in diameter, working in sets of two, the locomotive being of the Mallet articulated type. The locomotive is the first for passenger service to be built of this type, and is the first to combine feed-water heater, superheater, and reheater in one machine. Its firebox is built on an entirely new plan which eliminates staybolts.
The October Engineering Review gives an admirable illustrated account of the progress of work on the Los Angeles aqueduct, now about half completed. It is probably little realized, away from southern California, that this is by far the largest hydraulic engineering work now in progress, with the exception of the Panama Canal. It speaks well for the courage of the people of Los Angeles, and their faith in the future of their city and district, that they should meet by this immense undertaking the serious problem of a waning water supply coupled with a growing population. The aqueduct will be 230 miles long, and will be capable of conveying 280 million gallons of water per day from the Sierra Nevada across the Mojave Desert to San Fernande Valley, providing sufficient water for power purposes and irrigation of the district, as well as for the city supply. Practically the entire work, including tunnels, steel siphons, and concrete lined and covered canal, is being done by the city under the direction of its own engineers.

ELECTRICITY

The city of Baltimore is evidently favorable to mu nicipal ownership. The problem of lighting the streets is being investigated. In September, 1910, the contract for lighting the city expires, and hopes are entertained that a municipal plant will by that time be ready to furnish power for the street lamps.
Following a test of gas-electric motor cars between Manassas and Strasburg, Virginia, the Southern Railway Company has bought two of these cars from the General Electric Company. Each car is equipped with a pair of 100 -horse-power motors operated on a voltage of 600 . The current is generated by an 8 -cylinder gas engine. The cars are 55 feet long and will seat 52 passengers.
The Third Avenue Railroad Company of this city is experimenting with gasoline-electric power on its 125th Street crosstown line. The requirements call for a car which can run up a five per cent grade and which can maintain a schedule of eight miles per hour with ten stops per mile. So far the results have been very satisfactory; the car has successfully run up an eight per cent grade and is keeping its schedule.
The new Blackstone Hotel in Chicago is provided with an unusually complete electrical equipment. In the kitchen particularly extensive use is made of electrical labor-saving devices. There are electric dish elevators, dish washers, vegetable parers, dough mix ers, silver-polishing machines, etc. The laundry of the hotel is also completely equipped with electricallydriven laundry machinery of every description.

Before the advent of the metallic-filament street lamp, gas lamps were largely used in English cities to illuminate the side streets, as the requirements did not justify the use of flaming arc lamps. Now the gas lamps are giving way to the metal-filament lamps, which afford a considerable saving. Nearly two thou sand side street lamps at Marylebone have been changed from gas to electricity, with the result that $\$ 7,500$ has been saved.
The Railroad Commission of Indiana has been ordered to investigate the various types of headlights for locomotives, and when the best one has been discovered, to require the use of this headlight on every rail road in the State. The tests have recently been under taken near Avon, Ind., to determine the relative efficiency of oil and electric headlights. The effect of op posing headlights, the distances at which obstructions on the track could be detected, and the effect of observ ing signals were investigated, but as yet no conclusions have been reached.
A new form of electro-magnetic clutch has recently been devised, in which a stationary electro-magnet is used to draw the clutch members together into frictional engagement. The magnet coil is placed between flanges formed on the two members of the clutch, and when it is energized it attracts the clutch members with sufficient force to permit one to drive the other. When the current is cut off, a spring serves to separate the clutch members. The advantage of this system lies in the fact that the magnet does not come in contact with the parts it actuates.

The Electric Railway Journal calls attention to the many problems which arose in modernizing the traction system of Bombay. As the average daily income of the inhabitants is but 25 cents, five-cent fares are out of the question. The fare is two cents for a seven-mile ride, while the average fare is one anna, or one and one-third cents. In order to withstand the ravages of insects, special varieties of wood had to be used in the cars and track system. Even the overhead system had to be modified so as to permit of the passage of the tall shrines used by the natives in their religious pageants.

Practically all the coal consumed in Brazil is imported. As a consequence the cost of fuel is very high and this has done a great deal to prevent the growth of manufacturing industries. However, advantage is now being taken of the water power of the ccuntry. A recent consular report points out the development of hydro-electric power systems around Rio de Janeiro, showing that many manufacturing concerns are changing from steam to electricity and it is hoped that the industrial development will be largely increased because of the greater advantages and the economy of using electric power.
The new articulated electric locomotives of the Pennsylvania Railroad for service in the New York and Long Island section virtually are two separate locomotives coupled together. The motive power comprises a pair of 2,000 -horse-power direct-current interpole motors, which are crank-connected to the driving wheels. The locomotives are required to start a 550 ton train on a two per cent grade, and must have a tractive effort of 60,000 pounds. Although a speed of sixty miles per hour was called for in the specifications, the locomotive now under test has made seventytwo miles per hour. The weight of the locomotive is 332,100 pounds.

SCIENCE.
Lieut. E. H. Shackleton, who returned from an Antarctic expedition early this year, after reaching a point within 111 miles of the pole, has been knighted by the King of England.
Arrangements will shortly be made by the Austrian government for the public sale of radium for medical and experimental purposes. The total quantity of radium which has been thus far recovered for scientific use throughout the world is estimated not to exceed a quarter of a pound.
The Harvard Observatory announces that a photograph of the spectrum of Morehouse's comet, taken on November 17th, 1908, with an eight-inch telescope, shows six broad, bright bands. These bands appear to coincide with the hydrogen lines zeta, epsilon, delta, gamma, beta, and the strong, bright band at wave length 464 to 473 , characteristic of spectra of the fifth type.
Tantalum is a "rare metal" of slight importance, the only practical use to which it is now known to be put being in making filaments for incandescent electric lamps. The efficiency of the tantalum lamp is greater than that of the carbon lamp, but somewhat less than that of the lamp with tungsten fila$n_{1} \in n t$. As more than 20,000 filaments of 20 candlepower can be made from a pound of tantalum, the market is not large. It is at present probably supplied by rich manganotantalates from western Australia. No tantalum minerals are known to have been produced in the United States in 1908, according to F. L. Hess, whose report on various rare metals forms an advance chapter of "Mineral resources of the United States, calendar year 1908," published by the Geological Survey. The tantalum used in the manufacture of lamps in this country is made in Germany and imported at a cost of $\$ 300$ or more a pound.
A great daylight meteor of October 6th was observed by many persons in various parts of England. The particulars to hand are not very definite, and it is scarcely possible to compute the real path of the object. From a comparison of about fifteen descriptions, W. F. Denning states in Nature that there seems little doubt that the meteor moved in a direction from south to north over Reading, Thame, and on to a terminaticn near Market Harborough. The radiant point was in Leo, and it is hoped that more observations of an exact character will be supplied. The sky was clear over a large extent of England, and hundreds of persons saw the meteor, though only a small proportion of that number have reported their observations. The great daylight meteor of 1900 , January 9th, was directed from Aquila, that of 1894, February 8th, emanated from Hercules. It is seldom that meteors appearing at such times can be suitably observed, as the sky does not afford any reference objects such as is furnished by the stars at night.
Before timber is subjected to preservative treatment it is customary to remove the bark. Unless this is done very thoroughly, however, patches of the inner bark will remain on the wood. Until recently, it does not seem to have been realized that this bark presented a very effectual hindrance to the penetration of creosote. The same thing was discovered by the man agement of one of the large creosoting companies in the South, and steps were immediately taken to see that every particle of bark was removed from piling and other timbers. While it is probable that the bark of all species is not as resistant as that of pine, it is not known how the different species rank in this respect. In the creosote treatment of timbers it is rarely that the entire stick is penetrated by the preservative. The value of the treatment consists largely in the creating of an exterior antiseptic zone around the untreated interior portion. If this outer zone be broken, the value of the treatment is to a large extent lcst.
Recent investigations by the United States Geological Survey have shown that oxygen, so essential to all life, forms in coal an impurity that is almost as injurious as the ash content. Oxygen and ash are of very nearly equal negative value, ash being probably a little more injurious in most coals. The calorific value of coals in general is indicated by the balance between the tetal carbon on the one hand and the sum of the two great impurities, oxygen and ash, on the other. The practical application of these statements appears in considering the effect of the exposure ot coal to the weather. The weathering of the lower grades, especially lignites, bituminous coals, and peats, is marked by the accession of oxygen, which is taken into combination. This increase of the oxygen content permits a calorific deficiency, which, on account of the high anticalorific value of oxygen, is often serious. It is possible that in many cases considerable increase of oxygen and consequent loss of efficiency are suffered by the lower-class fuels between removal from the bed and consumption; and it is probable that in the sub-bituminous coals, and more especially in the lignites, oxygenation begins immediately after the coal is blasted from the face in the mine.

SOMETHING NEW IN CONCRETE BLOGR MAKING. y m. h. huntina.

Of the many recent applications of concrete to the building industry in this country, few, if any, have attracted more attention than the process invented by a Des Moines, Iowa, man for the manufacture of enameled concrete blocks. A machine of gigantic proportions performs the many operations through which the block passes without the aid of the human hand, turning out 40,000 perfect blocks in each day of ten hours, each one an exact duplicate of every other in form and color.

The machine is 13 feet 8 inches in height, 17 feet in length, 6 feet in width, and weighs over 70,000 pounds. In the accompanying illustrations a man is shown stand ing beside the machine. This comparison gives a good idea of the machine's great size.

The process for the manufacture of the blocks, as before stated, is automatic from first to last. The raw material, including cement, sand, and gravel (or crushed stone), is first screened, and then workmen separate the aggregates into several sizes to eliminate voids and give added strength to the finished product.
The ingredients are then mixed dry, after which a sufficient quantity of water is added to bring the mixture to a proper consistency. This mixture is then fed into an agitator where it is kept under continual motion and permitted to flow into eight individual scale hoppers, each weighing the exact amount of material required for a single block. Then in unison these hoppers are dumped through receiving spouts into the molds which form the block, these being prepared in advance for the reception of this material.

While the above process is going on, a similar one for the preparation of the material forming the enameled part of the block is taking place in another part of the machine. This also starts by taking a dry mixture from individual bins, and measuring it automatically in a receptacle known as the reserve tank. At this time also the proper amount of coloring matter is added, so that blocks of a uniform shade may be produced.
Any color or combination of colors may be used; and no matter whether one, one hundred, or one thousand blocks are made, the same shade is produced in each one.

Water is next added after being automatically meas ured, and from the reserve tank the material is dis charged into a receiving tank, a part of the machine
proper with which are connected eight dipping cups conveying the material in a liquid form to the individual molds.
The molds are now ready for the body material, which has been in preparation as already described, and with the next movement of the machine an intimate association is effected between the two by the

a CONCRETE block machine weighing 70,000 POUNDS.

enormous pressure of $3,200,000$ pounds applied to produce perfect cohesion

The molds move forward until they reach the releasing section of the machine, where the blocks are ejected, eight at a time, upon a pallet and loaded intact by workmen upon a car especially constructed for the purpose

They are now conveyed to suitable storage, where they are allowed to season, no burning being required. Nature finishes the work by a process of crystallization, which gives each block a perfect surface without
danger of distortion, as commonly results from burning clay bricks.
The illustration shows the machine to contain a rotary carrier consisting of thirty mold frames, each containing eight individual molds. At each movement of the machine several of these molds are receiving material at various fixed points; one group the enameling material, one the body material, while a third is submitting to the tremendous pressure which unites the two. After the application of this pressure, the next motion delivers the blocks contained in one mold frame upon the pallet as described elsewhere.

Anyone familiar with the process of manufacturing clay brick will readily realize the tremendous saving of time and expense accomplished by this process of manufacture It has been estimated that the cost of sorting clay brick for quality and color is not less than $\$ 6$ per thousand. This work of course is entirely done away with, as the enameled concrete blocks are absolutely uniform as to size and shape, and there can be no variation in color.

While especially designed for the manufacture of blocks, this is not the only function of the machine. Tile of various shapes, sizes, and colors are also produced by it with equal facility.

Though not in general use thus far owing to the inability of the manufacturers at the present time to supply the demand, the machine has nevertheless received exhaustive tests, and in each has g :ven entire satisfac tion. As for the material it produces, there can be no doubt as to its becoming popular Our forests are rapidly disappearing, stone is prohibitive because of its expense, and the prospective builder turns with satisfaction to this comparatively new material, which recommends itself not only because of its cheapness, but because of its great lasting qualities.

A "DREADNOUGHT" OF 1863
[The correspondent who sends us the photograph of an engraving from which the accompanying illustration of the "Roanoke" is reproduced, believes that this United States warship is en titled to be considered as the prototype of the modern "Dreadnought." We doubt if any early vessel can be quoted as having a stronger claim to be regarded as the first warship of this type.-ED.]
To the Editor of the Scientific American:
In the battleships of the "Lord Nelson" class of 1906, the British had come to about the limit of their in termediate battery, which consisted of ten 9.2 -inch guns; these being substituted for the four 9.2 and ten

The frigate "Roanoke," subsequently to the civil war, was reconstructed at the Brooklyn navy yard. Her mastswere removed; her sides armored; and her broadside battery was replaced by an all-big-gun armament of six heavy guns mounted in three armored turrets. The correspondent who sent us the above illustration suggests that she was the first of the "Dreadnoughts."

6-inch of the "King Edward VII." class launched three years previous. In this same year they also launched their first "all-big-gun" ship, the "Dreadnought," by abolishing the 9.2 -inch guns, substituting in their place six 12 -inch guns, and adding these to the four 12 -inch guns, which the other two classes already had, making ten in all, and placing them in pairs in five turrets. This is the ship that in three years has revolutionized the navies of the world, all of whom are now building this class known as "Dreadnoughts." But was not this idea of the "all-big-gun" ship taken from one that was first produced in the American navy?
. The definition of a "Dreadnought," as I understand it, is an armored ship with a high freeboard, carrying only guns of the largest caliber in use, these arranged on one deck in pairs and in armored turrets; the number of turrets not being restricted necessarily to five, can be one more or one less according to the tonnage of the ship.
In 1852 there was a steam frigate built by the United States at the Gosport navy yard at Norfolk, Va., and called the "Roanoke." She was 265 feet in length, with a breadth of $521 / 2$ feet, and a depth of 26. Her machinery was built by the Tredegar Iron Works at Richmond, Va., and consisted of a pair of trunk engines with cylinders 72 inches diameter and 26 inches stroke.

This frigate was anchored in Hampton Roads at the time of the battle between the "Monitor" and "Merrimac." After this fight, which introduced to the world the revolving armored turret with its pair of heaviest guns afloat (15inch smooth-bores) she was taken to New York and razed at the Brooklyn navy yard. Her masts and sails were removed, her sides were armored, and she was equipped with three Ericsson turrets at the Novelty Iron Works in 1863. Each of the turrets contained a pair of the heaviest guns in use, and they were placed fore and aft on the center line of the vessel, which is the arrangement of the turrets on American "Dreadnoughts." The vessel had no masts and no secondary or auxiliary battery, only the "all-big-gun" armament.
It seems to me that the "Roanoke" complies in every way with the definition of the modern "Dreadnought"; that the idea of the "Dreadnought" was first developed in her; and that she was the first "Dreadnought"-or in other words, the great "Dreadnoughts" are developed "Roanokes." Their arrangement of guns, armor, and turrets is from her. The "Roanoke" had no military or skeleton masts or rapidfire guns, these at that time not being necessary, as wireless telegraphy and torpedo boats were not then known.
The American navy had the first steam vessel of war and the first "Monitor," and should it not be credited with the first "all-big-gun" ship, the "Roanoke," of which the "Dreadnoughts" are but an enlargement of the same idea? I inclose a photograph of the "Roanoke," taken from a large lithograph made for the Navy Department, and presented to me by the

Assistant Secretary, G. V. Fox, with a number of others in 1863.

