MAKING ALCOHOL FROM WOOD WASTE.

A middle West industry, for which a great future is promised, is that of the manufacture of alcohol from sawdust, shavings, slabs, and other refuse of the lumber mill.

Rumors of improved methods and great economies in the manufacture of wood alcohol have been "in the air" for some time, and we have received a number of inquiries on the subject from subscribers and correspondents. We are glad, therefore, to be able to give now some details of the new process, for which patents have recently been granted to Mr. Malcolm F. Ewen and Mr. George H. Tomlinson of Chicago.
and energy from his other great responsibilities to continue independent investigations, and it is largely owing to his personal and financial support that the present successful process has been developed, one of the patentees being his brother.

Lumbermen have long been alive to the necessity of finding a use for the appaling piles of waste they are compelled annually to destroy, if only as a means of additional profit, before the question of conservation of natural resources became of national interest. In addition, there are many and various uses to which alcohol is applicable with advantage, and from which it has hitherto been excluded by its cost.

A diffusing battery of four units.

One of the large tanks in which the wood pulp is fermented.

The digesting machine which performs the fanctions of a mechanical stomach. It converts the starch of wood waste into sugar.

MARING ALCOHOL FROM WOOD WASTE.

It has long been known that ethyl alcohol and other valuable by-products could be made from wood waste in laboratory experiments, and many processes have been developed, but practically none of them has reached the stage of economic success on a commercial scale.
One of these aroused the interest of Mr. John M. Ewen, better known as a constructional steel work engineer and manager of the Fuller Construction Company, builders of so many "skyscrapers." Although it was not found practicable commercially, Mr. Ewen was so much impressed with the possibilities of cheap alcohol from wood waste that he spared enough time

All kinds of internal-combustion engines, for instance, can use alcohol as fuel with advantage over gasoline and with very little modification.

One of the greatest advantages of the production of a pure alcohol from wood, however, will be the release for food purposes of the millions of bushels of corn and barley now consumed in the manufacture of grain alcohol.

The price of grain alcohol is at present $\$ 2.60$ a gallon at 188 proof, of which $\$ 2.07$ is internal revenue tax, the net wholesale price being only 53 cents. Corn worth 26 cents is required for the manufacture of a (Continued on page 359.)

TRIALS OF THE NEW "DREADNOUGHT"-"NORTH DAKOTA."
In view of the fact that the first two "Dreadnoughts" to be built for the United States navy are identical in everything except motive power, the "Delaware" being driven by reciprocating engines and the "North Dakota" by Curtis turbines, an unusual amount of interest has been aroused by the recent speed trials of these two ships. The "Delaware," which was built by the Newport News Shipbuilding Company, was tried out over the course off Rockland, Maine. She is equipped with Babcock \& Wilcox boilers, and in the five trial runs for standardization of her propellers,

Reading the thermometers.

Still by which a fine grade of ethyl or grain alcohol has been made out of sawdust and slabs.
which were made over the mile course, she developed a maximum speed for one mile of 21.98 linots, a mean speed for the five runs of 21.44 knots; a maximum horse-power of 30,000 , and a mean horise-power of 28,578.
The "North Dakota" is not only an exact duplicate ot the "Delaware" in the form of her hull and in the displacement, but in common with that ship is equipped. with fourteen Babcock \& Wilcox boilers. Consequently, the Navy Department was in a position to make a most exact comparison of the efficiency of the respective motive power, all the conditions except (Continued on page 360.)

 Phonograph records, holder and
Alexander
E. Knickerbocker.
Cogan.

 groved, A. L. Mowry....
Pipe coupling, G. W. Wurry...
Pipe coupling, E. Marek....
Pipe lines, devie for passing

 Plante
Plow,
Plow,
Plow
Plow,
Plow
Plum
Plum

Steef

MEN WANTED

Deaf Persons Otophone

$\mathfrak{V E V}$

938,97
93888
938,75
938

$\mathbf{9 3 8 , 6 4 2}$
$\mathbf{9 3 8}, 531$ ※ue
 eemee

 939,090
938.461

93871 938,820 | 938,892 |
| :---: |
| 93984 |
| 93 | ${ }^{939,164}$

(Concluded from page 959.)
a day may profitably combine to operate their refuse into alcohol.
Whereas it may be not a little alarming to the prohibitionists to suggest that a drinkable alcohol may be so cheaply made from sawdust, much as one may deprecate the manufacture of artificial wines and liquors and adulteration with alcohol, it is at least satisfactory that the product of the new process is actually purer than that made from grain.

