Until recently, experimental physics has been taught by rather superannuated methods in the lycées and colleges of France. The teachers lacked simple apparatus suitable for the initiation of their pupils into the mysteries of acoustics, optics, acoustics, optics, electricity and magnetism; al-
though some of though some of
the schools posthe schools possessed magnificent instruments, copies of those of half a century ago, which, in the language of M. Chassagny, the M. Chassagny, the
inventor of the apparatus described below, "were a joy to their makers" but of little use to their possessors. There were costly Hiero's costly Hiero's countains and Morin's machines which were used
only once a year. only once a year.
The pumps and The pumps and hydraulic presses were equally expensive and they gave the pupils a totally false conception of the pumps and hydraulic presses employed for practical purposes. Babinet's improved pneumatic apparatus i s remarkable chiefly for its chiefly for its
great display of great display of
polished copper. polished copper.
The Gay-Lussac The Gay-Lussac
e u diometers, e u diometers,
Ramsden electric machines, condensers of Aepinus, Watts's machines and many others have now only historical in. terest. For several years French teachers of physics have been trying to modernize their cabinets of apparatus and to modify their instruments in order to simplify experimental observations. Prominent among these progressive teachers is M. Chassagny, inspector of the Academy of Paris, who has invented a number of efficient instruments of neat and'substantial, though inexpensive, construction, with each of which various instructive experiments can be performed.

The complicated machines of Atwood and Morin for the study of the laws of falling bodies are replaced by the mechanical recorder (Fig. 1), which is useful also

Fig. 1.-The mechanical recorder.

r'ig. 2.-Apparatus for combining vibrations in the same plane.
driving pulley. The center of gravity can be brought accurately to the axis of rotation by means of sliding weights attached to two of the spokes. At one side of the drum a short pendulum, formed of a heavy cast iron cylinder, is mounted on an axis perpendicular to that of the drum, on the blackened surface of which a record is traced by a flexible needle attached to the pendulum. The drum and the pendulum can be sto. ped, together or separately, by means of an adjustable lever, and the driver is also provided with an emer gency brake.

With this apparatus some fifteen experiments can be
in explaining the laws of the compound pendulum and the graphical method of recording movements in general. A bicycle wheel is mounted with its axle horizontal in a flat wooden frame. The rim of the wheel carries a wide band of sheet brass, forming a sort of drum, which can be covered with a band of smoked paper, and one end of the axle bears a small grooved
performed, illustrating the static equilibrium of moments, inertia, the action of constant forces, the law of velocities, proportionality of force to acceleration, resistance of the air, friction, isochronism of small oscillations, the graphic method of registering movements, etc.
In demonstrating the principle of inertia the needle is brought into contact with the band of smoked paper carried by the drum, and the drum is turned. The pendulum being in the position o f equilibrium, the needle traces a line which, when the paper is removed and laid flat, will be straight and will constitute a base line. This line having been traced, the pendulum is drawn to one side, a rotary impulse is given to the drum with the hand, the pendulum is released by moving the lever which holds it, and the needle traces an undulating line The distances between consecutive intersections of this line with the base line represent equal intervals of time, corresponding to corresponding to equal vibrations of the foochronous pendulum, and as these distances are also found to be sensibly equal in length, the experiment .proves that the drum, set in motion by a momentary by pulse, continues to rotate with practically uniform velocity (the effect of friction being negligible).
In studying the action of a constant force, the base line is traced as before. A cord is then wound round the drum and a weight of about one-quarter pound is attached to its free end, as shown in Fig. 1. The zero point is marked by allowing the pendulum with its needle to swing across the base line while the drum is held at rest. The pendulum is then drawn aside is held at rest. The pendulum is then drawn aside lever, the pendulum and the drum are released simul(Continued on page 304.)

Yig. 4.-'Chassagny's eleetroscop.