William Boerum Wetmore
Allenhurst, N. J.
POWER INDICATOR FOR INTERNAL-COMBUSTION ENGINES.
A strikingly novel instrument, the invention of Prof.

Interior details of the indicator.

N. Monroe Hopkins of the George Washington University, is pictured in the accompanying engravings. The instrument is a combination power indicator and precision speedometer without a flexible shaft, and when the equipment is installed upon a stationary engine, automobile, motor boat, or aeroplane, shows what the cylinders of the engine are doing separately or together; which, if any, cylinder is missing; the power of the engine and the conditions under which it is doing the most useful work; how to adjust the carbureter perfectly when the engine is idle as well as under load; speed with absolute precision from 1 to 60 or 100 miles per hour, and mileage; and the revolutions per minute of the propeller in aeroplane and marine work.

The instrument is an original application of the fact.
hat an electric current is produced by the simple heat ing of the junction of two dissimilar metals, and the magnitude of the current so generated is proportional to the junction temperature.
Ordinary thermo-couples as evolved by Becquerel, and used for general temperature measurement in the arts and sciences, would never "live" to operate under the high temperature and peculiar chemical conditions in a gasoline engine cylinder, because they would become so heated as to preignite the charge and cause the gas engine to buck, hitch, or back-fire, and in addition would become brittle and drop apart, either through oxidation or the absorption of carbon, after a short period of use. Actual temperature measurements by means of thermo-couples or thermometers could not be made in gasoline engine cylinders.
Prof. Hopkins's thermo-couples are of original construction and are designed to give an idea of the temperature in a gasoline engine without actually attempting to measure it. His instrument faithfully and continuously shows, by modified temperature readings, the working conditions of gasoline engine cylinders. The "thermo-plugs" give the same "electrical pressures" after 50,000 miles use on an automobile as when first applied.

One of the illustrations shows a sectional view of a combination firing and indicating plug. The thermo-couple may be seen at A. It consists of special alloys drawn into wires surrounded by macsive metal tubes closely fitting the wires and adjustably receiving them. These metal tubes are connected at their upper ends through the agency of heavy metal lugs connecting with the binding posts, and dissipate the heat by conducting it at a predeter mined rate away from the tip of the thermocouple within the engine cylinder to the binding posts without. All plugs are calibrated and are interchangeable. The adjustment in such plug being obtained by sliding the thermocouple wires through the heavy metal tubes to a greater or lesser distance into the engine cylinder. Stuffing boxes screw on to the top of the metal tubes, making a gas-tight joint between the thermo-couple wires and said tubes. In practice they protrude beyond the lower end of the metal tubes about $3 / 64$ of an inch.
An engine should have these specially constructed thermo-couples in each spark plug. They may be selectively or collectively connected with an electrical indicating instrument which gives an accurate reading of the current delivered by one particular cylinder or by the combined cylinders if the spark plugs be connected in series.
There is a switch on the instrument for obtaining separate or combined cylinder indications. The instrument has two scales, the upper a speed scale and the lower a power scale. On the switch there is also a speed contact S which connects a small magneto-dyna mo with the indicating instrument and electrical current is furnished in direct proportion to the speed at which the dynamo is driven. In addition to this com-

bination speedometer and dynamometer, Dr. Hopkins has also invented an electric speedometer indicator and tachometer of great sensitiveness and accuracy.

THE SOLAR AND LUNAR ECLIPSES OF 1909.

 by prof. frederic r. honey, trinity college.The intervals of time between the dates of the eclipses of the sun and moon this year, which occur alternately, illustrate the effect of the rotation of the plane of the moon's orbit in a direction contrary to her orbital motion. If this plane moved parallel to itself, there would never be more than two eclipse seasons in the year; and eclipses would occur when the earth would be at or near opposite points in its orbit, at average intervals alternately of a little more and a little less than six months. This inequality, due to the eccentricity, would evidently disappear if the line of nodes were always parallel to the axis of the orbit.

Fig. 1 illustrates the rotation of the moon's orbit between the months of June and December this year. The lines $n n^{\prime}$ and $N N^{\prime}$ are drawn parallel respectively to the line of nodes ${ }^{\bullet}$ for these months. The angle included between them is about 9 degrees. The arrow A shows the direction of rotation of the orbit; the arrow a, that of the moon's motion. The rotation of the line of nodes into the position $N N^{\prime}$ obviously will bring it into coincidence with the radius of the earth's orbit at an earlier date than the line $n n^{\prime}$, which will coincide with the orbit radius when the earth has reached the opposite point in its orbit.
The eclipses of both the sun and moon in June occurred when the moon was in that part of her orbit which was above the plane of the ecliptic. The eclipses in November and December will occur when the moon will be below that plane. In order to show this clearly, it is necessary to represent the moon's orbit on a scale very much greater than that of the earth's orbit, only a portion of which, including perihelion and aphelion, is plotted. The position of the earth is shown for the dates of the eclipses on June 3 d 13.3 h and 17 d 115 h ; on for November 26 d. 20.75 h ., and December 12 d .8 .15 h ., Greenwich mean time. Since the diameter of the moon's orbit is less than a half a million miles, it would be correctly represented in the plot by a diameter a little less than a third of the linear eccentricity of the earth's orbit $(=e)$. The dimension has been magnified forty times, in order to show the earth's and moon's orbit radii and the line of nodes clearly, which would be indistinguishable by the smaller scale. It should be noted that in magnifying the moon's orbit, the relation between these lines is not disturbed, that is, the angles included between them are preserved. In the drawing the diameter is enlarged sufficiently to show that on June 3rd, the date of the first lunar eclipse this year, when the earth's and moon's orbit radii were projected in the same line on the plane of the ecliptic, the monn was approaching the descending node n^{\prime}, and was above the plane of the ecliptic. On June 17th, the date of the solar eclipse, the plot shows that the moon had recently passed the ascending node n; but her distance was so far from the node and above the plane of the ecliptic, that while the eclipse was central, the moon's shadow was projected on the earth very near the north pole.
On November 26th, the date of the total eclipse of the moon, the plot shows that the moon will be below the ecliptic and approaching the ascending node N. On December 12th, the date of the partial eclipse of the sun, the moon will be below the ecliptic, and will have recently passed the descending node N^{\prime}. The distance below the ecliptic will be so great, that the eclipse will be visible principally in the region of the south pole.

The enlarged plot of the moon's orbit shows the position of the moon at Greenwich noon for each day from November 21st to December 18th; and also at the dates of the eclipses. On November 26 th , when the moon will be near perigee, P, and very nearly a minimum distance from the earth, she will come wholly within the earth's shadow. On December 12th the enlarged plot shows more clearly the great distance between the moon and the node at the time of the eclipse of the sun. These plots may be compared with those printed in the Scientific Ameriqan for May 15th, 1909 ("The Lunar and Solar Eclipses in June, 1909"). Figs. 2 anl 3 are projections of the earth on a plane parallel to its axis, and perpendicular to the plane of the ecliptic. Its trace on the plane of the ecliptic drawn through the sun evidently intersects the earth's orbit at points which the earth reaches at the dates of the

direction in which eclipses will be seen.

occurred in the latitudes of places on the earth. It has long been suspected by astronomers, however, that minute changes of latitude were taking place, but it is only during the last quarter century that the methods of observation and calculation have reached that degree of refinement necessary to detect these small changes.
In 1884 and 1885 Dr. Küstner, astronomer at the Royal Observatory of Berlin, made a series of observations upon certain stars for the purpose of determining the constant of aberration-the maximum apparent

ENLARGED PLOT OF MOON'S ORBIT.

displacement of a star due to the finite ratio between the speed of the earth in its orbit and the velocity of light. One of the quantities used in the reduction of these observations is the latitude of the place of observation. Dr. Küstner found his results to be discordant, much more so than he had good reason to believe that they should be from the known care and
precision with which the observations were made. Upon investigation it was found that these discrepancies could be almost entirely explained away by assuming a change in the latitude. Dr. Küstner, therefore, in 1888 , made the bold announcement that the latitude of the Berlin Observatory had changed during the period over which his observations extended.

This announcement aroused widespread interest, and steps were immediately taken by the International Geodetic Association to test the reality of the announced variation. Through the co-operation of the observatories at Berlin, Potsdam, Prague, and Strasburg, observations for latitude were begun in 1889 and carried on continuously over a year. These observations agreed in showing a minute but appreciable change in the latitude. In order to test the matter still further, an expedition was sent in 1891-2 to Honolulu, and observations for latitude were made there simultaneously with others made at the observatories just named. As Honolulu is on the opposite side of the earth from Europe, it is seen at once that if the latitude were increasing at the European observatories, a corresponding decrease should be shown at the Honolulu station. The results came out as expected, and this was generally accepted as a complete demonstration of the reality of this phenomenon.
western South America, eastern and northern Asia, and Australia.
In Fig. 3 the arrow shows the direction in which the eclipse of the sun will be seen. The limit of visibility will include a very small part of Australia, New Zealand, Tasmania, and the South Shetland Islands.

Why the Pole Shifts.

It is well established that, at least during historic times, no changes of any considerable magnitude have
cies could be al
ing a change it
in 1888, made
tude of the Ber
the period over
This announc be seen, Fig. 2, is shown by the arrows. It will be visible at Washington; the beginning visible generally in North and South America, and northeastern Asia the ending generally visible in North America, north

ROTATION OF MOON'S ORBIT BETWEEN JUNE AND DECEMBER

What is the cause of this wandering of the Pole: In an article by Dr. Sidney Dean Townley of Stanford University, this explanation is given: In 1765 Euler, a famous Swiss mathematician, demenstrated, as a proposition in dynamics, that if a free rigid oblate spheroid rotates about an axis which differs slightly from the axis of figure, or shortest axis, then the axis of figure will revolve about the axis of rotation in a period the length of which will depend upon several factors. He computed that, if the as sumed conditions obtained for the earth, then the period of revolution of the axis of figure above the axis of rotation would be 306 days. Obviously, however, the earth is not rigid; the oceans are quite plastic and the ground itself is possessed of some elasticity. Prof. Newcomb computed some years ago that, if we assume the earth as a whole to possess the rigid ity of steel, then the period of revolution of the one axis about the other would be 441 days, as against 306 days found by Euler on the assumption that the earth is perfectly rigid. The actual observed period is fourteen months, or 427 days, and the legitimate conclusion to be drawn is that the earth as a whole is somewhat more rigid than steel-a conclusion that agrees with that derived by Lord Kelvin and others from entirely different considerations.
Now the question arises, Why does the earth not rotate upon its shortest axis? The explanation is simple. If the earth ever did rotate upon its shortest axis it could not continue to do so because of the shifting of matter upon and within the surface. Winds, rains, rivers, and ocean currents are ceaselessly transporting matter from point to point, and during the winter great masses of snow and ice ac cumulate in the temperate and frigid zones only to disappear again in the summer. Although these effects will, to a large extent, neutralize each other, the sum total can not be other than to produce at least a theoretical lop-sidedness to the earth; and as soon as this takes place there must be a shifting of the axis of rotation. The time of revolution of the one axis about the other could be accurately computed if the exact form of the earth, the structure of the earth's interior, and its coefficient of elasticity were known.
In addition, there are other phenomena, namely, volcanoes and earthquakes, through which considerable quantities of matter may be displaced. That the amplitude of the polar motion might be affected by earthquakes was pointed out by Prof. Milne ten or fifteen years ago and a French scientist has more recently compiled a table showing the number of severe earthquakes each year and the amplitude of the polar displacement. A rough proportionality between the two seems to exist; that is, the greater number of earthquakes each year, the greater the amplitude of the polar displacement. Such results, however, are to be taken with several grains of allowance. The term "severe earthquakes" is rather indefinite and by modifying the definition quite a variety of results may be obtained from the given data. It might be pointed out that in 1906, the year of the great earthquakes in California and Chile, the amplitude of the polar displacement was small.
We have then a rational explanation of the phenomenon of the variation of latitude. The axis upon which the earth rotates is not in exact coincidence with the
shortest axis; such being the case, according to the principles of dynamics, the axis of figure must revolve around the axis of rotation, giving rise to the changes of latitude. But on account of the changes incessantly taking place in the distribution of matter upon the earth's surface, and perhaps also within the surface, the amplitude of the polar displacement, and perhaps the principal period of revolution of the one axis about the other, are changeable, the changes taking place in an undetermined way.
In connection with this explanation we should not lose sight of the fact that all the material moved through meteorological, volcanic, and seismic agencies is probably almost infinitesimal as compared with the total mass of the earth, and no one has as yet shown that the shifting masses are sufficient in magnitude to account properly for the observed annual and other unexplained components of the polar motion.-Abstracted from the Popular Science Monthly.

An International Sport Exposition.
An exposition devoted to sports and games is to be held in Frankfort-on-the-Main in 1910. Frankfort is annually the scene of many sporting contests, for which reason the selection of the city for the purpose of an international exposition is certainly wise. An executive committee has been formed, the first task of which was to give the organization its name, which rings imposingly "Verein Internationale Ausstellung fuer Sport und Spiel." The exposition will be divided into the following groups: 1. Horses and vehicles (harness, riding and driving equipment, stables, horse breeding and care). 2. Automobiles and motor-driven vehicles. 3. Turf sports, such as gymnastics, fencing, open-air athletics (tennis, football, golf, handball, polo, cricket, gymnastic apparatus, weapons, etc.). 4. Aquatic sports (rowboats, sailboats, motor boats, swimming, and fishing). 5. Winter and Alpine sports (skates, skis, snowshoes, sleds, huts, climbing outfits). 6. Hunting (guns, sportsmen's apparatus, stuffed animals). 7. Aerial sports (free balloons, dirigible airships, flying machines, models, aeronautic instruments). 8 . Tourists' exhibits, such as photographic and optical apparatus (charts, guide books, history and literature of traveling, telescopes, etc.). 9. Application of sport to therapeutics (gymnastic apparatus, life-saving devices, transportation of invalids). 10. Sporting outfits of all kinds. 11. The artistic side of sport. 12. Toys. 13. Miscellaneous.

A warà ố a Medal for the Discovery of Bakelite.
At the second regular session of the New York Section of the American Chemical Society, held at the Chemists' Club, 108 West 55th Street in this city; on the evening of November 5th, Dr. Leo H. Baekeland, president of the Electro-Chemical Society, was awarded and presented with the Nichols medal for his papers on: "The Synthesis, Constitution, and Industrial Application of Bakelite" and "Soluble and Fusible Resinous cation of Bakelite" and "Soluble and Fusible Resinous
Condensation Products of Formaldehyde and Phenol." Condensation Products of Formaldehyde and Phenol."
In accepting the medal Dr. Baekeland expressed his thanks for this expression of regard for his work, and alluded feelingly to the friendly co-operation and aid he had received from the fellow members of the sec tion. He then exhibited several industrial applications ot the new compound bakelite, and made an experi mental comparison of the resiliency of a ball of bake lite the size of a billiard ball with an ivory billiard ball. A stand three feet high was set upon the lec ture table. The ivory ball was then dropped from the upper side of the stand to the table, the height of its rebound was noted, and the length of time of the rebound until it came to rest, which was six seconds, by the use of a stop watch. The ball of bakelite passing through the same height to the table rebounded at least six inches higher and came to rest in ten sec onds, showing much greater resiliency than ivory.
Bakelite is used very successfully in the manufac ture of electro-magnet spools, and is claimed to be superior to gutta percha in that it will stand a greater degree of heat, in the event of a short circuit.

The Current supplement.

