THE OPHTHALMO-DIAPHANOSCOPE.

The ophthalmo-diaphanoscope is an instrument for examining the fundus, or back of the human eye. It is the invention of Dr. Carl Hertzell, of Berlin, who claims that the instrument and its accessories supersede anything that has previously been in use. Briefly, the instrument consists of an eighty candle-power electric lamp, which the patient holds in his mouth, as far back as possible. This highly illuminates the retina of the eye from the back, and the surgeon, looking at it from the front, is able to make a much more satisfactory examination than was possible by means of reflected light and eye-mirrors.
Of course, the examination takes place in a totally dark room, while the patient wears a. black mask over his face, in order to concentrate the effect of the illumination, holes being cut in front of the eyes, through which the surgeon makes his observations.

These are the essential points connected with the ophthalmo-diaphanoscope and its working. There are, however, a few other details connected with the invention which are of particular interest. The illumination, which is concentrated at one end of the tube, is ten times more powerful than that which is emitted by any other lamp previously employed in surgery for transmitted light. As we have seen, the normal candle-power is eighty; and a moment's reflection will convince the reader that it would be quite out of the question to make use of an ordinary lamp of this kind in the mouth, or, indeed, in close contact with any part of the body, because of the great heat which is generated. This difficulty has been surmounted by means of a continuous stream of cold water which circulates within the lamp. In the complete equipment, the water is stored in a glass reservoir supported upon a column, down the hollow of which the fluid passes to a flexible tube which carries the stream into the lamp, through which it circulates. A similar tube carries away the waste water, which is ultimately discharged into a vessel at the base of the apparatus.
A necessary and most ingenious addition to the ophthalmo-diaphanoscope is the contact signal lamp, which is fixed to the col umn beneath the reservoir, that is to say, about on a level with the eyes of the surgeon when he is making an examination of the patient.
This lamp lights automatically just before all the water is discharged from the reservoir, so that no matter how much absorbed the surgeon may become in his examination, he will be at once apprised that the reservoir is almost empty by a sudden illumination of the darkened chamber. He can then at once switch off the current from the lamp, which, now that the cooling stream has ceased to flow, would become heated and cause discomfort to his patient.
It should be added that the outer cover glass of the special lamp is readily removable, so that it may be sterilized after each use. Moreover, every part of the lamp may be had in duplicate: and as these are perfectly interchangeable, a broken or faulty part may be at once replaced. The whole apparatus has been devised with the utmost care; and it is claimed that even 'those who are unfamiliar with electrical appliances may quickly become accustomed to its use The ophthalmo-diaphanoscope was specially invented as an aid to diagnosing diseases of the eye; but it has proved of great service in examinations of the throat and nasal cavities, while it will probably prove of service to medical science in many other ways. Its chief advantage lies in the fact that an extremely powerful light may be obtained without heat radiation.

testing bitumens for

pavements.

In every direction, the industrial and scientific worlds are endeavoring to measure the properties of substances. An instance of this tendency was given in the article on "Testing for Hardness" in the Scientific American for August 29th, 1908. In the present article it is proposed to give some account of measurement efforts in a very different field of activity. The sheet asphalt pavements

THE OPHTHALMO-DIAPHANOSCOPE.
so common in certain parts of the United States are composed of an admixture of some asphaltic cement and sand. It is quite important to have pretty exact information about this bituminous cement in advance of its use in paving mixtures. One reason for this is that the cements are by no means all alike. And second, the requirements for this use and that vary greatly. Thus it comes about that it is a matter of considerable importance to determine the characteristics

Figs. 1 and 2 show mold for sample prism. Figs. 3 and 4 show side and
front views of the Dow penetrometer.
of samples in course of manufacture or an advance of actual use. In fact, since the asphaltic cement is the controlling factor in the mixture used in sheet asphalt paving, it is very necessary to make this cement with just the properties suited to.the particular

Side view of the improved penetrometer.

Pendulam and indicator dial. nium rod by the screw B. Atta the alumi aluminum rod C is the framework $S S$, Fig. 4, carrying a weight W. It will readily be seen now that by locking the clamp E open, by means of the button F, the needle, weighted by the parts $C, S S$, and W, may be brought into contact with the upper surface of the specimen, and allowed to begin penetration.
There: are two remaining things for which mechanism must be arranged There must be some means of measuring the time and the amount of penetration. The former of these is quite a simple matter. A pendulum beating half-seconds is arranged at some convenient point of attachment. The sec ond requirement is accomplish ed as follows: In Figs. 3 and 4 , G is a rack meshing with a pinion back of the dial K, and controlling the indicator. At the rear end of the spindle carrying the pinion is a drum A rather thick thread is wound about this drum, and weighted at its lower end by the weight H. This last is of such amount as just to counterbalance the weight of the rack on the pinion. Consequently, if the lower end of the rack is brought into contact with the aluminium rod C, it will not contribute any influence to the penetration of the needle. At the beginning of the test, the lower part of the rack is brought into contact with C, and again at the conclusion The difference in position of the rack will, therefore, give the amount which the needle has
(Concluded on page 343.)

testing bitumens.