TRIALS OF THE " NORTH DAKOTA."

(Continued from page ?52.) that of the motors being identical
The five trials of the "North Dakota" over the mile course gave the following speeds: $22.25,21.48,22.13,21.51$, and 23.13 , the average speed working out at 21.83 tnots. She thus not only exceeded the mean speed of the "Delaware" by 0.39 knot, but the turbines exceeded the reciprocating engines by over 5000 horse-power. The maximum number of revolutions of her propellers was 286 a minute, and it was found that 263 revolutions were sufficient to maintain the contract speed of 21 knots.
In the four-hour test under full power the "North Dakota" made 21.71 knots for the first two hours, and 21.64 knots in the third hour. On the fourth mile the failure of a tube in one of the boilers necessitated the shutting down of four out of the fourteen boilers; but even under this greatly reduced power, the speed of the ship was exactly 21 knots. A feature which, from the military standpoint, is of the greatest importance is the remarkable steadiness of the ship, even when the turbines are being pushed to the limit. Throughout the greater part of the length of the ship it was scarcely possible to tell, from any vibration, that the engines were in motion. This is a feature which is particularly appreciated by ordnance officers; since the vibration which is noticeable on ships driven by reciprocating engines is more or less disturbing to the gun sights. The "North Dakota," which is considerably the largest warship yet built for our navy, has been constructed in record time; and gratulated on the fact that, had it not been for delays in the furnishing of armor, they would have cut down the record for construction even more than they have. Her dimensions are: Total length, 518 feet 9 inches; beam, 85 feet $21 / 2$ inches; draft on trial, 27 feet; displacement on trial, 20,000 tons. She is the most completely armored ship afloat. Her main belt, 7 feet 6 inches wide,
tapers from 10 inches at its bottom edge to 12 inches at its top edge. Above this, extending to the gun deck, is a second belt 8 feet wide, tapering from 10 inches at its bottom edge to 8 inches at the top. The 5 -inch guns have a protection of 5 inches of armor, and the main turrets and barbettes are protected by 11 inches.
The lines of the ship are particularly fine, in fact, as fine as those of our armored cruisers. She will prove to be a splendid vessel when heading into a heavy sea; for not only has she freeboard, due to her forecastle deck, of 27 feet, but she is given a very pronounced outward flare, which should serve to lift her comfortably over the waves, and enable the ship to be driven at full speed in heavy weather. An innovation is the placing of the officers' quarters forward under the forecastle deck and in the superstructure immediately abaft of the two forward turrets.
The battery is mounted on the longitudinal axis of the ship, a disposition which originated with our Construction Department, and is being followed by some foreign navies. The placing of all the guns on the center line enables the whole battery to be trained on either beam, giving the ship a broadside discharge either to port or starboard of ten 12 -inch guns. This arrangement, it is true, weakens the end-on fire, which, in (Concluded on page 361.)

Home-Made Experimental Apparatus

In addition to the following articles, the
Scientific American Supplement has published innumerable papers of impeemense practical value.
of which over 17,000 are listed in of which over 17,000 are listed in a carefull
prepared catalogue, which will be sent preparge co atalogue, which will be sent free of
charge to any adress. Copies of the Scientifc
American Supplement cost 10 cents American Supplement cost 10 cents each.
If there is any scientific, mechanical, or en-
gineering subject on which special information is desired, some papers will be found in this
catalogue, in which it is fully discussed by
competent