The opening article in the current Supplement, No. 1768, deals with Henry Farman's new biplane. An ex cellent picture of the machine with Farman seated in it is presented. The first installment of an article on bakelite, a new composition, is given by L. H. Baekeland, its inventor. Samuel K. Patteson writes instructively on the measurement of humidity. The restructively on the measurement of humidity. The re-
lation of Charles Darwin to Mendelism is set forth by lation of Charles Darwin to Mendelism is set forth by
Dr. A. E. Shipley. Recent models of superheated steam Dr. A. E. Shipley. Recent models of superheated steam
locomotives are described and illustrated. An illustrated description of the fast turbine yacht "Winchester" is published. Major H. L. Hawthorne critically points out the advantages and defects of balloons and dirigibles in war. Mr. Snowden B. Redfield concludes his article on the making of automobile tires. Hervey J. Skinner tells how tar is applied to the surface treatment of roads. The usual electrical, engineering, and trade notes ànd formulæ will be found in their accustomed places.

Corxeqpandence.

fighting power of the "inflexible."

To the Editor of the Scientific American:
May I call the attention of your correspondent, Emerson B. Manley, whose letter appeared in your issue of October 23rd, to the fact that the "Inflexible" is not a sister ship of the "Dreadnought"? The "Inflexible," despite the number and power of her guns, is not rated as a battleship, but belongs to the cruiser class.

In an engagement between such a ship and a battleship carrying four 12 -inch guns and a powerful secondary battery of 8 's and 7 's, it is most improbable that the ship of the "Inflexible" type would engageand her excessive speed would give her the range de-cision-at such a range that her enemy's secondary cision-at such a range that her enemy's secondary
battery could be effective. Her preponderance in big gun power-eight 12's against four-would enable her to demolish the secondary battery before the 8 -inch and 7 -inch guns could get a single effective shot home.
M. LaTouche Thompson.

St. John's Rectory, Manitou, Man.

WHY WATCH SPRINGS BREAK.

To the Editor of the Scientific American
Being an old subscriber to your most valuable paper, I take the liberty of writing you regarding the unusual, or I should say peculiar, action_of main springs in watches. My father, an horologist of over fifty years, and I, who learned the trade from him, have had some, as we think, remarkable experiences in the main-spring line. We think climate has much to do with their breakage; but if a watchmaker with sweaty hands handles a spring, there will be trouble. Also one who uses gasoline or any of the similar fluids will have the same trouble.

Our trouble has been mostly in the season when electric storms prevail, or a sudden change of temperature. We always advise our customers not to put watches on a marble dresser or any cold surface, but leave them in their pocket. The temperature in the vest or other garment changes gradually, and thus does away with any sudden expansion or contraction. We have been in the Mississippi Valley for many years, and our experience has been that, specially during the fall and spring seasons, during thunder storms we have more trouble with main springs. Sweaty hands do no good to a main spring. Tissue paper, in our experience, is the proper thing to wipe a spring with. May be slightly oiled. My father has been very successful int that line of watch repairing.

Natchez, Miss.
F. T. Bessac, M.O.

RAILWAY MOTOR CARS.

To the Editor of the Scientific American:
In your last issue I notice that you are to have a special issue on the middle West. I wish you would call attention through your valuable magazine to the need of some kind of a motor car that will run on railway tracks. It should be an independent motor car, run by its own engines. There is an opening for thousands of miles of so-called interurban railways in Iowa and other middle West States, where it would not pay to build an electric railway iine on account of the large expense; but if some economical and reliable form of independent motor car could be perfected, such cars could be used for passenger traffic, and small steam locomotives for freight cars, and such roads would pay well. The track should be built on modern lines, with easy grades and curves and independent right of way, so that trains and cars can make good time for passenger service and can also handle freight cheaply, by use of regular freight cars from the steam roads, and thus would be valuable feeders and distributers for the steam roads, where branch steam lines would hardly pay. Such motor cars for passenger service should also be used on many branch steam railway lines, where better passenger service is badly needed, and where steam passenger trains are too expensive to run often enough to give good service.
Motor cars of this sort to use gasoline for power have been perfected and are in use in several places, but they are gradually being abandoned on account of the constantly increasing cost of gasoline. It seems that little or no progress is being made in perfecting such motor cars to use alcohol or kerosene. Might not the producer-gas engines for small boats requiring less than 500 horse-power be adapted for these motor cars? In your issue of September 18th, 1909, on page 191, you made mention of a very remarkable demonstràtion of the possibilities of producer-gas engines of this sort by Mr. H. L. Aldrich, using pea-anthracite, which at a cost of $\$ 4$ per ton is stated to be one-tenth the cost of operation of a gasoline engine with gasoline at 15 cents a gallon, to produce equivalent power.
For a long time it has seemed to me that there is an excellent opportunity for invention in the production of such an independent motor car, operated by some power other than gasoline. Some cars of this sort are in apparently successful operation which generate electric power by means of a gasoline engine,
but it seems that in so roundabout a system, there must be a large waste of power.
Equipped with motor cars of the sort suggested, such railways could be built much cheaper than trolley lines, and also operated much cheaper, until the business grows to a point where it would pay to change to electric power. The perfecting of such a car would mean the building of many miles of new railways, and possibly the cars would also be adopted in time by the steam railways to give better local passenger service. Many good towns in Iowa are made "whistling stations" by the steam roads in their mad race for through business.
Lack of better railway facilities, and lack of many miles of new railways that should have been built long ago, are factors that are holding back the development of a great deal of this middle West country.
Steam railways want through business, long hauls, and great tonnage; electric railways are too expensive as yet in many places; if a motor car that is light reliable, and not expensive to operate, can be per fected, using producer-gas engines, there is no question but that there is a great opportunity and opening for such a car, as above suggested.
I trust that you will deem this communication as important as the number of our ancestors, for instance. Belle Plaine, Iowa.
h. R. Mosnat.

ANOTHER EVIL OF DEFORESTATIONN.

To the Editor of the Scientific American:
One of the recognized evils produced by the woodmen who spare no tree (but leave where once the lord of the forest stood, the earth all bleak and bare) is the reduction in the yield of water power. But it seems-that the fact that deforestation also increases the cost of what water power you do get, has never been mentioned.
Suppose that the flood level of a normal river is such as to require a 25 -foot dam for power purposes. After the valley has been skinned of its foliage, the flood level will be so much greater that a dam 30 feet or more in height will be necessary.
As the cost of dams increases with the squares of the heights (because the higher up the thicker), the 30 -foot dam will cost nearly fifty per cent more than the 25 -foot, and yet it will yield less power than the 25 -foot would yield in the normal river, because de forestation has diminished the flow of water in the dry season.
The yield in the dry season is the available yield, because the larger yield at other seasons is of little value, for almost all users of power want power al the year around.
It is true, as I showed in my article in Cassier's Magazine of September, 1909, that if we would use both turbines and current motors in the same dam, high dams would not be necessary in many rivers; out this truth may be disregarded, because it will probably be a hundred years before the system there mentioned will meet the right man-the man who will in troduce it.

Sylvester Stewart.

Brooklyn, N. Y.

The Death of Theodore R. Timby.

Theodore R. Timby died on November 9th, 1909, at Brooklyn, N. Y. He was chiefly known because of his claim to having invented the revolving turret of the famous "Monitor," and that, accordingly, he should have received the fame history accorded to John Ericsson. For more than forty years he had tried to collect $\$ 500,000$ from the United States for two inventions, one the revolving turret on warships and the other a device that points and fires heavy guns with electricity. Other things which Timby invented, and from which he obtained both recognition and financial reward, were a floating drydock, a system of coast defense, and a turbine wheel which proved especially successful.

A Book of Fourth-Dimension Essays.
The subject of the fourth dimension seems to have aroused so much interest among the readers of the Scientific American that we have decided to publish in book form the prize essay, the three essays that received honorable mention, and about sixteen of the best essays which were submitted in the recent Fourth Dimension Contest. The entire collection will be edited by Prof. H. P. Manning, who will prepare an introduction of considerable length, in which the subject of the fourth dimension will be simply and lucidly discussed. The book will be ready about the latter part of December.

The meeting of the British Association in Winnipeg on August 25th, is the third which has been held in the Dominion. The first Canadian meeting took place in 1884 at Montreal; the second thirteen years later at Toronto. The fact that the third was held at Winnipeg may be regarded as significant of the enor mous development of the West during the past few years.

HOW LEMON OIL IS MADE

 by frank n. bauskettWe all know that the flavoring extracts used in this country are of domestic manufacture, and that the two principal flavors are vanilla and lemon, but few have a knowledge of what actually constitutes these extracts. To quote from the standards laid down by the United States Department of Agriculture, a flavoring extract "is a solution in ethyl alcohol of proper strength of the sapid and odorous principles derived from an aromatic plant, or parts of the plant, with or without its coloring matter, and conforms in name to the plant used in its preparation." Peach, strawberry pineapple, and some other flavoring extracts are always artificial, it being impossible to make an acceptable extract from the fruit itself, and therefore cannot be, in accordance with the United States standard, termed flavoring extracts. However, very little flavoring extract is used outside of vanilla and lemon, as at least ninety-five per cent of the extracts manufactured are of these two varieties. The government through the Agricultural Department has delved deeply into the methods of the manufacture of flavoring extracts, but the story as to how the lemon oil is made from which the extract is marufactured is the more interesting.
The oil of the lemon is the essential oil secreted by cells lying near the outer surface of the rind, and the world's supply of this oil comes from the island of Sicily in the Mediterranean Sea. This island is the great est lemon-producing region in the world, and all parts of the world receive their supply from that island. The oil for making the extract is produced as a by-product of the crop from the culled lemons -those which for any reason will not stand shipment. For obtaining the lemon oil, there are three processes, all of which are extremely crude. There are two processes known as the sponge methods, and one known as the machine method. In the sponge methods the lemons are cut in pieces by children and women, the cheapest form of labor. The work is carried on with great rapidity, the knife being started through the rind and the fruit cut in two and thrown into storage tubs by one motion of the arm. The tubs containing the halved lemons are dumped into shallow troughs, where the pulp is separated from the skins. For this work older girls and women are employed, and so expert do they become, that in the twinkling of the eye a spoon-shaped instrument is inserted between the pulp and rind, and with one twisting motion the pulp is scooped cleanly from the rind and deposited in the trough. The rinds are thrown into baskets to be conveyed to the spongers. However, before the sponging process is begun, the baskets of rinds
shaped, into which the remon rind is inserted with one hand, the other being used to press the sponge, the weight of the whole body being thrown into the motion. The lemon skin is then turned partly over and the pressure renewed. Each half rind is handled separately, receiving three or four pressings. It requires about two thousand of these half rinds to produce one pound of oil, the exact quantity depending upon the size, ripeness, and freshness of the lemons. The green fruits produce more oil than the ripe. A good workman can squeeze out two or three pounds of oil a day, for which he receives about fifty cents. This oil is worth in quantities about one dollar a pound. But for making lemon extract, but a small

oil by the same means, and finally filtered through felt bags. The residue left in these bags is collected for several days, whnn the bags are placed under a hand press and freed from the last traces of oil. What is known as the three-piece method differs from the one just described mainly in the preparation of the skins before pressing. The rind of the fruit is pared off in three slices, leaving the greater part of the pulp with some little skin at the ends. This paring, as a rule, is done by boys or men, and the skins are washed and soaked as in the two-piece process. Much more pulp is left adhering to the skins in the three-piece method, and naturally more juice is mingled with the oil than by the other method. The claim is made, however, that oil made in this way filters more rapidly and remains clear longer.
The use of machines in produc ing lemon oil is confined to the Province of Calabria in Italy. But the oil manufactured in this way forms but a small percentage of the total product. It has, however, a deeper color than the oil pressed out by hand, and is used to deepen the color of the latter product. The machine for extracting lemon oil is about as crude as the hand process. The fruit fed to this machine must be of uniform size and in small quantities. The lemons are placed in a receptacle between the grinding disks, the lower of which is stationary, while the upper one is turned by an arrangement of wooden cogs against the side flywheel. The pressure exerted by the weight of the up per disk is partly compensated for by the arm at the rear, which is also used to raise this part of the machine, so that the fruit may be placed in position and the pulp removed. A bell rings after a certain number of revolutions, and the machine is stopped to remove the squeezed rinds and to reload the receptacle. Indeed, this machine method of oil extraction is no faster than the sponge processes fol lowed by the inhabitants of the island of Sicily.

Sand Lime Brick.

According to the U. S. Geological Survey, the sandlime brick industry is a comparatively new one in the United States, having had its beginning in Michigan City, lnd., in 1901. Its progress was slow at first, the value of the production in 1903 being only $\$ 155,040$. From that time the value increased each year until 1907, when the maximum of $\$ 1,225,769$ was reached In common with other building materials there was a decrease in 1908 in the production of sand-lime brick to $\$ 961,226$. The number of plants reporting

1. Two-piece method of extracting the oil. 2. A Calabrian lemon-oil machine. 3. Interior of Sicilian lemon-oil factory. 4. Removing the pulp or the fruit
are immersed in water for four or five hours. The work of extracting the oil is done entirely by men, as the task is quite a laborious one. These workers sit upon low stools, the skins being dumped upon the floor near them, and a basket for the exhausted skins set in a convenient place. A small earthenware bowl is placed on the floor between the workman's knees. This bowl has at one side a lip, directly beneath which is a concave depression, which serves to hold back the residue when the oil is poured from it. Across the top of the bowl is placed a round stick about one inch in diameter, notched to fit the widest part of the vessel. Across this stick is hung a flat sponge surmounted by another thicker one, and finally a third, which is cup-
portion is required. The method of manufacture is simple. The oil is dissolved in strong alcohol in the proportion of five parts oil and ninety-five parts alcohol; it is then filtered and bottled. An idea of the small proportion of the oil required may be had when it is considered that five barrels of the oil and ninety five barrels of alcohol would make just one hundred barrels of pure lemon extract.
By the two-piece method only a small quantity of water is expressed with the oil, and the process of separation is very simple, the bowl being tilted forward until the oil can be blown from the surface over its edge into another receptacle. The water and residue remaining are separated from the traces of
made a rapid growth from 16 in 1903 to 94 in 1907, with a slight decrease in 1908 (to 87).
Common, front, and fancy brick were manufactured from sand and lime in 1908. The average price per 1,000 for common brick was $\$ 6.63$, as against $\$ 6.61$ in 1907 , and $\$ 6.71$ in 1906 ; for front brick the price was $\$ 12.16$, against $\$ 10.96$ in 1907 , and $\$ 10.42$ in 1906 . In 1908 common brick composed 83.57 per cent of the value of all bricks, and front brick 15.37 per cent.
Thirty States reported both in 1907 and 1908, Alabama dropping out of the list in 1908 and Montana appearing. Of the individual States Michigan, as in 1907, was the leading State in 1908, reporting bricks valued at $\$ 138,809$. Florida was second in both years.

ARTILLERY FOR AIRSHIP ATTACK

by the paris correspondent of the scientific amerioans.
After having carefully studied the problem which is presented by the conditions of firing at great heights and at a large angle such as is required for use with airships, aeroplanes or balloons, the Irupp firm has brought out three general types of cannon, each of which is adapted for a special use. In the first place we have the more simple type of cannon with field mounting, while a second type is constructed with a view of being placed upon a motor car. For use on shipboard they design a third type which is represented in our engraving. In the second and third cases, the cannon is designed to be rapidly rotated in all directions by the use of a central pivot base such as is usually installed on vessels and for coast defense use. On the other hand, the field gun has its wheels arranged so as to turn upon pivots, which allows of placing the wheels in the crosswise direction in the position here shown. In order to give effective results it is found that the angle of elevation must be at least 70 degrees, and the field gun is designed to reach this angle. The automobile and ship cannon will, however, make a greater angle, the maximum being for these two types as high as 75 degrees. In all these cases a rapid rate of firing is given by an automatic opening and closing of the breech. The caliber has been reduced as much as possible, as also the weight of the projectile, while the long bore gives a high initial speed to the shot and diminishes the time required to attain the mark. Owing to the lessening of the caliber, greater lightness is obtained, and this is of service especially in the field and the automobile types of gun.