Engine and Foot Lathes
 WORKMANSHIP. CATALOGUE FREE
SEBASTIAN IATHE CO.. 120 CuIvert St., Cincinnati, 0

 many thousand companies. Reference: Any bant in Arizona
STODDARD INCORPORATING COMPANY, Box 8000

AERONAUTIC

 MOTORS

CHIEF DRAFTSMAN

 Practical Drating, Detailing Desiging

How to Construct

An Independent Interrupter

 MUNN \& CO., Inc., 361 Broadmay, New Yor DRILLING
MACHINES

 WILUMN: BROS., Ithaca, N. Y.

A SIMPLE METHOD OF TEACHING EXPERIMERTAL PHYsICs.
Continued from page 293.)
taneously. The needle traces an undulating line which cuts the base line in a series of points whose distances from the zero point are proportional to $1,4,9,25$, etc., that is, to the squares of the times. In this way the laws of falling bodies can be verified to within 1 per cent. This is a much closer approximation than can be obtained with Atwood's or Morin's apparatus, with which the beginning and end of the fall cannot be determined very accurately.
In other experiments the drum is driyen by a cord, passing over the pulley and a grooved wheel 6 inches in diameter, attached to a simple driving clock, such as is used to turn a spit. With this arrangement the gradual diminu tion of the amplitude of succesive oscilla tions of the pendulum, and the more rapid diminution brofight about by attaching to the pendulum a paddle dipping into water, can be studied. The isochromism of small oscillations can be shown by giving the drum a uniform velocity of rotation, by means of the driving clock or of a ${ }^{\text {e }}$ ight which is stopped after it has fallen a certain distance. Then the base line and the undulations having been traced as before, the wave length, or distance between consecutive intersections of the two lines, is ound to be constant, no matter what the amplitude or height of the wave may be, provided that it is small.
Chassagny's apparatus for compounding vibrations in the same plane (Fig. 2) comprises two wheels mounted on parallel shafts. The first wheel is turned by a crank and drives the other by means of a belt. The ends of a fine violin string are attached to pegs inserted in the faces of the wheels at unequal distances from their centers, and the middle part of the violin string, which is kept taut by a spring, passes round a pulley, which turns freely on a vertical rod, attached rigidly to the horizontal axle of the nave of a bicycle wheel mounted in bearings. When the crank is turned both wheels revolve, and the horizontal displacement of the pulley, at any instant, is equal to the algebraic sum of the horizontal displacements of the two pegs. The movement of the pulley is followed accurately by a writing point which is attached to the other end of the bicycle nave. This point presses against a strip of smoked paper wrapped round a drum, which is turned by the engagement of a toothed wheel on its shaft with an endless screw on the crankshaft. The amplitudes of the two vibrations whose combined effect is sought are varied by varying the distances of the pegs from the axes of the two wheels; the phases are varied by setting one wheel, at the start, more or less in advance of the other by means of pointers attached to the wheels and fixed graduated circles behind them; the periods are varied by employing wheels of diameters proportional to the periods desired. For example, two wheels of nearly equal diameters give a graphical record of the phenomena of "beats."
Vibrations in mutually perpendicular planes are combined by means of an apparatus based on the same principle (Fig. 3). The resultant curves are traced on smoked glass so arranged before a lantern that the curves can be immediatey projected on a screen and explained and studied at leisure, with a thoroughness that is not possible with the evanescent projections of Lissajous's figures made in the usual way, by reflecting a pencil of light from mirrors attached to tuning forks.
Chassagny's apparatus for the study of refraction consists of a glass globe supported by fixing its horizontal neck in a copper sleeve. If the neck is regarded as one pole of the globe, the opposite pole is indicated by an interruption in a copper meridian, and the equator is graduated in intervals of five degrees. Water is poured into a funnel attached to the upper side of the neck until its surface (Concluded on page 305.)