A few of the many valuable articles on the
making of experimental apparatus at home are making of experimental appa
given in the following list:
The article tells how a small and simple ex. perimental installation can be set up at home
Scientific American Supplement 1551 . A CONSCTRIC CHIME AND HOW IT MAY BE CONSTRUCTED AT HOME, is described in
Scientific American Supplement 1566 . THE CONSTRUCTION OF AN ELECTRIC can Supplement 1 exbe.
HOW TO MAKE A $100-$ MILE WIRELESS TELEGRAPH OUTETA is told by A. Frederics
Collins in Scientific American Supplement A SMMPE TRANSFORMER FOR AMA.
TEUR'S USE is so plainly described in Soien-
tific American Supplement 1572 that anyone can
A $1 / 1 /$-H.-P. ALTERNATING CURRENT DY
NAMO. Scientific American Supplement 1558 . THE CONSTRUCTION OF A SIMPLE PHO-
TOGRAPHHC AND MICRO.PHOTOGRAPHTC
APPARATUS is simply explained in Scientifo APPARATUS is simply ex
American Supplement 1574 .
A SIMPLE CAMERA-SHUTTER MADE OOT
OF ASTEAERA BOX, PINS, AND A RUBBER BAND is the subject of an
Scientific American Supplement 1578 .
HOW TO MAKE AN AEROPLANE OR GLID
ING MACHINE is explained In Scientific Ameri EXPERIMENTS WITH A LAMP CHIMNEY.
In this article it is shown how a lagy chimney may serve to indicate the pressure in the in
terior of a liiquid to explain the meaning o
capillary elevation and depression; to serve as a hydraulic tournique, an aspiriator, and intermit-
tent siphon; to demonstrate the ascent of liquids in exhaustive tubesen; to illustrate ascent of the phenomenids
of the bursting bladder and of the expansive
orte

HOW A TANGENT GALVANOMETER CAN BE USED FOR MAKING ELECRICTEL MEAS.
UREMENTS is described in Scientific American
Supplement 1584. THE CONSTRUCTION OF AN INDEPENactual dimensions are
American
Supplement 1615 ,
AN EASILY MADE HIGH FREQUENCY APPARATUS WHICH CAN BE USED TO OB.
TAIN EITHER DARSONVAL OROVDN CUR.
RENTS is described in Scientific American Supplement 1618. A plunge battery of six cells,
a two-inch apork induction coil, a pair of one-
pint Leyden jars, and an inductance coil, and all
Le and pint Leyden jars, and an inductance coll, and all
the apparatus required, most of which can be

SIMPLE WIRELESS TELEGRAPH SYSTEMS are described 1 n
ments 1363 and 1381 . THE LOCATION AND ERECTION OF A 100.
MILE WIRELESS TELEGRAPH STATON is
clearly explained, with the help of diagrams, THE INSTALLATION AND ADJUSTMENT THE INSTALLATION AND ADJUSTMENT
OF A 100MILE WIRELESS TELEGRAPH OUT.
FIT, illustrate with diagrams, Scientific AmeriTHE MAKING AND THE USING OF A
WIREESS TELEGRAPH TUNING DEVICE,
illustrated with diagrams, Scientific American illustrated with
Supplement 1624 . HOW TO MAKE A MAGIC LANTERN, Scien-
tific American Supplement 1546 . THE CONSTRUCTION OF AN EDDY RITE. THE DEMAGNETIZATION OF A WATCH is
thoroughly described in Scientific American Sup. plement 1561 .
HOW A CALORIC OR HOT AIR ENGINE
CAN BE MADE AT HOME is well
with the helaned, of illustrations, in Scientific
THE MARING OF A RHEOSTAT is outlined Good articles on SMALL WATER MOTORS
are contanined in Scientific American Supplement
1494, 1049, and 1406 . how an electric ofen can be mad T.