Sighting is carried out in the most efficient manner by the use of an appropriate form of sighting telescope in combination with a general finder which covers a wider range of field. There is also a range-finder by which the distance is first obtained, and afterward the indications are directly given so as to be able to point the gun for different heights of the airship without loss of time, and thus the use of firing tables is dispensed with in all these cases.

The question of the kind of shot which is best adapted for firing upon balloons or airships is of prime importance; and this matter has been made the object of a number of experiments. It is recognized that shrapnel will penetrate the balloon envelope, but without doing much damage at least of an immediate nature, seeing that the holes are closed again for the most part by the internal pressure of the gas, so that the loss of gas is not a rapid one and the airship is able to reach a place of safety in the majority of cases. It is found that the most effective form of projectile is a special kind of grenade, which is designed to explode in the interior of the balloon and to bring about ignition of the gas. The new projectile designed by the Krupp firm is intended to accomplish this, and at the same time the path of the projectile from the time it

Destruction of a captive bal loon by a special form of aeronautic grenade.

The 4.2-inch Krupp gun for aeronantic attack, on a naval mount.

Bore, 2.6 inches: projectile, 9 pounds; velocity, 2050 f. s.i maximum range, 28,550 feet.
Field gun for airship attack.
leares the gun can be followed by the use of a special smoke producer carried on the shot. By observing the trail of smoke the gunner learns whether the shot comes near the mark. When the projectile leaves the gun, the smoke producer has been set worlring by an appropriate device. At night the path of the shot is still followed by the light which the smoke producer gives out. When it penetrates the envelope, a very sensitive device causes the detonation of the grenade.

In the case of the field cannon, which has a 6.5 centimeter bore (2.6 inches), the weight of the gun itself is 775 pounds and that of the chassis 1,150 pounds, making a total of 1,925 pounds for the cannon when prepared for actual service. The gun can be turned about through a complete circle, and has a maximum vertical angle of 70 degrees. The weight of the projectile for this type is 9 pounds. The initial speed of the shot is 2,050 feet per second. With the field gun it is possible to cover a maximum range of 28,550 feet, and a maximum height of 18,800 feet.
Of a heavier build than the former, and also of greater range, is the second type of gun of 7.5 centi meter (3 inch) caliber, which is designed to be mounted upon a heavy motor car, as we represent it in our engraving. Like the former, it is provided with hydraulic recoil brake, and in the present case there is used a middle pivot. For elevating and lowering the gun through the required range there is used a double-toothed sector which is driven by pinion and crank. A special arrangement is used for the rotation, by which a slow movement is obtained, but a quick rotation may also be given by a more rapid mechanism when it is needed to turn the gun rapidly into any desired position. It is to be noted that, ow ing to the high speed at which the airships move, such quick movements are one of the features which need to be especially designed in the case of guns for bal loon firing. The weight of the gun itself, or 990 pounds, combined with the weight of the support, 1,550 pounds, gives a total weight of 2,540 pounds for this type of gun. We have here the maximum angle which is reached in the Krupp eannon, or 75 degrees. The weight of the projectile is 12 pounds, and the initial speed 2,060 feet per second. The maximum range is about 30,000 feet, and the greatest height about 20,000 feet. As regards the automobile car which is designed to take the present cannon, its total weight (exclusive of the gun) is $31 / 2$ tons, and it has an average speed of 30 miles an hour.

Owing to the fact that both axles are driving axles, with the use of the 50 -horse-power motor the automobile car is able to travel over very difficult ground, and it easily mounts very steep grades. Under the front seat is a roomy chest which holds a good supply of tools and extra fittings, and special attention has been given to this point so that the car will not easily become disabled. To make the platform of the car as steady as possible during the firing, the platform
(Concluded on page 383.)

The 3-inch 12 -pounder Krupp field piece for airship attack. The weapon can be brought to a maximum elevation of 75 degrees. The motor car on which it is mounted is of 50 horse-power and has an average speed of 30 miles an hour.

The projectile emits a train of smoke which marks the path of its flight.
wireless communication with balloons.
On May $13 \mathrm{th}_{\mathrm{k}} 1908$, an ascension was made with the United States Army Signal Corps balloon No. 10 with Lieut.-Col. F. P. Lahm, Major E. Russel, and Capt. E. S. Wallace as passengers. Major Russel assisted by Capt. E. S. Wallace made some wireless telegraph experiments in this connection.
The basket of the balloon, which is about five feet long, four feet wide, and three feet high, was surrounded on three sides by light galvanized wire netting about two and a half feet wide, the surface being about thirty square feet. When the balloon had ascended to a height of about one thousand feet, a flexible phosphor-bronze wire three hundred feet long, such as is used in our army, was paid out from the net of the basket not occupied by the wire netting. The wireless receiving set consisted of a tuning device and small condenser similar to that used in the field wireless set connected with a silicon detector. A Sullivan telephone receiver was used.
The Washington navy yard station and the Annapolis station agreed to begin sending signals every fifteen minutes for five minutes each. The Washington station began at 1:45, and the Annapolis station at $2: 30$ o'clock. This sending was to be kept up until 3:30 o'clock. Signals were immediately picked up from the Washington station, although not very clearly, and the reception of signals continued until the balloon was about six miles away, when the Washington station could no longer be heard. It was learned that the Washington station was being overhauled, and that only one of their small sets was used. Signals from the Annapolis station were picked up easily as soon as the sending began, these signals coming in so loudly and clearly that it would seem as if the excellence of this means of receiving would be all but equal to that of the land station. During each of the sending periods after this until 3:30 o'clock the Annapolis signals came in clearly, the distance from that station varying about twenty miles at the beginning to ten miles at the close. No disturbance from atmospheric electricity was apparent, although the vertical antenna was several times left disconnected for some little period, in order to see if any spark could be obtained between it and the netting. No spark could be detected.
It is believed by the army officers who made the experiments that this extension of the use of wireless telegraphy may prove of considerable value in extend-

U. S. Army dirigible No. 1 (Baldwin type) with which wireless experiments may possibly be conducted.
eroplane Mr. Curtiss built for sale. When Mr. Curtiss damaged his machine by hitting a wagon in alighting, the spectators were not obliged to leave disappointed, since Willard made some excellent flights. Roy Knabenshue, Lincoln Beachy, and Cromwell Dixon, the 17 -year-old aeronaut, all made excellent flights in their dirigibles, and the three-day meet was a decided success.
Encouraged by the success of Mr. F. Raiche in getting his small biplane off the ground at Morris Park some time ago, a number of other members of the Aeronautic Society have been actively engaged in completing their machines. The second biplane to make several short flights there was that of P. Brauner and A. J. Smith. In the morning of October 31st Mr. Brauner flew about 350 feet at a height of 8 feet, and in the afternoon Dr. Green made a flight of some 250 feet.
plane, however, as the power plant is much heavier. Another experimenter who has gotten off the ground and made flights of several hundred feet lately is Mr. Frank Van Anden, of Islip, L. I. Mr. Van Anden's biplane is a very light machine, weighing complete with a 15-horse-power motor but little more than 200 pounds.

At the Petewawa military camp in Canada, J. A. D. McCurdy also made a number of excellent flights recently with his new "Baddeck No. 2" biplane. The new machine, which was constructed after the "No. 1" was demolished in an accident, has shown excellent speed and stability. It is fitted with a relatively heavy 4 -cylinder water-cooled motor having a single propeller on its crankshaft. In general design it is like Curtiss's, being, like his, the outcome of the experiments of the Aerial Experiment Association. Mr. McCurdy had hoped to take his machine to England and fly there for the $\$ 5,000$ prize of the Daily Mail offered for the first mile flight in a circle by a-British-built aeroplane piloted by a British aviator. Capt. Cody, the American who has been experimenting in aeronautics for some time past for the English army, recently became naturalized so as to compete for this prize with his aeroplane. But both aviators have lost this opportunity, since Mr. J. C. Moore-Brabazon, a well-known English sportsman, has lately won the prize with a machine resemb ling the Wright, but having peculiar balancing planes between the main planes at their ends instead of warping the latter.

Gasoline vs. Alcohol.
A gallon of denatured alcohol can be made to do the same amount of work in an engine as a gallon of gasoline; moreover, the alcohol does not produce smoke and is less liable to yield obnoxious odors, but the lower price of gasoline makes it the cheaper fuel. These conclusions, based on the results of 2,000 comparative tests of the two substances as engine fuels, are given in Bulletin 392 of the United States Geological Survey. R. M. Strong, the author of the bulletin, briefly describes the tests but discusses the more important results at some length. The tests formed part of the investigation of fuels now being carried on by the Survey. To determine the relative efficiency and economy of gasoline it was compared with denatured alcohol. In this comparison not only the heating values of the two fuels but their adaptability to engine use and the effects of variations in fuel quality and in the principal operating conditions-such as load, fuel supply, and time of

Detail view of the aerial wireless set. Note the masked spark gap in the upper right-hand corner of the frame.

The wireless set employed by the Signal Corps for aeronantic usc. The total weight is about 70 lbs. An 8-volt, 20-lb. accumulator supplies the current.

Wireless communication with balloons.

ing the usefulness of an aerial reconnaissance. It may be regarded as certain that at least over distances no greater than were worked at this time, a sending set could have been utilized. It will be necessary, of ccurse, to provide some means of masking all of the apparatus which might produce hot sparks, and it is probable that a special means of preventing the gas from pouring from above should also be provided.
The photographs herewith presented show a sending and receiving outfit that has been prepared for the War Department for use on a balloon, but there is no record describing this apparatus or describing any contemplated use thereof. Since the apparatus was designed for aeronautic purposes, it seems not unlikely that it may be used with the Baldwin dirigible.

The following day, after getting off the ground once, Mr. Brauner, in a second attempt, sent the machine aloft too suddenly, with the result that it lost headway, dropped backward to the ground, and was smash ed. The aviator pitched forward but was not hurt. Using the same motor-a 25 -horse-power A. \& B. 4cylinder water-cooled engine of 260 pounds weightupon his biplane, Dr. William C. Green got off the ground and made six flights of from 30 to 100 feet in length at Morris Park on the 12 th instant. The last flight was made at dusk, and a wheel was broken in alighting. Both of these biplanes resemble the Curtiss in design, having balancing planes and a single propeller on the engine shaft back of the main planes. They are both larger machines than the Curtiss bi-
ignition-were carefully studied. Tests were made with gasoline and alcohol in the same engine and repeated in other engines of approximately the same size (10 and 15 horse-power) and the same piston speed, with different degrees of comparison, different methods of governing, and different combustion.

If most Americans were asked which is the highest mountain in the United States, they would probably answer Mount Rainier. As a matter of fact, the honor belongs to Mount Whitney, which exceeds Mount Rainier in height by less than 200 feet. The summit of Mount Rainier is 14,363 feet above mean sea level, and that of Mount Whitney, by checked leveling, is 14,501 feet above mean sea level.

THE WELLCOME TROPICAL RESEARCH LABORATORIES.
by the english correspondent of the scientific american.
by the english correbpondent of the scientific american.
It is only ten years since the whole of the Sudan was a closed book to the outside world, being under the sway of ruthless barbaric Mahdism. To-day it is a country of increasing prosperity, and at the ancient capital of the Dervishes has been erected a magnificent pile of educational buildings, the Khartum College, a portion of which comprises an extensive and elaborately equipped tropical research laboratory. When the country was finally subdued, it was realized that the peculiar conditions prevailing, both climatic and geographical, rendered the territory a difficult one for the residence of the white man It was the home of innumerable and mysterious diseases and infectious maladjes, which rendered it untenable to the white man, and were also destructive among the ranks of the natives. Moreover, these maladies were peculiarly endemic to the country, and it was realized that the only possible method of reclaiming it for civilization was the investigation and solving of these problems upon the spot, by the most up-to-date scientific methods possible.
Scarcely had the last shots in the campaign been fired, when a movement was started for the foundation of an educational college on the site of the Mahdi's stronghold. Here it was decided to study the questions upon a small scale at first. Owing to the generous munificence of a well-known Englishman, Mr. Henry S. Wellcome, however, it was found possible to establish an extensive institution for tropical research. The donor, in connection with his gift to the Su . danese government, offered to equip the laboratories with all the latest appliances that might be desired, so that the investigations could be carried out upon the most comprehensive lines. These laboratories are unique, inasmuch as they are the only ones of their character upon the African continent, which is unanimously held to be the greatest seat of all those peculiar natural conditions inimical to the white man which have appreciably retarded the development of the country in the past. But through the efforts of this institution invaluable work has been accomplished in reclaiming the northern part of the country, which, in conjunction with that of the Liver pool and London Tropical Schools of Medicine, has assisted in the hygienic betterment of the continent at large.
The work of the Wellcome Tropical Research Laboratories is broadly divided into six ramifications, as follows: (1) The promotion of technical education; (2) the bacteriological and physiological study of tropical disorders, more especially the infēctious diseases of both man and beast peculiar to the Sudan, and to extend assistance to the officers of health and to the clinics of the civil and military hospitals; (3) to assist experimental investigations in poisoning cases, by the detection and experimental determination of toxic
agents, particularly the obscure potent substances employed by the natives; (4) chemical and bacteriological tests in connection with water, food-stuffs, and such sanitary matters as may be found desirable; (5) the promotion of the study of disorders and pests which attack food and textile producing and other economic plant life in the Sudan; (6) to undertake the testing and assaying of agricultural, mineral, and other substances of practical interest in the industrial development of the Sudan.
The work upon these diverse subjects is under the
cently the work of the Institution has been extended to the sciences of ethnology, ethnography, and anthropology.
Tropical medicine comprises researches in the trypanosomiasis of animals, chiefly cattle and camelsfortunately the dreaded scourge of sleeping sickness among humans has not extended to the Sudan. Piroplasmosis, spirochætosis of Sudan fowls, and studies of the many fell diseases such as kala-azar, mycetoma, and dengue fever, which cripple human life in the tropics, constitute the most prominent of the purely pathological and bacteriological work. Then again the sanitary organization of Khartum and Omdurman has been taken in hand, involving the destruction of mosquitoes and the introduction of sanitary laws and a conservancy service. Dr. Balfour, the director, is the medical officer of health of the towns, and, with the adequate laboratory resources at his disposal, has been able to revolutionize completely the conditions of life in a few years, and has practically exterminated malaria at Khartum.
The headquarters of the laboratories are at the Gordon College; and here within a period of seven years innumerable experiments and investigations were carried to a successful issue, and a mass of unique information collected which is of inestimable value in connection with the subjects treated. It was found, however, that the conditions under which the researches were made were not quite perfect, on account of the possibility of change in or damage to bacteriological and other specimens in their transmission from remote districts to Khartum. It was therefore decided to carry the war into the enemy's camp, and to carry out the intestigations on the spot under conditions very similar to those at the Gordon College. For this purpose a floating laboratory was established, and the work accomplished therewith has been of far-reachin value. The southern Sudan is a country críss-crossed by waterways, on the banks of which are clustered native villages,' wherein all manner of rare and interesting pathological conditions are to be found. Flies and mosquitoes abound; the birds, reptiles, and fish harbor strange parasites; men die from

Part of bacteriological section of floating laboratory•

direction of Dr. Andrew Balfour, B.Sc., D.P.H., F.R. C.P., and he is gladly assisted by the various other departments of the government whìch are interested in one or more of the avowed objects of the Institution, such as the Egyptian Army Medical and Veterinary services; indeed, the co-operation of outside workers in the same field is much appreciated and fostered, so that there may be an indisputable conclusiveness concerning the results achieved. Within the first year of its foundation the laboratories became fully occupied ir: all their departments, and then Dr. Andrew Balfour gradually and carefully selected the-best fields of work, and concentrated the attention of his staff thereon. Chemistry and entomology have received almost as much attention as tropical medicine, and re-
curious diseases, and there is a vast field for the study of tropical medicine. Before the days of the floating laboratory, material occasionally reached Khartum from these distant territories, but too often it was in a badly damaged condition. Blood slides were dirty and spoiled, insects broken, and notes incomplete. On the whole, it was recognized that the proper study of conditions must be conducted on the spot, and then many valuable data could be gathered.
The floating laboratory is a commodious vessel well adapted to service upon the waters of the South. The main working room is completely mosquito proof, and is adequately fitted out for proto-zoological and ento mological work. Its maiden voyage was carried out
(Continued on page 381.)