(Concluded from page 386.) penetrated into the specimen. As it is desired to ascertain this with considerable accuracy, it is necessary to magnify the displacement of the rack. This is the office of the pinion and indicator. The dimensions of these are so arranged that a fall of 0.1 millimeter ($=0.0039$ inch) will correspond to one division on the dial.
Penetration at most temperatures is permitted for just five seconds. At the beginning the reading of the dial is noted, and also at the close. The dif ference will show the amount of penetration in terms of tenths of a millimeter. But if the test is made at the freezing point of water, or at a lower temperature, the penetration is allowed to continue for a full minute. The weight carried by the needle is not always the same. For temperatures that do not rise above 32 deg. F., the weight is 200 grammes. At 77 deg. F. it is 100 grammes. For a temperature of 100 deg . F. or higher, the weight is reduced to 50 grammes. As the apparatus depending upon the needles weighs just 50 grammes, apart from the weight W, the requisite variations in load are readily made.
The question arises here, however, as to whether there is any point of view from which the amounts of penetration at the various temperatures may be regarded as comparable. Thus. Mr. Dow gives the penetrations of three different asphaltic cements, A, B, and C, as follows:

PENETRATION		
Temperature.	A.	B.
32 deg. $\mathrm{F} \ldots \ldots \ldots \ldots$	10	13
77 deg. $\mathrm{F} \ldots \ldots \ldots \ldots$	55	47
100 deg. $\mathrm{F} \ldots \ldots \ldots \ldots$	150	110
115 deg. $\ldots \ldots \ldots \ldots$	350	220

The amount of penetration of A at 32 deg. F. is 10 ; at 77 deg. F. it is 55 . But are the cases comparable? Can we say with an justice that the viscosity in the The penetration of 55 was accomplished with half the load and in one-twelfth the time. Offhand, it would seem that the number 55 should be 24 times as great
There are, however, two other influeuce at work-one tending to make the number 10 too large, the other tending to reduce it. Falling bodies-and such a body the penetrating needle is-do not have a uniform velocity, but become ac celerated. On the other hand, as pointed out by Mr. S. Whinery, the depth of penetration is not a measure of the work done, the needle being in fact of a coni cal form. The farther the penetration the greater the amount of material displaced, and the greater the frictional re sistance (due to adhesion) per unit of penetration. However, it is conceivable that the form and material of these coun teracting factors might be so adjusted as to nullify each other

With the disturbances arising from ac celeration and from variation in resistance eliminated, there still remains the apparently faulty method of varying the weights and the time. It would seem better to maintain these factors precisely the same, or else correct the numbers so the temperature. However, the Dow machine has, apparently, proved itself of great value in actual practice. An improved machine has recently been put on the market, in which the framework arrangement supplying weight for the needle is entirely discarded, being replaced by a tube containing the weight and holding the needle. This tube slides in a guide-arm supported by a substantial upright. The extra weight, as may be
seen in the engraving, is placed low on the tube, and so will tend to deflect it but little, if at all. The table carrying the specimen is supported by a screw arrangement. This enables the specimen to be brought into contact with the nee dle at zero position. The mirror, seen at the bottom of the apparatus, enables the
operator to determine when contact be-

INVENTORS

CONSULTING ENGINEER.

SOUTHERN STAMPING \& MFG, CO.

ICE
 MACHINES
 IESS

RUB18ER | Expert Manufacturers |
| :---: |
| Fine Jobbing work | PARLER, STEARNS \& C0.. 288.290 Sbeffied Av., B'klyn, N. y.

MODELS \& EXPERIMENTAL WORK

Models, Novelties and Patented Articles

Remoh Diamond

 Remoh Jewelry Co., 453 N. Broadway, St. Loois

HOLTZER-CABOT MAGNETOS

The

 Middle West Number SCIENTIFIC AMERICANOn December 11 th, 1909, the Scientific American will issue a number
devoted entirely to the wonderful Middevoted entirely to the wonderful Mid-
dle West region of the United States, a number which will set forth broadly and lucidly not only the agricultural interests sineering undertakings which are destined to transform the Middle West, in part
ritory.
With that object in view the Middle West Number will publish articles on the following subjects:

rat

 yineeringworld.
iI.

 IV. Shipping on the Great Lakes- - Most of the
ron ore that is now smelted in pennsylvania is
mined

| Vr. Freishting on the Mississippi. Freichting |
| :--- | NII, The Steel Indnstry- One of the greatest

seeal plant in the word is that which has beeu buitt at
Gary
 IX. The Water Supply of Cl
source of water is Lake Michigan. With mater by means
miles
in tit to the lake.
Governeclaiming Arid Lands.-The United States
 Xl. Harvesting the Grain of the Midale

 The Middle West Number will be more than twice the size of the regular SCIE NIFIC AMERICAN. It will be lavishly illustrated., It will be contained in a colored cover which strikingly depicts Chicago's grain elevators at work. Order from your newsdealer or from
MUNN \& COMPANY, Inc., 361 Broadway, New York City
tween needle and specimen has been secured. The counterbalancing arrangement used in the Dow apparatus is replaced by the pressure of a spring. The remaining features are essentially the same. The rejection of the framework device weignting the needle and the string counterbalance would seem to be steps in advance, especially if the replacements will yield as good results. A practical word may be added as to the results shown in the table of penetrations. The cement A is regarded as showing as great a variation as is safe for pavement use. A greater variability in viscosity at the different temperatures would be difficult, if not impossible, in practical application. If soft enough for practical application.
32 deg. it would be too soft at high tem32 deg. it would be too soft at high tem-
peratures. C shows a steadiness which would be valuable if it were not for an accompanying bad quality. Its ductility (at 77 deg. F.) is but 20 , while A is 300 . B shows less variability in viscosity than A and more than C. Its ductility (at 77 deg. F.) is 75.
The susceptibility to change in hardness resulting from application of heat or to ageing may be ascertained by utilizing the penetrometer.
It will be seen from a consideration of the facts which have been recounted, that the tests for ductility and viscosity are of great practical utility.

A printed copy of the specification and drawing in print issued since foregoing list, or any patent will he. furrinsted from
this ootice for 10 cents. provided the name and
number of the patent.
 Canarian patents may now be obtained by the in
ventors for any or the inventons named in the fore.