Home-Made Experimental Apparatus

In addiMon to the following articles, the
Scientifto American Supplement has pubilshed scientific American supplement has pabilished
innumerable papers of immense practical value.
of which over 17,000 are listed in a carefully of which over 17,000 are listed in a carefully
prepared catalogue, which will be sent free of prarge to any gaddress. Coples of the Scientific
cherican Supplement cost 10 cents each. American Supplement cost 10 cents each. If there is any scientifc, mechanical, or en-
gineering subject on which special information is desired, some papers will be fonnd in this
catalogue, in which it is fully discussed by catalogue, in which
competent authority.
A few of the many valuable articles on the
making of experimental apparatus at home are maving of experimental ap
given in the following list:
ELECTRIC LIGHTING FOR AKATEURS. perimental installation can be set up
Bcientile Adterican Supplement 1551 .
 THE CONSTRUCTION OF AN ELECTBIC
THERMOSTAT IS Explained In Boientifo American Supplement 1586 .
HOW TO MAKE A 100 MOIE WREELEES TEIEGRAPH OUTFIT is told by A. Fredertck
Colins in Scientific American Supplement 1605 .
 TEUR' USE Is so plainly described in Soien-
tinio American Supplement 1572 that anyone can
make it.
 THE CONSTRUCTION OF A SIMPLE PHO-
TOGRAPPHC AND RICROPHOOTGGRAPHIC
APPABATUS is simp explained in Boientific APPABATUS is simply explained in Boientific A SDPPLE CAMERA-BHUTTER MADE OUT
OF A PASTEBOARD BOX, PINS, ANND A
RUBER BAND As the Subject of an article in
Scientifle American Supplement 158, HOW TO KARE AN AEROPLANE OR GLIDcan Supplement 1582, with working drawings.
 may serve to indicate the pressure in the in in
terior orp aliquid to explath the meandg or
capiliary elevation and depression; to serve as a hydraulic tournique, an aspirator, and intermit.
tent silpon; to demonstrate the accent or Hiliquils
in exhaustive tubes; to illustrate the phenomena

 Bupplement 1584
THE CONSTRUCTION OF AN INDEPEN-
DENT INTERRUPTER. Clear Alagrams giving actual dimensions are
American ${ }^{\text {Supplement }}$ 1615. published. Soientific American Supplement
AA EASIM MAE HMGH FREQUENCY AP-
PARATUB WHICHE CAN BE

 pint apparatus r
the
made at home.
SIMPLE WIRELESS TELEGRAPH SYSTEMS
are described in Scientifo American Suppleare
ments
described
1363
and
10
1381 ci.
THE LOCATION AND ERECTION OF A $100-1$ MILE WIRELESS TELEGRAPH STATION 18
clearly explaine wit the belp of dlagrams,
in scientifle American Supplement 1622 .
 can 'supplement 1623 .
THE MAKING AND THE USING OF A
WIRELEB8 TELEGRAPH TUNING DEVICE,
Illustrated with diagrams, Bcientifc American