Bacteriological room.

General chemical laboratory.

COMBINED PIPE WRENCH AND MONKEY WRENCH. The wrench illustrated herewith differs materially from the ordinary in the fact that the usual screw mechanism is entirely dispensed with, and the jaws may be instantly opened or closed to any desired extent. The wrench is also provided with a removable jaw piece, which may be quickly applied to adapt it for use in gripping pipe or round work. Fig. 1 illustrates the wrench with the pipe-gripping attachment applied thereon, while Fig. 2 shows the wrench adapted for ordinary use. In this view the lower jaw is cut away to show the interior details. It will be observed that the ratchet mechanism with which this wrench is equipped in place of the screw mechanism is controlled by a button

COMBINED PIPE WRENCH AND MONKEY WRENCH.
A contains the timing mechanism, the insulated section C a distributer, while section B serves to connect the other two sections and support the controlling lever. A shaft D runs through the two sections, and is geared to the engine shaft. Mounted on the shaft D is a sleeve E. A pin F in the shaft engages the slot in the sleeve E, which serves to couple the sleeve to the shaft E and yet permit the former to slide on the latter. Mounted on the sleeve E in the timer section is a drum which carries a spiral metal strip G adapted to come in contact with a series of spring-pressed balls mounted in, but insulated from, the casing. As the shaft D revolves, it will be observed that contact is successively made with the balls H, which control the primary winding of the coil, and that by sliding the contact strip G along the shaft. D, the time of the contact with respect to the position of the pistons will be varied. The contact strip G may be moved along the shaft D by means of a lever I. The opposite end of the sleeve E carries an insulating block in which a spiral contact strip J of the same pitch as the strip G is fitted. The strip J is adapted to make contact with buttons K, which correspond in position with the terminals H, and are connected to the spark plugs. A metal sleeve is fitted in the insulating block in contact with the strip J, and this is adapted to receive a metal rod L, which bears against a plate connected with the terminal M. By this means electrical connection is always maintained between the strip J and terminal M, no matter what position the sleeve E may occupy along the shaft D. This arrangement is particularly adapted for use on low-speed marine engines where a single coil suffices for all cylinders. For high-speed automobile engines a separate coil is required for each cylinder and hence the distributer can be dispensed with. The inventor of the combined timer and distributer is Mr. G. T. Brown, of 225 West 80 th Street, New York city.

AN IMPROVED STEAM TRAP.

Pictured in the accompanying engraving is an improved steam trap, which is of simple and durable construction and arranged to discharge the water of

an improved steam trap.

condensation periodically as required. The apparatus comprises a closed vessel A, into the top of which the steam supply pipe B opens. Passing through the steam supply pipe, and reaching to within a short distance of the bottom of the vessel A, is the water discharge pipe C. The vessel A is adapted to slide vertically on the pipe B, and is provided with rollers that engage guide rails at opposite sides. The steam supply pipe B is connected with the apparatus on which the steam trap is to be used, so that the water of condensation accumulates in the vessel A. The water discharge pipe C is provided at D with a valve. A lever E presses against the valve stem at one end while the opposite end engages a cross piece F, attached to the vessel A. The cross piece is in turn connected by a link to a lever G, which carries a weight H that may be adjusted along its length. The weight H may be adjusted to lift the $\operatorname{arm} E$, so that it depresses the valve stem and keeps the valve D closed. As the water of condensation accumulates in the vessel A, it overbalances the weight H, drawing down the cross piece F, and with it the lever E, and thus releasing the valve stem, which springs up under tension of a small spiral spring. The steam pressure in the upper part of the vessel A then forces out the water of condensation through the discharge tube C. As soon as the water is discharged, the weight H lifts up the vessel A to its normal position. The weight is so adjusted that it will act before all the water in the vessel is discharged, and will leave enough water in the vessel to seal the bottom of the discharge tube C, and prevent steam from escaping therethrough. The inventor of this improved steam trap is Mr. M. J. Boyle, 315 49th Street, Brooklyn, N. Y.

COMBINED TIMER AND DISTRIBUTER FOR INTERNAL COMBUSTION ENGINES.

A NEW GRAIN BIN CONSTRUCTION.

The grain bin illustrated in the accompanying en graving is designed to provide a dry and well-ventilated structure. While the construction is such that it may be easily and quickly built, it will withstand great pressure from within. The floor of the bin preferably slopes downward toward the center, leading to a chute that extends to a horizontal passage below in which is mounted an endless belt carrier. The

A NEW GRAIN BIN CONSTRUCTION.
walls, floor, and roof of the bin are preferably constructed of blocks or tiles of fireproof construction. The first course of blocks of which the wall is formed are made as indicated at A. Each block is provided with a recess at one side and a tongue at the other, so that the blocks may be successively rabbeted together. It will be observed that the block A is provided at its outer upper edge with a flange D, which has a lug projecting inwardly therefrom. The next course of blocks, which are of the form indicated at E, are provided with recesses F, which fit over these lugs on the flanges D. It will be understood that each course of blocks breaks joints with the course below it. The blocks E are provided with grooves G, adapted to receive metallic bands, which are shown in section at I. Each block E is provided with a pair of vertical passages H, which are adapted to register with similar passages in the successive courses, so as to form continuous passages from top to bottom of the bin. The blocks in the intermediate courses of the wall are somewhat different in form from the ones shown at E, but it is sufficient to state that they are provided with projecting lugs that enter recesses on adjacent blocks, so as to form an interlocking construction. The uppermost course of blocks differs from the others in having apertures J, which provide communication between the interior of the bin and the vertical passages. These apertures are above the grain line, and affor̀d ventilation of the walls. The inventor of this grain bin construction is Mr. Thomas Dougherty, 624 18th Avenue South, Minneapolis, Minn

ODDITIES IN INVENTION.

Detachable Hinge.-One of the bugbears of the man who has to do his own odd jobs around the house, is the putting on and taking off of screen doors, particularly if provided with spring hinges. It is quite a difficult matter to apply the hinge without the help

of an assistant
detachable hinge
holding the screen door. The invention illustrated herewith aims to overcome this difficulty by making the hinge detachable. A socket piece is permanently fastened to the door jamb, and the spring hinge may be fitted into this socket piece, or removed at a moment's notice.

Universal Cement.-4 parts alabaster plaster and 1 part of finely-pulverized gum arabic mixed with a coldsaturated borax solution into a thick paste, make an unequaled all-around cement for stone, glass, bone, horn, porcelain, and wood, which becomes hard as marble and possesses the agreeable quality of not solidifying immediately after mixing, but only after 24 to 30 hours.
recently patented inventions. Pertaining to Apparel. SUBSTITUTE BUTTONHOLE ATtACH-MENT.-F. Robertson, Denver, Colo. This attachment serves as an inexpensive substi-
tute for frayed and worn-out buttonholes and may be quickly applied and detached without may be of any device other than the hands,
the use
and when applied presents a neat appearance and when applied presents a neat appearance and does not interfere wi
the surrounding material.
RECEPTACLE FOR BABY-CLOTHS.-C Brewer, New York, N. Y. This receptacle is adapted to be set within the bowl of a water
closet during the cleansing manipulation of closet during the cleansing manipulation of
the cloths and to retain no water when lifted the cloths and to retain no water when lufted
therefrom. It is provided with a plug or stopper adapted to hold the water of the stopper adapted to hold
flushing system in the bowl.

Electrical Devices.

HAIR-DRYING APPARATUS. - \mathbf{W}. Soles, New York, N. Y. The invention is more especially designed for use in hairdressing establishments, barber shops and other places, and is arranged to insure drying of the influence of artificial light, by the use of an electrically driven fan arranged in the rear olectrically driven fan arranged in the rear hood open at the front for the passage of the hoated air and the rays of light.

of Interest to Farmers.

MILK PASTEURIZER AND FILTER.-C. C. Stambaugh, New York, N. Y. In the present patent the invention has in view a simple ap-
paratus for use in the pasteurization and filtration of milk, the pasteurizing and filtering being successively and continuously performed by passing the milk through a pail or vessel having the inventor's improvements.

Of General Interest

PaCKAGE-TIE.-H. J. Lee and E. F. Gray, Scranton, Pa. The purpose here is to prowhich are simple, practical, very convenient to tie or release a package, and that particularly well adapt the improvement for binding
together a number of letters or documents in together a number of letters or documents in a compa
SHEET-METAL TUBING.-W. P. Lawrence, Colorado Springs, Colo. This improve
ment has reference more particularly to a ment has reference more particularly to a
construction of tubing for use in the frames of what sashe, window ins the uprights or transverse members of metal furni-
ture, or for paneling or any other similar structure in which it may be desired to employ sheet metal tubing.
KNOCKDOWN BOX.-W. L. Howland, is open at the top and bottom, close around the inner sides of which is disposed a con
the inuous piece of material projecting beyond the top and bottom of the frame, and having
its projecting portions cut and bent down and its projecting portions cut and bent down and against the top and bottom of the frames so
that when the top and bottom members are secured, the continuous piece of material will e held close to the inner siloved by removing the top and bottom members.
HAND MIXING-RECEPTACLE.-A. HALLenberg, Fargo, N. D. This inventor fursame may be mixed by compression of the walls of the receptacle. He provides a receptacle to receive materials to be mixed, pro-
vided with finger holds to protect the fingers, vided with" finger holds to protect the fingers,
and to provide holding means for the reand to
MEANS FOR HANGING DOORS, SCREENS ETC.-T. Gill, Follansbee, w. Va. The means consists in the main of a post or col
umn of a length nearly equal to the height of the door opening or casing and provided with suitable adjusting device for extending its length until it clamps at its ends against the door casing with sufficient force to retain it in place, the door being hinge-connected to this post in the usual man
it directly to a door casing.
BUTTER AND LARD CUTTER.-C. H. Carlson, Iron Mountain, Mich. The aim in this instance is to provide a device especially adapted to cut out and remove a shaped pat
of butter or lard from a firkin or other recep tacle, and which is provided with means for ejecting the pat from the device without the necessit
tool.

Hardware

BENCH-STOP.-M. R. RAynesford, Ellis, Kan. This invention relates to stops, and
more particularly such as are adapted to be used on carpenters' benches for holding one end of a board firmly against the apron of a
bench while the opposite end of the board is clamped in a vise. It constitutes an improve ment on the device shown and described in a
U. S. patent formerly granted to Mr. Raynesford.
hOSE-COUPLING.-W. F. Koper, Chillicothe, Ohio. In using this invention, the head piece is member having an annular chamber therein, and it is rotated in the terminal until
the stem's of the T-shaped members are in
alinement with the slots that separate the alinement with the slots that separate the
pairs of lugs, when the head piece is pulled outwardly until the T-shaped members inte lock with the inner faced lugs. In this pos ing in the rubber cup.

Household Utilities.

CLOTHES-LINE HANGER.-C. C. Lovejoy, New York, N. Y. The device may be conveniently attached, and will operate to support the
line in such a way that the end of the line line in such a way that the end of the line
may be brought into the room to enable the may be brought into the room to enable the
clothes to be hung thereupon, and the device clothes to be hung thereupon, and the device
may be readily folded up out of the way when not in use.
CLOTHES-LINE TIGHTENER.-R. C. This invention pertains to clothes line tighteners, and the object of the inventors is to produce a device which can be readily applied to a clothes line, which will enable the slack
of the line to be taken up, and which will maintain the line under tension.

Machines and Mechanical Devices. DEVELOPING-MACHINE FOR PHOTO GRAPHIC FILMS.-Elizabeth A. TaYlo Steilacoom, Wash. This invention consists of
a plurality of cylinders of different diameters disposed one within the other, there being which engage each other so that when one cylinder is rotated a predetermined distance the projection thereon will engage the one on a neighboring cylinder to rotate it. In use
the end of the film is secured to one of the the end of the film is secured to one of the
cylinders and as they are rotated the film is wound around them, the film passing through the slots from one cylinder to another.

Musical Devices

REED-ORGAN.-L. A. McCord, Laurens, S. It is sought in this invention to provide an rgan attachment which can be applied to any of the ordinary reed organs and will permit
the playing of the organ by an automatic or the playing of the organ by an automatic or
self-player such for instance, as those using certain perforated paper strip or shing and which selif-playing attachment may be adjusted out of the way so the organ may be played in the usual manner.
ADJUSTABLE PIANO-PEDAL CONNEC-TION.-H. Meyer, New York, N. Y. The intention here is to provide an adjustable piano pedal connecticn, arranged to insure accurate
working of the hammer rest rail, the damper working of the hammer rest rail, the damper
rail and the muffler, as desired. The connectrail and the muffer, as desired. The connect-
ing bar is adjustably secured to a flat spring ing bar is adjustably secured to a flat spring,
which forms the fulcrum for the bar and is attached to a base secured to the bottom of the piano frame.

Railways and Their Accessories.

Railroad-Tie.-J. W. Snedden, Falls Creek, Pa. Disclosed in this patent is a tie the sides of which are connected below the top by a web, the rupper edges of the sides
having inwardly projecting flanges between hich the movable member of the rail fasten ing means coact with fixed rail retainers a the opposite side of the rail. The tie is concrete. or a block of wood is adapted to be concrete
BLOCK-SIGNAL SYSTEM. $\rightarrow J$. D. NIx, Ferriday, La. An object of this inventor is to provide a mechanism which is located on the engine and forms part of the mechanism there-
of which may be automatically .operated of which may be automatically .operated ${ }^{\bullet}$ by
an electric current from a generator carried an electric current from a generator carried The generators for furnishing the current may the generators for furnishing
flag or Signal.-G. W. Dallimore, Po atello, Idaho. The object here is to produce flag for use on railways, having a pole or
taff within which the curtain or body of the fiag may be received when the signal is not being displayed, and further, to provide a simple construction enabling
r withdrawn from view
CAR-FENDER.-G. A. Estler, Standish,
In this fender, a catching and suporting means prevents a catching and supwith whom the fender has forcible contact,
and the purpose of the invention is to proand the purpose of the invention is to pro-
vide for a fender effective in service, and which may be placed on street or other cars construction of the cars.
LOCK-VALVE.-T. M. SWANE, Louisville, , train vipe of an air brake system, which as locking mechanism serving to prevent unuthorized and malicious tampering with the valve, which also prevents accidental closing
f the valve when open, and which will not of the valve when open, and which will not cause unnecessary delay in certain ope
such as in switching or coupling cars.
AUTOMATIC TRACK - INSPECTOR. - T Ellis, Tacoma; G. H. Purvis, Seattle, and J. Sreech, Raymond, Wash. The invention relates to automatic track inspectors, that is,
to mechanism for indicating the condition of to mechanism for indicating the condition of
railway track. More particularly stated it railway track. More particularly stated
comprises various improvements, whereby the general efficiency of such mechanism is greatly practicable.