A SEWING-MACHINE MOTOR OF SDMPLE A WHEATSTONE BRIDGE, Scientific AmeriGood articles on INDUCTIION CorLs are con-
tained in Scientific American Supplements 1514,
1522 , tained in Scientific American Suplements
1522, and 1527 Full details are given so that
te coils can readily be made by anyone.
HOW TO MAKE A TELEPHONE is
in
Scientific
American
Supplement 966 . A MODEL STEAM ENGINE is thoroughly de-
scribed in Scientific Americun Supplement, 1527.
 563, and 1566.
ANEROID BA
ANEROID BAROMETERS, Scientific American

- 1500 and 1554 .
a Water bath, Scientific American Supple-
ment 1464.
atic TAA CHEAP LATHE UPON WHICH MOCH VALUABLE WORK CAN BE DONE forms the
subject of an article contained in
American Supplement 1562.
Each number of the Scientific Δ merican Sup-
plement costs 10 cents by mall.
Order from your newsdealer or from
MUNN \& CO., Inc., 361 Broadway, New York

Classified Advertisements Advertising in tbis column is conts a line. No less
than four nor more than ten lines accepted. Count
seven words to the line. All orders must be accompanied by
request.
READ THIS COLOMN CAREFULLY.-You will find inquiries for certain classes of articles numbered in
consecutive order. If you manufacture tbese goods write us at once and we will send you the name and
address of the party desiring the inf irmation. There is no charge for this service. In every case it is necessary to give the number of the inquiry.
Where manufacturers do not respond promptly tbe inquiry may be repeated.

MUNN \& CO.. Inc.

BUSINESS OPPORTUNITIES

 butniry
buttons.
 Yorik City

1naniry No. 8060.-For the adaress of the Wind
son H.t. Co., mauufacturere of waterproof collare and
culs.

EDUCATIONAL

PATENTS FOR SALE.

 Inquiry Nor.
manufucturers of of riit - Fars.

Inquiry
Helparp
None., 9010.-Wanted to buy a "Rector
For SaLE. Combined foldink ironing table and

 fountain pens.

FOR SALE.

 Inquiry No. 9018.- Wanted the address of parties
mannutacturing gold-plated pens for use in cheap founmain pens.
Fors
tai

 motor. no ex eveening three
eversting in in Roing order.

TYPEWRITERS.

 Inquiry No. 90.e3.- Wanted, to buy silk machines
from re-reeling, twisting,
of making it into clothes.

MISCELLANEOUS.

 a cexas.
$\underset{\text { lnquiry No. (9025.- }}{\text { manufacturers in }}$ Germany.
WANTED.-Catalogues and prices from parties who
sell Ar manufature complete canning and cand-making
plant. Adores.
Care Ice Plant.

LISTS OF MANUFACTURERS COMPLETE LIS'S of manufacturers in all lines sup.
plied at short notice at moderate rates. Small and special hats compiled to urder at various prices. Es.
timates should be obtained in adance. Adres.
Munn \& Co., Inc., List Department, Box 773 . New York.
 A LIST OF 1,500 munng and consulting engineers on
cards.
Price. $\$ 15.0$ very
Addraluable
list Price ${ }^{* 15.00 .}$ Address M M,
ment. Box $i \tau 3$, New lork.
Inquiry No. 9028 . - Wanted, to buy a wasbing
machine that is run by coil spring motor. Inquiry No. 9029. - Wanted. catalogues and all
information on machinery for braiding straw in manu-
tacturing straw hats. Inquiry No. 9030.-Wanted. the address of frms
manufacturina wood iber bottle and case made from
same material Inquiry No. 9034 .-For manufacturers of machin•
ery that could reduce stumps to kinding wood. Inquiry No. 9036.-Wanted, tbe addrass of , the
manufacturers of "Cycie Ball Bearing Suspenders."
(Concluded from page 360.) these ships, consists of only four guns, as against six guns in several foreign navies; but it is the belief of our naval officers that future engagements will be fought almost entirely broadside to broadside. Personally, we are inclined to the belief that if the third and fourth turrets were staggered, the third being moved over to starboard and the fourth turret to port, the effectiveness of the gunfire would be increased without diminishing the broadside fire.
The foremost pair of guns have a command of 33 feet. The pair immediately astern have a command of 41 feet. Tur ret No. 3 carries its guns about 32 feet above the sea, and those in the two after turrets have a command of about 25 feet. We shall hope in a later article to give further particulars of the trials of this vessel.