Supplement 162

HOW TO MAKE A MAGIC IANTERN, Scien
tifc American Supplement 1546 .
 THE DEMAGNETIZATION OF A WATCH is
thoroughly described in Scientific American Supthoroughly des
HOW A CALORIC OR HOT AIR ENGINE
CAN BE MADE AT HOME is well explained, with the help of illugtrations, in Scientific
American Supplement 1573.
THE MAKING of a RHEOsTAT is outlined
in Scientific American Supplement 1594.
 HOW AN ELECTRIC OVEN CAN BE MADE
Is explained in Bcientifl American Supplement is explained in Bcientific American Supplement THE BUILDNG OF A Storage battery
is described in Soientifl American Supplement
1433. 1433. A SEWNNG-MACBINE MOTOR OF SREPLE
DESIGN Is described in Scientific \triangle merican Supplement 1210 .
Can Whaplement 1595. Good articles on DNDUCTION COILS are con-
tatined in Scientife American Supplements
1522, lained in soientinc american supplements
152,2, and 1527. Frill detalls are. given so that
the coils can readily be made by anyone. HOW TO MAKE A TELEPHONE Is described
in Scientifo American Supplement 986 . A MODEI STEAM ENGINE is thoroughly de-
scribed in Boientifl \triangle merican Supplement, 158%. HOW TO MAKE A THERMOSTAT is ex.
plained in Scientifo \triangle merican Supplements 156i,
156s, and 1566 . plasined in gcien
1563 , and 1566 .
ANERODD BAROMETERS, Scientific American
Supplements 1500 and 1554, A WATER BATER, Scientific A merican Supple-
ment 1464. ment 1464.
VA CHEAP LATHE UPON WHICH MOCB VAL OABLE WORK CAN BE DONE forms the
subject of an article contained in Scientifo
American Supplement 156s. subject of an article con con
American
Each number of the Scientific \triangle merioan Supplement costs 10 cents by mail.
joar newsealer or from
MUNN \& CO., Inc., 361 Broadway, New York
attains the level of the break in the meri-
dian. The laws of refraction and total dian. The laws of refraction and total
reflection can then be studied by directing luminous pencils toward the center of the globe, in the equatorial plane, and of the globe, in the equatorial plane, and
viewing them with the eye placed in the same plane.
In his electroscope (Fig. 4) Chassagny has made use of the fact that platinized glass is sufficiently transparent to allow objects to be seen clearly through it and yet reflects bright images of objects nearer the eye. A vertical and rigid strip of copper and a flexible strip of aluminium foil are suspended from a cop per rod and inclosed in a case of which two opposite sides are of glass and the rest of metal. The rod carries a charg ing disk at its upper end and is insulated by passing through a block of paraffin, which rests on the top of the case. One of the glass-sides is platinized, and outside it is placed a graduated quadrant which is seen by reflection, while the deflected strip of aluminium is seen through the glass.
Chassagny's galvanometer (Fig. 5) is inclosed in a wooden case, which is attached to the wall. In a strong magnetic field, formed by placing the like poles of two horizontal horseshoe magnets al most in contact with each other, is suspended a coil of wire of electrolytic copper. The intensity of the fleld is further increased by a soft iron, cylinder, sup ported independently inside the coil. A large mirror, attached to the coil, reflects the image of a lamp to a screen, where the movements of the spot of light can be followed by the whole class. The gal vanometer is provided with three shunts In Chassagny's apparatus for the study of electromagnetic induction (Fig. 6), a coil of wire is attached, with its plane vertical, to one end of a lever which can turn round a horizontal axis, and is balanced by a counterpoise on the other end. A vertical horseshoe magnet, with its poles directed upward, is placed so that the coil can be brought between the poles, or raised above them, by turning the lever on its axis. The positive and negative currents produced by these move ments are indicated by a galvanometer connected with the coil. An alternating current is produced by allowing the lever to oscillate freely. Other experiments in induction may be made by sending through the coil a current from a battery M. Chassagny has devised a number of other -ingenious instruments, including a very practical rheostat, a eudiometer, baroscope, etc.

THE LATESI' SUBMARINES OF THE UNITED STATES NAVY.
(Continued from page 296.)
merged condition, certain valves in the interior of the boat are opened. This allows the water from the sea to run into great tanks built within the boat, and thus virtually sink her. These tanks are closely gaged, so that just the required amount of water is taken in. Under normal conditions, when the boat is at rest with the ballast tanks flled, she will have a few hundred pounds reserve buoyancy, which is represented by the top of her conning tower protruding above the water. If desired, this buoy ancy may be entirely destroyed by admitting a small additional amount of water, equal in volume to the volume of that part of the conning tower above water. While in the submerged condition, all communication with the outside atmosphere is necessarily cut off. The crew, usually about fifteen men, then breathes the air contained in the body of the boat. The amount of air origi nally contained within the hull is suff cient to support life with comfort for at least twenty-four hours. But, in addition to the air thus contained, the boat carries a large supply of compressed air in steel flasks, which, if used for breathing purposes, would be sufficient for a num ber of days.
After having brought the boat to the submerged condition in the manne (Continued on page 306.)
 KOH-I-NOOR Pencils are made in 17 different degrees of hardness and softness-6B to 9H.
, L. \& C. HARDTMUTH, Est. 1790, 34 E. 23d St., New Yerk THE MIDDLE WEST NUMBER To most Americans the Mineisuppi Valley and the rich country that spreads outward from either of ita
sorez
but of a farmland a country which may well bo regarded not only as the granary of the United States, but of a large portion of the world an well. is a country of wonderful engineering development and achieve