Pertaining to Recreation. COMBINED CREEL AND KIT.-H. W
WAKEFIELD and C. F. HARTER, Seattle, Wash The improvement is in anglers creels, the purpose of which is the provision of a kit in connection with the creel or basket for the
storing of hooks, lines, leaders and other fishtoring of hooks, lines, leaders and other fish ing paraphernalia, in order that the same may facilitate the replacing of lost hooks, etc. GAME.-H. E. Hire, Mark Center, Ohio Mr. Hire's invention relates to games, and the object is to provide a game which has many
of the features of the game of base ball and is especially devised to assist in the training of pitchers for the outdoor game of base ball, and to test their skill at the outdoor game.
toy cannon.-W. h. Cornford, Morning ton, Victoria, Australia. This application is in part a division of the application formerly filed by Mr. Cornford for Letters Patent on a military game or toy, and the present invenion relates to a toy cannon or gun of special
construction adapted to be used in connection construction adapted to be used in connection
with the said game. It provides for rapid firing of pellets, retaining them in position displaced, and means for elevating and de displaced, and means
pressing the cannon.

Pertaining to Vehicles.

INFLATING DEVICE FOR TIRES.-E Haynes, Bisbee, Ariz. Ter. This invention is particularly useful in connection with pneu-
matic tires such as are used on motor vehicles and the like. The aim is to provide an efficient device for tires, which is automatic in operation and which obviates the necessity for manually or otherwise extraneously inflating a tire.
VEHICLE-TIRE.-C. F. FISk, Allentown, N. J. The invention consists of a rim of two
sections bolted or otherwise detachably secured to the felly and having relatively deep out wardly-extending fianges, with a shoe rim a the outside of each flange, a tire having resili faces of the flanges and the tire and ribs tending a disengaged from the rim, a shoe ex edges located in the shoe rims, and clamping rings securing the shoe to the shoe rims. DRIVING-GEAR FOR AUTOMOBILES'e. G. Whitacre, Wellsville, Ohio. This in vention relates more particularly to the mount ing for the driving engines used in automobiles. The style of the engine may vary, but
any form wherein the motive power is a ga under pressure will serve. It might be used in internal combustion engines provided any of the well known relief valves were used in
conjunction with one or the other of the en gines, which would be operated automatically as the automobile is driven in a curved path The valve would lessen the power stroke on the engine on the inner side of the
path being followed by the automobile.
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. Please state the name of the patentee, title of the invention, and date of this paper.
that we cannot tell you what to use. If you
ould make a generator to work with others, would make a generator to work with others,
you would better copy one of the others.
(12137) C. L. L. says: Two horses re attached to opposite ends of a rope and re pulling against each other. Both horses
re capable of pulling 200 pounds apiece. Is there more strain on the rope with the horses pulling against each other than if one end of the rope is attached to an immovable stake nd only one horse pulling it? A. The pull pon the rope with a horse pulling 200 pounds each end is 200 pounds. One horse is but post for the other to pull against, and a This anyone can prove by having two persons pull against each other on a spring balance, and then letting one person pull with the balnce fastened to a hook on the wall or to a hitching post in the yard. If the balance will indicate all that a person can pull, the ex-
(12138) F. S. says: Some time ago we wrote to an electrical supply house asking
them whether the numbers in the Brown \& harp wire tables followed any regular law, and were told that they did not. We are of impression that the people we wrote to oncerning this question wust bike to have you ither confirm or deny their statement The sizes of wires by Brown.\& Sharp's, or as is better termed, the American wire gage, are not determined by any formula, but are a growth. However, the sizes are such that a wire three sizes larger will have a sectional rea about double that of a given wire. This is only an approximation. It is very con-
venient in electrical work. 'How to Remember the Wire Table," in Sup"How to Remember the Wire Table,"
plement No. 1,530, price ten cents.
(12139) W. B. H. says: 1. Why is a magneto used to make the spark for a gasone engine in preference to a small dynamo? or use, and does not require to build up its magnetism as a dynamo does. 2 . Why are the permanent magnets of a magneto divided A compound magnet made from several thin magnets is much stronger than a single magnet of one thick piece of steel.

Legal Notices

PATENTS

 INVENTORS are invited to communicate withMunn \& Co., 361 Broadway, New York. or
G25 F Street, Washington, D. C., in regard 625 F Street, Washington, D. C., in regard
to securing valid patent proter to securing valid patent protection for their inregistered. Design Patents and Foreign registered. Dasig
Patents secured.
A Free Opinion as to the probable patentability of an invention will be readily given to any inventor furnishing us with a model or sketch and
a brief description of the device in question. All communicatious are strictly confidential. Our
Hand-Book on Patents will be sent free on
request. Ours is the Oldest agency for securing patents;

MUNN \& CO., 361 Broadway, New York
Branch Office, 625 F St., Washington, D. c.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending November 9, 1909,
(12136) A. R. S. says: 1. Why when the moon is growing can one see a bright out-
line of that satellite, while the inner portion of the circle appears dark? A. When the moon is within two or three days of new, th moon is within two or three days of new, the
earth reflects light enough from the sun to
make the dark portion of the moon visible. The earth at that time is full as seen from the
moon. This is called seeing "the old moon moon. This is called seeing "the old moon in the new "moon's arms." The light is called
"earthshine." It is described in the astronomies, such as Todd's "New Astronomy," which
we send for $\$ 1.50$. See page 225. 2. Why
do moon and sun appear to be much larger do moon and sun appear to be much large when rising and setting? A. The sun and moon seem larger near the horizon by an opti cal illusion due to contrast. With an instruhorizon. The sky itself is affected in the the way. Stars seem farther apart. 3. How can locate the following planets: Mercury sition Jupiter, Neptune, Venus? A. The po our article, "The Heavens in September," et The proper thing to do is to become a sub-
scriber to the Scientific American and have the instruction given in the paper. Neptun cannot be seen excepting with a good telescope The rest you name may be seen with the un-
aided eye. Mars is now very bright in the aided eye. Mars is now very bright in the
night sky. 4. What size wire will be necessary to wind an ordinary telephone generator for ten volts? How many turns will be rewith wire from No 30 to No. 35, and from with wire from No. 30 to No. 35, and from
75 ohms to 550 ohms. From this you will se

Kindly write queries on separate sheets when writing
about other matters, such as patents, subscriptions books, etc. This will fach as patitate answe, subsing your quan
tions. Be sure and give full name and address on ever
sheet.
Full hints to correspondents were printed at the head
of this column in the issue of March 13th or will be ion. The sky itself is affected in the same locate the following planet.

Bin.
Block
Signaling apparatus,

Engine and Foot Lathes
 SEBASTIAN LATHE CO.. 120 Culvert St., Cincinnati.

 business anywhere. Blanks. By-Laws and forms for making stockfull-paid for cash, property or services. free. President Stordard
FORMER SEC ETARY OF ARIZONA, resident agent for
many thusid STODDARD INCORPORATING COMPANY, Box 8000 PHOENIX, ARIZONA

?wat Upight Drills Send for Drill Catalogue. W. F. \& JNO. BARNES CO 999 (Established 18i2)

NO HAMMER NEEDED

 or heavy strokes. Working
parts are hardened, urable, and easily accessible for

Crescent Wood Working Machinery

A liew Wrench-and A Good Wrench

 THE PERFECTION WRENCH

IUFKIN
TAPES AND RULES
2 u
A Home=-Made 100=Mile Wireless Telegraph Set

 \qquad
\qquad
 Cleaner, J. Hadika. $\neq \ldots . . .$.
Clothes direr, G. Beacon.
Clothes line reei, S. S. Rider. Clothes line support, G. A. Cuibertson......
Clutch, driving and brake, F. T. Gottschai
Clutch, pulley, A. H. Cameron..........
 Collar machine, horse, Collett \&
Collar supporter, B. C. Bubar.
Compass, beam,'. S. Hurs
Compasses, apparatus for record

 Computing machine, J. M. Daly.....939,221,
Concrete beams, girders. and ncirl ribs, con-
structing and erecting reinforced, F. W.
Skinner

Cultivator, S. Waltman
Curtain bracket, C. B. Dumond.
Cnshion stufting device, C. A. I.e

\xrightarrow{c}

 Cartridge, blasting, Woiser \& Fusse...
Cash register, w. H. Muvz Castamegister, parment. A. Lit. Brodton....
Cement block machine. Final \& Horn.
. 939,1
939,8
939

Be
就
㿥

989,36
939,5
939,7

The Bell System has become the nervous system of the business and social worid.
The comfort it affords the women in the homes of America cannot be measured.
Do you measure it in considering the value of your Bell telephone?

The mother of children can find out where they are at any particular hour of the day-and how they are-even though their visits carry them to the country village or the city hundreds of miles away.

The husband on a trip talks from his hotel room to his wife at home.

There is a world of comfort in the knowledge that you can talk together at a moment's notice, wherever you may be.

Bell instrument or a Bell sign.

Thereare over 4,000,000 Bell stations. You cannot use them all, but from time to time you have a real vital need for one. Which one you cannot foretell.

There are six billion calls over the telephones of the Bell System every year.

Many of these are comforting calls from afar, calls whose actual money value can no more be reckoned than the value of the happiness which one man has and another man cannot buy.
The very existence of the Bell telephone service has its value to you, even at moments when you are not using it.

Abstract

The Bell telephone has a special value because it is everywhere-because at sight you feel a familiar acquaintance with a because it is everywhere-because at sight

 me you have a real vital need for one. There are six bilion calls over the tele-The Bell Long Distance service offers, ready recruited for your call, the largest body of active business men in the world. If you have a telephone, avail yourself of its long distance possibilities.

The highest type of public service can be achieved only by one policy, one system, universal service.

> The American Telephone and Telegraph Company And Associated Companies

Every Bell Telepfone Is the Center of the System

Two Good Books for Steel Workers Hardening, Tempering, Annealing and Forging of Steel
By JOSEPH V. WOODWORTH

Instructive Scientific Papers on timely topics
Price 10 Cents each by mail
ARTIFICIAL STONE. Ry L. PR Forr.

THEFSHRINKAGE AND WARPING

CONSTRUCTIINOF OF AN INDICAT

TIFIC AMERICAN SUPPIEMENT 1500.
By T. H. Blakesley, M.A. An admirably
written, instructive and copiously illustrated
article. ScIENTIFIC AMERICAN SUPPLEarticle. SCIENT.
MENT No. 1493.
HOME MADE DYNAMOS, SCIENTIFIC
PLATING DYNAMOS
PLATING DYNAMOS.
RICAN
Scribe their construction so clearly that any
DYNAMO AND MOTOR COMBINED
Fully dectribed and illustrated in SCIENTIFIC
AMERIAN SUPPLEMENTS 844 and $\mathbf{8 6 5}$.
ELECTRICAL MOTORS. Their Con-
SUPPLEMENTS 759,761,767,641.
Price 10 Cents each, by mail
MUNN $\mathbb{\&}$ COMPANY. Inc.

[^0][^1]\qquad Size $61 / 4 \times 91 / 4$ inches. 288 pages. 201 illust tions. Price $\$ 2.50$ postpaid
His is a practical work, treating clearly and
concisely modern processes for the heating
annealing, orgying, welding, hardening and
tempering of steel, making it a book of great tempering of steel, making it a book of great
value to toolmakers and metal-working mechanics
in general. Special directions are given for the
sulcessful
 all descriptions, including miling, cutters, taps,
thread dies, reamers, holow mills, punches and
dies and various metal-working tools, shear blades, dies and varions metal-working tools, shear blades,
saws, fine cutlery and other implements of stel,
both lange and smanl. The uses to which the lead-
ind both large and small. The uses to which the lead-
ing brands of steel may be adapted are discused
and their treatment for working under different and heir treatment also working under mithor for the
conditions explained; also special mecial brands. A
hardening and tempering of special

The American Steel Worker

By E. R. MÃ̃KHAM

Size 5% x 8 inches. 3 . 367 Rages. 163 illustra-

OUR SPECIAL OFFER: $\begin{gathered}\text { The price of these } \\ \text { each but when the two } \\ \text { sors } \\ \text { bors }\end{gathered}$

MUNN ${ }_{3}^{2}$ COMPA Broadwav, New Y York , Inc. Publishers

We mantacurcall kinis of Mactine Norecties
 隹

 MODELS ${ }^{\circ}$ Ex ReERIMENTAL Mor PARKER, STEARNS \& C0.. $288-290$ Sheffield Av., B'klyn, N. Y. NOVELTIES \& PATENTED ARTICLES
MANUFACTURED BY CONTRACT. PUNCHING DIES. SPECIAL MAGHNERY. MOEFT \& COMPANY

 HOW TO MAKE AN ELECTRICAL Furnace for Amateurs Use.-The utilization of 110 volt

Concrete Reinforced Concrete

 Concrete Building Blocks Scientific American Supplement 1543 contains anarticle on Concrete, by Bryson Cunningham. The article elearly describes the proper com-
position and mixture of concrete and gives
pesults of elaborate tests position a a midarature of
results of elaborate tests. Scientific American Supplement 1538 gives the
proportion of gravel and sand to be used in Scientific American Supplements 1567, 1568 , 1569 , 1570 , and 1571 contain an elaborate discussion by Lien
various systems of reinforcing concre crete construction, and their applications.
These articles constitute a splendid text book
on the subject of reinforced concrete. Nothon the subject of reinforced
Scientifio American Supplement 997 contains an
article by Spencer Newberry in which prac-
tical notes on the proper preparation of conarticle by Spencer Newberry in which prac-
tical notes on the proper preparation of con-
crete are given. Scientific American
present a helpful present a helpful account of the mater
concrete blocks by SDencer Newberry.
 cientific American Supplements 1547 and 1548
give a resume in which the various systems
of reinforced concrete construction are disof reinforced concrete construction are dis-
cussed and illustrated. Scientific American Supplement 1564 contains an
article by Lewis A. Hicks, in
which the
anits merits and defects of reinforced concrete are
analyzed.
 some practical illustrations by Walter Loring
Webb.
 ciples of success in concrete block manufac-
ture, illustrated. Bcientific American Supplement
steel for reinforced concrete.
1574 discusses Scientific American Supplements 1575, 1576, and
1577 contain a paper by Philip L. Wormed,
150 preparation and use for farm purposes, their
pre
paper exhaustively discisses the making of paper exhaustively diseisses the making of
martar and concrete, depositing of concrete,
facing concrete, oood forms, concrete sidewalks. dencrets
concrete posts.
Each number of the Supplement costs 10
cents. A set of papers containing all the articles
above mentioned will be mailed for $\$ \mathbf{\$ 1 . 8 0}$.

MUNN \& CO., Inc.
361 Broadway, New York City

NEW B00KS, ETC.

ailroad Structures and Estimates. By | J. W. Orrock, C.E. | New York: John |
| :---: | :---: |
| Wiley \& Sons, | | figures. Price, $\$ 4$ net.