Radiations of Short Wave Length.
At the recent 'meeting of the British Association for the Advancement of Science, at Winnipeg, Prof. Lyman, of Harvard University, described his interesting researches on radiations of very short wave lengths. The radiations involved in ordinary laboratory work are comprised between 6,800 and 2,600 of Angstrom's
scale. Schumann has demonstrated the great effect of the atmosphere in limiting the spectrum in the ultra-violet region. By the employment of lenses of fluorine, Prof. Lyman has extended Schumann's researches, especially to the region between 2,000 and 1,030 Angstrom, which exhibits peculiarities of great interest. No visible hydrogen line was found between $\equiv, 000$ and 1,650 . Between 1,650 and 1,030 conspicuous lines of hydrogen were observed, but they did not exhibit the grouping which is characteristic of hydrogen lines in other parts of the spectrum. No lines of nitrogen, oxygen, or helium and only a few lines of argon were detected between 2,000 and 1,030 . In this region carbon dioxide and carbon monoxide show spectra of many bands. Hydrogen, argon, and helium are very transparent to these radiations, but oxygen absorbs them energetically. Here, probably, is the explanation of the opacity of air to these radiations. Prof. Lyman has corrected the limit of absorption by fluorine. This absorption begins at 1,265 Angstrom and not at 846 , as had previously been believed. The chemical effects of these radiations of short wave length are very intense. Oxygen, espectally at low pressures, is strongly ozonized. Gases, in general, are ionized, the more strongly as their pressure is lowered. Bumstead has shown that the photochemical action of these radiations is 25 times more intense than that of ordinary ultra-violet rays.La Nature.

The Fortieth Birthday of the Post Card. The first post cards were issued in Austria on October 1st, 1869. The idea had already been suggested, but not adopted, at the fifth German postal congress, in 1865. Its adoption in Austria appears to be due to an article published n 1869 by Prof. Emanuel Hermann of ienna, who is sometimes called the in ventor of the post card. In 1870 post
cards were issued by the North German Postal Union, Bavaria, England, and (Concluded on page 363.)

Then, if you can't say with perfect truth, "Never have I inquirers we'd gladly send it free. Send just $\$ 1.00$. enjoyed such soothing shaves," sendit right back at our $\begin{aligned} & \text { Try the Never Fail } 15 \text { days. Subject it to the } \\ & \text { expense and well retum your money. } \\ & \text { severest tesks. Then, if not completely saisfied-if not }\end{aligned}$ expense and well retum your money.
With the Never Fail, every user is at once an the best stropper you ever used-if it doesn t do just expert. You can instandy sharpen any razor - any as we say, send for your money. styleblade-and make it better than the day it passed There never was a shaving problem-it has always the shop inspector. Better, keener, sharper than it can been a sharpening problem. Any man can use a be made by the most expert hand a few strokes on eithers side does the
trick-five or six seconds. If you use safeyblades, the NEVER FAIL
WILL MAKE EVERY WILL MAKE EVERY ONE 50 to 150 PERFECT SHAVES,
so it will pay for itself in money as
well as time saved.
\$1
AND THE COUPON BRINGS THIS three dollar NEVER FAIL STROPPER

We are so positive the Never
Fail will make cood that we ispe the
excepional offer conamed in the center razor, provic
sharpened.
We could tell you about the way the Never Fail is made, but you don't care to hear it. You only want
to be cerain of a GOOD stropperone that will positively end your shaving troublea. Wehaveitin the Never
Fail. One Fail. One dollar and the coupon
will prove it, on depooit while your dollar is simply oa depont while you judge.
Don t go on shaving the old way
of this advertisement. Wo wa nt you toenjoy a Never tix
Fail like thousands of othas. We want you to know, Fy experience, the pleasure of a smooth, soothing, comfortable shav er.
 s an evidence of sood faith. Could what anply bur clip the
NEVER FAIL COMPANY, 1067 Nicholas Bldg., Toledo, Ohio