 West, in part at least, into a manuffactoring territory:
With that object in view the Middle W est Number will publish articles on the following subjects:
I. THE CHICAGO AND GULF WATERWAY.-An illustrated description of Chicago's drainage
anal, an engineering work which stands without a parallei in the worlid.
 greatest rallooad center in the world
the spokes of American transportation.
III. THE WONDERFUL GRAIN TRADE OF CHICAGO. Chicaga is an enormous wheat bin, into
which much of the grain raised in the middide Weti is poured. The conveying and handilig of that
huge amount of grain has necessitated the erecting and constructing of ingenious machinery and huge amount of grain has necessitated the erecting and constructing of ingenious machinery an
 sylvania is mined in the middle West. To transport it to the blast furnaces of the East at a cos
wtich will enable Ammerican steel makers to compete with foreinn steel makers, it has been necessary
to devise a new kind of lake transportation. Ships of 10,000 and 12,000 tons burden have been con
 structed which convey
anywhere in the world.
V. THE HANDLING AND SHIPRENT OF IRON ORE-The above-mentioned fact that Iron ore
is mined in the middde West and smelten in the East has neceseltated not only the construction of
special freight-carrylng steamers, but also the designing of special machinery for loading and unload special freight-carrying steamers, but also the designing of special machinery for loading and unload-
ing the ore from the steamer VI. FREIGHTING ON THE MISEIBSIPPI.-The Missisippi is the great natural waterway of
the midde West. It places the citles ailong its banks in direct water-communication with every por the middde Weest. It places the citiles nilong its banks in direct water-communication with every por
in the worli. That is why frelghting on the Milssiselppi is a more important industry than most of
us may realize. us may realize.
VII. THE STEEL MNDUSTRY,-Although the steel industry is still centered in Pennsivivania
the scene of its activity is gradualiy shifting. One of the greatest steel plants in the world is tha the scene of its activity is gradually suifting. One of the greatest stel plants in the world is that
which has been built at Gary. It is safe to say that nowhere else in the world will be found a
plant so remarkably equipped and so efticient.
 the warehouse by means of tunnels aggregating sixty miles in length. IX. THE WATER SUPPLY OF CHICAGO.-Chicago's source of water is Lake Michigan. The
city is supplied with water by means of a tunnel which extends two miles out into the lake. X. RECLADMNG ARID LANDS. The United States Government has under way many irrigation
projects for the purpose of reclaiming lands which are arid, but which will blossom if properly
watered. XI. HARVESTING THE GRANN OF THE MEDDLE WEST, -Farms that cover not acres but
Huare miles, crops that aggregate not simply bushels, but car-loads, have rendered it necessary to square miles, crops that aggregate not simply bushels, but car-10ads, have rendered it necessary to
plant and harvent on an unpecedented scale in the middle \mathbf{W} est.
chinery which ingentous agricultural mas been designed to cope with these peculiar conditions is described and illustrated. The Middle West Number will be more than wice the size of the regular SCIENTIFIC AMERICAN, MUNN \& COMPANY, Inc., 361 Broadway, Now York City

Household Bills Paid

Every Month for Life by Monthly Income Checks of The Prudential

You Need This Policy Whether You Are Now Insured or Not