Under the title of Railroad Structures and Estimates, the intention is to cover in brie nd concise form the numerous subjects that oad Building, for the purpose of ready referbusiness rather than a technical cost, it is impossible to give the data to suit conditions, the weights, quantities, and cost are iven in detail in most instances, and may be varied as desired.
Framing. By William A. Radford. As sisted by Alfred S. Johnson, A.M. h.D., and Bernard L. Johnson, B.S. Company. New York: Industrial Book Company. 12mo.; 388 pp Price, \$1.
To the carpenter especially, and to all others interested in wood in a structural way, this is a most important subject. The fram-
ing of a building has been likened to the ing of a building has been likened to the hat it be put together properly and connected up in the right way. The whole stability and
up success of the edifice depend on the strength and proper arrangement of the supporting
frame. The present work is divided into rrame. The present work is divided into
four heads: (1) Timber framing for houses (2) barn framing: (3) framing of factories tores, and public buildings; (4) miscellane us framing, including strength of timbers work, accordingly, will be taken up in this order. In some cases certain subjects of an introductory or explanatory nature will be discussed, although, strictly speaking, they are no part of "framing" and possibly are not done by the carpenter. Yet a knowledge of them will add to the carpenter's equipment, and wil
help him to do his work more intelligently. Metal Spinning Practical Instructions in a Fascinating Art. By Fred D Crawshaw, M.D. Chicago: Popular Mechanics, 1909. 18mo.; 72 pp . Price 25 cents.
Like so many of the other old-time crafts, the one of metal spinning has partially gon into disuse because of commercial competition and the failure of the younger generation of men to familiarize themselves with the hand it is only in the larger cities that one find an artisan who does metal spinning. When such a person is found, he is usually occupied in producing forms out of thin metal tha require great care in making and are dif ficult to produce with the stamp or press. It is believed in some circles, particularly among metal spinners, that the pressing and stamping of metal can never fully take the place of
spinning it. The object of this book is to assist amateurs in an interesting art, and also give practical metal spinners additional in struction.
The Scientific American Boy at School. By A. Russell Bond. New York: Munn ${ }^{\text {\& }}$ \&
One of the most interesting and helpful of an Boy"" for boys was "The Scientific Ameri present volume, in which was described the adventures of a youth of mechanical turn of mind with his companions in a vacation season. Mr. Bond now carries the story further, places is hero in boarding school, and invites his readers to enjoy his later adventures, and profit by them as well. It is pre-eminently a boy's healthy minds, who like to be out of doors and making things with their hands-just the kind of boys one reads about and would like to have or know, but who sometimes seem rathe scarce when one scans the list of one's boy
acquaintances. Mr. Bond has been more fortunate than. Mr. Bond has been more for voung chaps, full of life and vigor and endowed with mechanical turns of mind that must have
 boys of the right sort; ;and if one does not meet them in the streets every day, it is good to know there are such young people and to read about them in Mr. Bond's agreeable pages The book is not at all a history of school life, but might be scientifically described as an essay on surplus energy. It deals, not with what the boys did in school hours, but what they did outside of them. These, of course, are the real hours of a boy's life, the time in which he is free and unrestrained, in which he seeks boy energy that is sometimes not alowas so appreciated by his elders as it might be. So the book brims over with good nature and ingenuity and with the breath of outdoor activity. If the mechanical performances of these young fellows seem sometimes a bit audacious, we may rest assured, with the author's certificate, that they never did anything boys of real earnestness and ingenuity could not have accomplished. The careful parent may perhaps ${ }^{2} \mathrm{e}$ disposed to pause a little at the fying machine, pened. The book is agreeably written with a fine sympathy for boy life and boy activity. It abounds in practical ideas and suggestions and will prove a veritable boon to the parent

The Family Is Safe—The Income Guaranteed

Aeroplanes sad Motors We are building monoplanes of the Bleriot cross
channel type. Deeivery 3 week after receipt of order
Fight guaranteed. Price $\$ 5,000$; one-third cash with order.
Wealso build several kindsof fight-weight aeronautio
motors and propellers. Particulars and prices furnished upon apphication
SCIENTEIC AEROPLANE AND AIRSHIP CO
BOX 773 , New York.
Learn Watchmaking
 cured. Easy terms. Send in catalog.
ST. LOCIS WATCHMAKING SCHOOL, St. Louis, Mo

Just Published-A BOOK OF INTEREST TO RIFLEMEN

The Bullet's Flight from Powder to Target

The Internal and External Ballistics of Small Arms. A Study of Rifle Shooting with the Personal Element Excluded, Disclosing the Cause of the Error at the Target.
Illustrated with one hundred and eighty-eight plates, showing the results of over three hundred rifle experiments performed and chronologically arranged
By F. W. MANN, B.S., M.D.

$$
\text { Size } 71 / 2 \times 93 / 4 \text { inches. } 384 \text { Pages. Price } \$ 4.00 \text { postpaid }
$$

T HIS is a thoroughly practical treatise and deals with a subject the literature of which is not commensurrate with its importance or interest, and it possesses sunsual value, not onl becauss it furnishes a large a amount of information, of a
very practical kind, but because this information is the resultof of a practical experience on the part of the writer,
 ststently and laboriously worked out with an earnest desire to assist his fellow marksmen. In view of the fact that conjecturing
and theorizing have been so prevalent in infe literature, the work has been kept free from speculation, except where they have

 experiments such as that of venting the barrel nearthe muzzele. An idea of the contents may be gathered from a few of the
sbbects treated such as the Personal Element us. Mechanical Rife Shooting; Utility of Vented Barrels: High-Presur Shartsshooting Powder; Thesesope Mounts; Ruined Rife Bores sus. Smokeless Powder us. Primers; Accurde Ammuntion
 Twists; Kinetico of Sopin, etc. In many respects this work is unique in the literature that has been published on this subjec. fte ife ult

MUNN \& COMPANY, Inc., Publishers, 361 Broatway, New York City
who wishes to interest his boy in the value o thinking and doing. The numerous illustrati Handy Man's Workshop and Labora Russeli Bond. New York: Munn \& Co., Inc., 1909. Pp. 467. Price, \$2. This is a book of first-rate importance and interest, and is a notable contribution to prac
tical work from the office of the ScIENTIFIC tical work from the office of the Scientific
Amprican. It is a book that not only aims to be practical, but which is practical from cove to cover. It is a collection of ideas and meth how to do it as proposed, tried out and tested by resourceful men, both amateur and pro essional. It contains, in short, upward of useful to the household, attractive to the mechanic, and interesting to everyone who loves
to tinker and make articles of use and value or in whom the spirit of experimentation is inbred. Unlike many books of this kind, how ments. In fact, it is not an experimental book at all, but a treatise of useful things. It is not
concerned with theory, but with fact. It deals, not with what will give curious results, but with achievements of real value and utility And this it does, in the most direct way possible The descriptions of methods are concise and with drawings and diagrams, many of whici are in the form of working drawings that show,
in a very precise and definite way, just what to do, and how to do it. There are 370 such and lettered, and illustrations that illustrate in the best sense of the word. The origin the best sense of the word. The origin
of the book is a department established some time ago in the Scientific American, devoted to the interests of the "Handy Man." A flood
of suggestions poured in from a multitude of sources, and the best of these have been re produced in the present volume.
American, since much of its the Scientific printed for the first of its contents is now vised a book that will very successfully appeal is attracted by the opening chapter on fitting up a workshop. Both he and the professional mechanic will find oa host of suggestions on the greatest diversity of topics in the next chapter on Shop Kinks. Both again will be interested in the very valuable chapter on the soldering
of metals and the preparation of solders and soldering agents. Here is a long list of for mulas for solders of tried and tested accuracy The professional mechanic is especially appealed to in the fourth chapter on the Handy Man readers will be interested in the fifth chapter on the Experimental Laboratory. Electricit is very fully treated in the sixth chapter, an the householder will find a wealth of sugges tion in the numerous devices described in th seventh. The sportsman will be helped with the hints of the eighth chapter, while the fina chapter on flying machines is of the greates possible present-day interest. It is, in short a book of the widest general interest, and both editor and publisher are to be heartily con valuable publication.
Concrete Pottery and Garden Furniture
By Ralph C. Davison. New York:
Munn \& Co., Inc., 1909. Pp. 196.
Munn
Price, $\$ 1.50$.
The publishers' statement that this is a new book on a new subject is very true. Neither is in itself new; but a book dealing furniture making by the amateur has not heretofore been published, and hence this volume amply supports the claim of novelty made for it. Readers of American Homes and Gardens have already acquired some familiarity with Mr. Davison's guidance in this fascinating art, and while the articles he contributed to these pages have been reproduced in this book, they have been givenea new form and much new and The illustrations have been greatly increased in number, and the whole given the form of a practical handbook. Books on handicraft of any kind are apt to fail, more or less, in the inadequacy of their directions. The author, too, often knows so well what to do and how
to do it as not to realize that those who have not followed the work before may not quite follow what are supposed to be careful directions. Mr. Davison has been fully alive to this misfortune in books of this kind, and has, descriptions most accurate and detailed. No other method is, of course, really feasible; but it is seldom this sort of thing has been so well done as in his pages. The careful text is supplemented with illustrations as carefully made and lettered, so that the book is a genuine handbook of craftwork, thoroughly practical in every part, and admirably adapted to its specia purpose of explaining every portion of the work involved in the production of the variou up quite a new field for the a mas opene materials required are abundant and cheap; the methods, in the simpler pieces at least, eas methods, in the simpler pieces at least, ean only pleasant, but the results are agreeable and decorative. The author thoroughly knows and understands his subject, and has the gift of imparting his knowledge to his readers.

KOH-I-NOOR Pencils cost you 10c each or \$1 a doz. Pay less and you get less.

, mistury L. \& C. HARDTMUTH, Est. 1790, 34 E. 23d St., New York

CILSON MFG. CO. 308 Parlk St, Akert Washingean, Wie
WE WILL MAKE Bial fixise manufacture of any metal novelty. Automatic ma
chinery, tools, dies and expert work our specialty
AUTOMATIC HOOK \& EYE CO., Hoboken, N. J.
WELL
DRILLING
MACHINES
Over 70 sizes and styles, for drilling either deep or Theols or on sills. With engines or horse powers.
Strong, inimpee and durate. Any mechanic can operate
hem easily. Send for catalog. WILLIAMS BROS.. Ithaca, N. Y.

CH:IEF DRAFTSMAN

PRACTICAL DRAFTING, DETAILING, DESIGNING

WORID'S ELECTRICAI EXHIBITION JANUARY 1910

WHAT WE DO-HOW WE DO IT KNICKERBOCKERR MACHINE WORKS, Inc.,
8.10-12 Jones street, New York BABBITT METALS. -SIX IMPORTANT HYPNOTISM
 Till EEST EUUPPED SHOP Repairs, ExperimentalDevices UHE ROWLAND TELECRAPHIC COMPANY, Bulimere Md.

The
New Serial
in Scribner's Magazine
beginning
in
January
1910

Rest Harrow By Maurice Hewlett

The author is one of the foremost and most widely read and admired writers of to-day. This story possesses all of his fascinating qualities of poetry and romance and the interest of character revelation, together with a strikingly original point of view that will attract and hold the attention from the very beginning. It is a modern story, a view of life as the author sees it to-day, and its truth, beauty of style and fearlessness, with a characteristic note of unconventionality and humanness, will make it one of the most remarkable serials the Magazine has ever published.
 Internal combintion engine, A. J. West.....
Iron oxid scale, electrolytically removing,
Danforth \& Jones.................... Key fastener, W. A. Loveland
Kinetoscope, A. A. Roebuck.
Kinetoscopic apparatus, J. E. L.
 Knife blade, detachable, M.............ining
Kniting machines, lace pattern mecha
for straight, Salzer \& Walther for straight, salzer \& Walther.........
Lhe same, fabric fore, G. W. W. Tomposition for

 OFIS

SGRIBNER'S MAGAZINE 1910

> (2)HEODORE ROOSEVELT'S own and exclusive account of his African Trip will continue to be a very important feature of the Magazine during a greater part of 1910 .

The articles already published have met every expectation with regard to their exceptional interest and value, and the extraordinarily large editions required to meet the demand have had to be increased with each number. Nothing he has ever written has better revealed his own attractive personality, his remarkable faculty for observation and appreciation of the picturesque and unusual in both humanity and nature. The Boston Transcript says:
"Mr. Roosevelt has a unique way of feeling as the American nation feels. His general sympathies, modes of thought and emphasis, and even his prejudices are largely theirs. That fact makes Americans follow with zest the story of his hunting in the wilds, told with the same grim strength that has made his political utterances so far-reaching and deep in theirinfluences."
In the January number he will describe hunting experiences at,

Juja Farm: Hippo and Leopard

These articles are not only fascinating narratives of adventure, they are also authoritative accounts of the natural history of many animals but little known to most readers. The illustrations by Kermit Roosevelt and other members of the expedition are especially interesting. To secure all of Mr. Roosevelt's articles subscriptions should begin with the October number.

THE WELLCOME TROPICAL RESEARCH LABORATORIES AT KHARTUM. (Continued from page 375.) under the direction of Dr. C. N. Wenyon, proto-zoologist to the London Tropical School of Medicine, and proved such a complete success that the work in this direction is being considerably developed. Entomology is another very promising science that has claimed considerable attention in these laboratories. There is an immense field in the Sudan for an economic entomologist, and the scope and variety of the work done is almost bewildering. There are pests of every kind infesting every living -being and plant, and the task of reducing these would at times seem almost hopeless. Every year taxes, aggregating large sums, have to be remitted owing to the ravages of Aphis sorghi and other pests. Fatalism, natural indolence, and improvidence often prevent the natives, unless supervised, from taking those active measures vised, from taking those active measures
so necessary in cases of insect infestation of crops. These labors have also a direct bearing on tropical medicine, as results have abundantly testified.
In the field of anthropology very valuable work has been accomplished. The laboratories are recognized as a working place for fellows of the Carnegie Research Fund; and on the recommendation of the director, Dr. A. MacTier Pirrie was ap-
pointed anthropologist to the Institution. In addition to his medical qualifications, Dr. Pirrie held a special degree in anthropology, and was particularly well versed in physical work. Alfhough he labored under the great disadivantage of not knowing the country, he undertook and successfully completed remarkable journeys into the totally unknown Burun country, which lies between the White Nile and Abyssinia. He lived and moved among the tribes inhabiting this territory, and his method of handling the natives was highly appreciated by the government. By his free movement among them he was able to acquire extensive data of their life, manners, and customs of the most highly prized character. Unfortunately, these expeditions proved fatal to the young, enthusiastic investigator. During one journey he contracted an indigenous disease propagated by the parasite of kala-azar. He was prostrated and invalided home to Scotland, but died six months later before he had the opportunity of setting out the results of his work. His notes and observations, as well as those of archæological and ethnological aspect, were worked up by competent authorities, and have thrown much light upon a people and their country about which nothing has previously been known.
The chemistry section has received as much attention as tropical medicine, for it has an important bearing upon the commercial development of the country. The principal fields of investigation in this direction have been Sudan gums, food-stuffs, and seeds, as well as water supply from the Blue and the white Nile and wells. The study of gums has been particularly exhaustive. The Sudan has extensive forests of gum trees; in fact, such constitutes one of its staple products. Inquiry showed that comparatively little was known about gums, so that great attention was concentrated upon this subject. After some four years of labor, the laboratories have made some valuable additions to the chemistry of this commodity, and it is hoped that their labors may result in placing the Sudanese gum industry upon a sound basis.
Unfortunately, on May 11th, 1908, the laboratories suffered a heavy calamity in a fire, which breaking out in the photographic dark room, practically gutted the building, except the library, directors' room, and one or two other departments. Not only was a very large quantity of equipment destroyed, but all the trypanosomiasis specimens were lost, to gether with the records of two years work on the subject. Nearly all the paraf fin blocks prepared during the previous (Concluded on page 383.)