GUYde MAUPASSANT

King of All Short Story Writers

8 Volumes, Illustrated.
Size, $41 / 2 \times 7$ inches
Over 200 Complete Stories and

Pearson's Magazine

FOR ONE YEAR

Only $\$ 3.60$ delivered FREE

Most Exceptional Offer-LIMITED NUMBER

$F^{\text {a }}$
RENCH AUTHORS have written many lively tales which, because of false conventional modesty, have been, until recent translations, unknown to those
who read only Enslish. Prudish modesty and unfair prejudice have deprived us of the merriest and liveliest tales ever written. Maupassant was the one man in France who, because of his environment and temperament, could write truly the realistic scenes of REAL PARISIAN LIFE so fascinatingly as to rivet your attention to his merry tales, to the exclusion of everything else.
T Maupassant's eventful career \$ave him ideas, situations and local color for his unsurpassed stories. Strons in imasination, overflowing with natural enthusiasm and passion in his study of human life and phases of human conduct, THE REAL DOINGS OF LIFE-is what Maupassant or as we would - BP ThE REAL DOINGS OF LIFE-is what Maupassant always gives us. G Poe natural and the possible, holding a mirror up to nature. His dramatic instinct, his situations and his climaxes are overwhelming. He always fixes upon the one thing of most human-soul interest and makes it as vivid as any stage scene. These absorbing stories should be in every library-tales of travel, mystery, adventure, comedy, pathos and tragedy, love and realism. TIEICHT BEAUTIFUL VOL
UMES of the Most Fascinating Reading in the World. Contain over 2,500 pases, more than
300 pages to the volume, printed from a new cast of 8 point type, from a new cast of 8 point type,
larse and clear, on pure white antique paper, made specially for
this edition. Pases are wide with this edition. Pases are wide, with
liberal marsins, illustrated with specially made made line-cut frontitspiecees,
bound in de luxe art cloth, backs bound in de luxe art cloth, backs
and sides stamped with an orna-
mental desisn.

Tio WE GUARANTEE that this edi-
tion is the first printins from brand
new type and illustration plates.
FOR SALE at all leading BOOK, DEPARTMENT STORES and NEWSDEALERS in the United States and Canada. If your dealer doesn't have it, write direct to PEARSON'S AT ONCE before this \qquad Advertising Edition is exhausted.
(Concluded from page 361,) Switzerland. The German cards printed without the impression of a stamp until 1872, in which year also the first return post cards were issued, in Germany. At the postal congress which met at Berne in 1874, and at which 22 countries were represented, the international post card of the value of 10 pfennigs, $121 / 2$ centimes, 1 penny, or 2 cents was
adopted. The post card soon became adopted. The post card soon became countries. Post cards are now issued in great numbers by 22 governments. In Germany alone more than 1,500 million post cards are used annually
The private picture post card, which has attained such amazing popularity within the last decade, is nearly as old as the government post card. It is also of German invention and it owes its origin to the Franco-Prussian war. On July 16th, 1870, the first illustrated post card, bearing the picture of a gunner, was placed on sale by Schwartz, in Oldenburg. The manufacture of picture cards was afterward taken up by Brandt in Dresden. The industry, which is still carried on chiefly in Germany, has developed to gigantic proportions. Although many of the
cards are striking examples of bad taste and vulgarity it cannot be denied that the best of the so-called art cards and the reproductions of famous paintings and statues have extended the love for the beautiful and that the landscape views have given to many persons some idea of the beauties of their own and foreign lands of which they would otherwise have remained in ignorance.