Classified Advertisements than four nor more than 10 lines accepted. Count
seven words to the line. All orders must be accom-
panied by a remittance. Further information sent on request. READ THIS COLOMN CAREFULLY,- You will find inquiries for certain ilasses of articles numbered
consecutive order. If you manufacture these goods write us at once and we will send you the name and is no charge for this service. In every case it is necessary to give the number of the inquiry. Where manufacturers do not respond promptly the
inquiry
may

BUSINESS OPPORTUNITIES A NYONE, anywhere, can start a mall order business
at home. No anwassing. Beyour own boss. Send for
free booklet. Tells how. Heacock, 1279, Lockport, No V . Inquiry
buttons.

HELP WANTED

WE WANT LOCAL REPRESENTATIVES in every
 1nquiry No. 8960.-For the address of the Wind-
cor Mfg. Co., manufacturers of waterproof collars and
cutts WANTED.-Marine Engineer with capital to invest,
capable of taking management of machine shop in steel ship building plant now under construction. For par-
ticulars address Post O flee Box 64, Vancouver, B. C Inquiry
Electro-Catalytic Sprarking Plug.,

PARTNERS WANTED.

 Patent No. 855.042 on a royalty basis or for sile. Goods
are staple and cheaply made. Partner, Box 773 , N. Y. Inquiry No. 898\%- Wanted, the manufacturers of
the Van Winkie Woods \& Sons, and the Weber power
meters.

PATENTS FOR SA

 FOR SALE. Patent No. 900,457. An Improved lathe rest tor holding cyllnders while being bored inau enging
lathe. For further particulars address A. E. Whiting,
Weston, W. Va. Inquiry No. S990.- For iuformation regarding
stoes not made of leather but similar to the same and
are as durable PATENT FOR SALE.-Combination trunk and type-
Writer desk; a very useful device for travelers. The desk, with typerwriter in place, and pigeon hole anneex;
remove tyewriter and put in its place a looking glass,
and remo typewriter and put in its place a looking gass,
and you will have a pertect dressing table, useful for
either sex. I will sell this patent outright or grait
 luquiry No. 9014.- For manufacturers of ma-
chinery, mapplies, etc., to equip a smant plant for the
manutacure
fountain pens. THE SANBORN BAG JIIFTER. A A vice to assist fingers and avoids damage to bay. Sampole sent free Inquiry No. 9016. - Wanted, machinery neecsary
for in in intan
modifiation of the Bessemer process.

FOR SALE.

FOR SALET,-Engine lathe, swings 93 in. takes 25 in .
 Inquiry No. 90.83.- Wanted, to buy silk machnes
from revereling iwisting,
of making it into clothes. SITUATIONS WANTED
MECHANICAL ENGINEER. - Graduate Karlsruhe cal experience, with excellent references desires im-
mediate employment. Address R. F. Subert, 09 Gar-
field Place, Brooklyn. lnquiry
manufacturers in
Germany.

miscellaneous.

"LLGHT, HEAT, MAGNETLSM AND BLEC
TRICITY are all one and the same thing."
want to know what they are, send fift cents for want to know what they are, send fify cents for
a copy of tuis panphlet to A . M. Howland, El Paso,
Texas. Inquiry No. 9028 . - Wanted, to buy a washing
machine that is run by coil spring motur. HAIR GROWS when our Vacuum Cap is used a few
 Inquiry No. 9029. - Wanted, catalogues and all
information on machinery for braiding straw in manu-
facturing straw hats.

LISTS OF MANUFACTURERS. COMPLETE LISTS of manfacturers in all lines sup.
plied at short notice at at moderate rates.
smand and stimates should be obtained in advance. Adress
Munn \& Co., Inc., List Department, Box 773 , New York. Inquiry No. 9034.-For manufacturers of machin-
ery that could reduce stumps to kindling wood. A LIST OF 1,500 minnge and consulting engineers on
cards.
Price
 $\underset{\text { manufacturers of "936.-Wanted, the address of }{ }^{\text {In }} \text {. the }}{ }$
 Inquiry No. 9042. - Wanted the addressor Farney
Safety Razor Co. Inquiry No. 9943.-Wanted the address of the
manufacturers of mirrors thai are transparent when
the light in the rear ir stronger. Inquiry No. 9044.
Inquiry No. 9045.-Wanted the address of the
Interanational ITamber and Development Co., manu-
facturers of hardwood.

Pump bracket, L. A. Washburne
Pump ar apparatus for raising water by
means of compressed air, pneumatic, T. T.

Punch, meta, whe, C. Robinson..........
Purse or machine, rotary, F. Kooish.
Prame, Hiering \& Fuller
Puzzle, A. Schesnack
Puzzle, base ball, T. Mooney
Quadrant adjustment, split

Razor, safety, H. Wilco \ldots.
Reamers, arbor for shell, R. H. Stearns.
Recentacle closure removing device, H.

Sharpening ©evice, blade, w. D. Ciapin...
Shears. See Metal shears. Sheet metal bodies. forming, I. N. Jones.
Sheets, gulde mechanism for traveling,
B. Doman

THE CENTURY PLAN OF LIBRARY-BUILDING MEANS

An Honest Effort along carefully thoughtout lines to provide the reading public with books strictly worth while
A SAVING OF MONEY
©6 T6 SIME
WHY SPEND all your spare money on the complete works
of ONE author, and cumber your library shelves with many
books which you will never read, when, for the same money or
less, you can get the chief works of a number of authors by taking
advantage of this plan? books which you will never read, when, for the same money or
less, you can get the chief works of a number of authors by taking less, you can get the chief works of a number of authors by taking
The Only Plan for the Practical Man or Woman
Exercise the same intelligent discrimination in planning your library as you would in planning the other details of your home

UNITS OF 7
 SETS NOW READY

BALZAC $\begin{gathered}\text { Twenty of the great masterpieces of Balzac's "Comedie Humaine " } \\ \text { (Human Comeat), in which he pictures every phase of French life and }\end{gathered}$ 7 Vols., character under the classiications scesese of Private Lifte. of Provincial Life, of Pari-
28 llus.
sian, of Military and Country Life, and Philosophical
HUGO Among the greatest productions of literary genius. Les Miserables is easily ${ }_{\text {the }}$ most imposing itierary monument of the Ninetenth Century. IV

WASHINGTON IRVING $\begin{gathered}\text { Notable for the beauty of its illustrations by cele- } \\ \text { brated } \\ \text { modern } \\ \text { artists } \\ \text { Reming }\end{gathered}$

DUMAS' VALOIS ROMANCES $\begin{aligned} & \text { Some of the finest creations of Dumats } \\ & \text { are intoduced in these romanes which } \\ & \text { Value }\end{aligned} \mathbf{1 4}$

 EUGENE SUE The author of The Mysteries of Paris and The Wandering Jew Value $\$ 14$

Our Great Club Offer with The Century Magazine
any two sets and the century for one year for $\$ 15$, payments $\$ 1$ a Month THREE "
FOUR
The Century Magazine Will Be Mailed to Any Address Desired
HOW TO ORDER $\begin{aligned} & \text { Send us only } 9 \text { s. } 1.00 \text { now with order written on your letter-head, } \\ & \text { and inclose this advertisement sheet with the desired sets plain. }\end{aligned}$

THE CENTURY CO., Union Sq., NEW YORK
(Concluded from page 381.) eighteen months, and containing the imbedded organs of fowls dead of spirochætosis, were lost, and thus a far-reaching investigation has been temporarily arrested, and it has not yet been possible to replace the material. Upon the receipt of the news of the catastrophe, Mr. Henry S. Wellcome, to whose munificence the InS. Wellione, was due, immediately offered to
stitution whose munificen replace the lost equipment; and trerrugh his generosity the laboratories were completely refitted and re-equipped with the most modern appliances, so that work could be resumed with the minimum delay. Consequently, so far as general usefulness goes, the Institution was only temporarily crippled.
Work is now again in full swing, and it should be pointed out that there is a very large field to be covered yet. If the various countries interested in the exploitation of the continent could establish similar laboratories to this in their respective territories, it would soon become a white man's land, and through con certed action the terrible maladies which at present arrest development wculd be completely subjugated.

ARTILLERY FOR AIRSHIP ATTACK.

(Concluded from page 373.) is clamped tight against the axles. The third type of cannon is of a much heavier build than the two which precede, seeing that in this case it is designed to be
mounted on shipboard, and hence the weight does not need to be reduced as in the other cases. It is of a considerably larger caliber, this being 10.5 centimeters (4.2 inches). In most of the details it is designed on the same lines as the second type. It is intended to be mounted generally upon torpedo boats or swift cruisers, and naturally the gun can be brought into service as an ordinary cannon in cases where it is needed. For the gun proper, the weight is 3,080 pounds, while the support weighs 3,520 pounds, giving a total weight of 6,600 pounds for this type. Like the former, the angle of
elevation is 75 degrees at a maximum. elevation is. 75 degrees at a maximum.
The projectile, weighing 40 pounds, has an initial speed of 2,300 feet per second. A horizontal range of 44,500 feet is reached in this case, and we have the unusual height of 37,620 feet.

The present types of gun were given a series of tests by firing upon captive balloons, and two of our engravings illustrate this feature. In one case we observe the balloon, which has not been hit by the shot, and this can be clearly seen by the trail of smoke which shows the path of the projectile. In the second view is represented the effect which takes place when the projectile strikes the balloon, and we have the detonation of the grenade and at the same time the explosion of the gas and the destruction of the balloon.

Alcohol vs, Gasoline Engines.

Almost any engine with a well-designed carbureter will run as well with alcohol as with gasoline, except for a difference in ease of starting and in certainty of operation at low speeds. By using alcohol in an alcohol engine with a high degree of compression the fuel-consumption rate in gallons per horse-power hour can be made practically the same as for gasoline in a gasoline engine of the same size and speed. An alcohol engine with
the maximum compression for alcohol will have 30 per cent more available horse-power than a gasoline engine of the same size, stroke, and speed, and the weight per horse-power may be less. Tests with mixtures of gasoline and alcohol showed no gain in efficiency over gasoline or alcohol alone. Diluting gasoline with water did not affect fuel economv.
With alcohol the case was different, but with dilutions up to 80 per cent alcohol the effect was so slight that 80 per cent alcohol is a cheaper fuel than 80 per cent if it can be had for 15 per
cent less.
"THE PEN YOU WILL EVENTUALLY BUY"

SEND FOR ILLUSTRATED GIFT BOOKLET The Middle West Number SCIENTIFIC AMERICAN

On December 11th, 1909, the Scientific American will issue a number
devoted entirely to the wonderful Middle West region of the United States, a number which will set forth broadly and lucidly not only the agricultural interests
of that resion, but also those larser enof that region, but also those larger en-
sineering undertakinss which are dessineering undertakings which are des-
tined to transform the Middle West, in part at least, into a manufacturing territory.
With that object in view the Middle West Number will publish articles on
ubjects:
I. The Chicago and Gulf Waterway.-An illuss
VI. Freighting on the Mississippi.- Freighting
 II. Chicago as a Railroad Center
the greatest railroad center in the worid. lil. The Wonderful Grain Trade of Chicago. IV

 has been necessary to de vise a new kind ot lake trans-
portation
been cor structed whiono and ne,000 tons burden have
convey ore at small cost through the Great whaces convey and
counterpart anywhere in the wcrld.
T. The Handling and Sh ipment of Iron Ore.midale West and smelted in the East has necessitate
not only the construction of special freient-carryin
steamers. but also rhe designing of special machyin tamers. but also the designing of special machin nery
or loading and unloading the ore from the steamers.
VI. Freighting on the Mississippi.-Freighting
on ine Mississsio
most of us may realize. more important industry than SII. The Steel Industry. One of the greatest
s:eel plants in the world is that which has been buitt at
Ger
Gary.
Vrili. The Freight Subway System of Chi-
cago.-Chicago can boast of a rational system of hand-
ling freight by means of subways.
IX. The Water Suppl of Chicago. - Chicapo's
IX. The Water Supply of Chicago.-Chicago's
source of water is Labe M1chiga.
with water by means of chity is suppled
X. Reclaiming Arid Lands.-The United States
Government has under way manv irrigation project
for Government has under way manv irr
for the purpose of reclaiming ands wn
which will blossom if properly watered.
Xl. Harvesting the Grain of the Middle
WVest.-Farms that coner not arese but square miles,
crops inat aggregate not simply bushels but car-loads
 anprecedented scare in the middle West. The in-
genious agricultural machinery which has been de-
signed or oope wirh tnese peculiar conditions is de-
scribed and illustrated.
The Middle West Number will be more than twice the size of the regular SCIENTIFIC AMERICAN. It will be lavishly illustrated. It will be contained in a colored cover which strikingly depicts Chicaso's grain elevators at work. Order from your newsdealer or from
MUNN \& COMPANY, Inc., 361 Broadway, New York City

 Kettering.
Stove, L. Moore
Stove, Choltus \&

Superheater for use in connection with wi....... canizers and other apparatus, J. Berliner urfacing machine, A. H. Whatley Surfacing machine, F. R. Allen. Suspender check, F. B.

 Telemeter, H. Wild, H..........
Telemeter rod, C. E. Flanagan.....
Telephone attachment, H. R. Palm

ins, blocking device for, Lattneer\& \& Rob-
 Tube mill lining, G. H. Rotherham.........
Tube welding aparatus, Dicke \& Klinkmann
Tubing, aparatus for making spiral, E. T.
Greenfeld

 Wine

 9×9.44
959929

\qquad

GROBET Swiss Files and other tools shown

[^2] montciomery \& co., 109 Fulton Street, New York City

UUBRICATESSEND ANYTHINGGORE

Excelsior Springs Missouri

With its improved hotel accommodations and a general betterment of local conditions, Excelsior Springs has become an ideal health resort
The known curative powers of the waters of its various springs have been of incalculable benefit to thousands of sufferers from Bright's disease, rheumatism, stomach troubles and kindred disorders. Excelsior Springs is located in Clay County, Missouri, thirty-three miles northeast of Kansas City, on the

Chicago

 Milwaukee \& St. Paul
Railway

Excelsior Springs is best reached by THE SOUTHWEST LIMITED of The St. Paul Road. Leave Union Station, Chicago, at 6:00 p.m., daily, arrive Excelsior Springs at 6:50 a.m. the next day. Breakfast and dinner served on the train. THE SOUTHWEST LIMITED carries compartment-observation and standard sleepers, with longer, bigher and wider berths, dining car, chair car and coaches. Descriptive book free.
F. A. MILLER

General Passenger Agent
CHICAGO
G. A. BLAIR

General Eastern Agent
381 Broadway, New York
A. W. FABER
on a pencil is a synonym for unequaled quality. The finest pencils yet produced by this house, with 148 years' experience in Pencil Making, are the

Drawing, Copying and Ink Pencils
Sold by all stationers and dealers in artists' and drawing materials. Samples worth double the money will be sent you on receipt of 10 cts.
A. W. FABER, 49 Dickerson Street, Newark, N. J

Big Money In Drilling

and

Cyclone Drill

CYCLONE DRILL COMPANYY 11 Main St.. Orrville, Ohio

$\square \square$ Casoline
Not only emfient, but simple, sure, economica
 Air-coled , Water.cooled 1 Ito
cataloe and particulars address
international harvester co. of america 15 Harvester Bldg., Chicago, U. S. A.

A little higher in price, perhaps, but give Double the W'ear and Treble the Protection Physicians Everywhere
Recommend Them.
dr. JAEGER'S S. W. S. Co.'s own stores:

Earn \$60 to \$140 Month

Hundreds of positions open for steam
railway Firemen and Brakemen,
and electric railway Motormen and and electric railway Motormen and
Conductors.
Experience unnecesCond Writors. Experience unneces-
sary
ticulars stating poediately for full parRAILWAY ASSOCIATION,

[^0]:

[^1]: in

[^2]: Sent free if you mention this paper when writing.