Expenditure of Muscular Energy in

 Bicyeling.Bulletin 208 of the U. S. Department of Agriculture contains a description of experiments made by Profs. Benedict and Carpenter, of Wesleyan University, on the expenditure of muscular energy in bicycling. The chief result of the experiments which were conducted with the aid of the respiration calorimeter, is that in bi-
cycling the muscles of the legs work with an efficiency of 20 to 22 per cent, or, in other words, for each unit of heat produced by the external work of the muscles about four units of heat are lost by radiation, in addition to the heat so lost when the body is at rest. The external work was measured by an ergometer, consisting of a bicycle, the rear wheel of which was replaced by a copper disk, which rotated between the poles of an electromagnet forming an electromagnetic brake. By this means the work was consumed in the production of induced currents in the disk and was ultimately converted into heat, which was measured by inclosing the whole machine in the calorimeter. The rider was then inclosed, with the machine, in the calorimeter and the heat produced in a definite interval of time was again in a definite interval of time was again
measured. This heat was made up measured. This heat was made up of
three parts: the heat generated in the body in consequence of its muscular activity, the heat which would be evolved in the same time by the body at rest, and the heat produced in the ergometer by the external work of the muscles. The lastnamed portion had been measured in the preliminary experiment already described, and the second portion was meas ured by inclosing the man at rest in the calorimeter. These portions having been subtracted from the total quantity of heat produced in the main experiment, the remainder represented the heat generated in the body in consequence of the activity of the muscles employed in bicycling This remainder was found to be about four times the heat generated in the ergo meter, whether the bicyclist worked moderately or strenuously and whether he was experienced or not. Training, therefore appears to have little effect upon the thermo-dynamical efficiency. It has long been known that the human body is a highly efficient engine, but it should be noted that the high efficiency of 20 to 22 per cent, exhibited in these experiments has been exceeded by the Diesel

INVENTORS

CONSULTING ENGINEER.

SOUTHERN STAMPING \& MFG, CO.

MASON'S NEW PAT. WHIP HOIST dirrect from teams. savee handinn ateess expense. Manfl. by Youner w. Wintisox.

RUBBER

K至 Magical Apparatus.

Experimental \& Model Work
MODELS EEEXPERIM ENTAL WORK:

With that object in view the Middle West Number will publish articles on the following subjects :
I. The Chicago and Gulf Waterway, An illus.
traied deschiotion of chicamo'drainaze canal an en-
ineering wurk which stands without a paraliel in the
II. Chicago an a Railroad Center.
the greatest ruilroad center int the world.
111. Thie W onderful Gra in Trade of Chicago.
IV. Shippi
 na ces of the East at a cost which will enable American
steel makers to compete with foreten ateel maker, it
has been necessary to devise a new kind or lake trans
 The abye-mentioned fact that iron orent is minon Ore-

VI. Freighting on the Mississippi.-Freighting
on (he Mississipp it a more important industry than VIII. The Steel Indnstry. -One of the greatest
steel plants in the world is that which has been built at
Gary CIII. The Freight Suhway System of Chi-
cageo.-Chicago can bospt of aratyonal system of band-
ling freight by means or subways. IX. The Water Supply of Chicago..-Chicago's.
eource of water is Lake Michigan. Tbe city is supplied
 G. Reclaiming Arid Lands. -The United States
Govermment bas und
for the purpose of reclaiming many mand irination projects which will ulossom if properly watered.
Xl. Harvesting the Grain of the Middle
Weat.-Farms that cover not acres but square miles,

The Middle West Number will be more than twice the size of the regular SCIENTIFIC AMERICAN. It will be lavishly illustrated. It will be contained in a colored cover which strikingly depicts Chicago's grain elevators at work. Order from your newsdealer or from
MUNN \& COMPANY, Inc., 361 Broadway, New York City

The

 Middle West Number SCIENTIFIC AMERICANific December 11th, 1909, the Sciendevoted entirely to the wonderful Mid dle West region of the United States, a number which will set forth broadly and
lucidly not only the asricultural interests lucidly not only the agricultural interests
of that resion, but also those larger enof that region, but also those larger en-
sineering undertakings which are dessineering undertakings which are des-
tined to transform the Middle West, in part at least, into a manufacturing ter-
ritory.

VE= $=$ "

 | 938,969 |
| :--- |
| 938.643 |
| 939.114 |
| 938,810 |
| 338 |

Wagon rack, revolving suspension, w.
Martin 939,147
Washluz machine, rotary, W. E. Pery.
Wath movement holder
Watch setting device. J. H. Gorman.
Watch setting mechanism. A. Plean.
Watch stem. winding mechanism, A.
9388,592
939.103

\qquad
\qquad
 Hist
Munn
For
\& Corms
Co.,
nne.,

