A POPULAR ILLUSTRATED WEEKLY OF THE WORLD'S PROGRESS

At the surface the vessel is driven by her internal-combustion engines at a speed of 14 knots.

View fooking forwand from the bridge. Taken when the "Narwabl" was making 14 knots at the surface. Before diving, the stanchions, handrope, removable navigating oridge, steering wheel, etc., ane unshipped and passed below.

SCIENTIFIC AMERICAN ESTABLISHED 1845

MUNN \& CO., Inc., - Editors and Proprietors Publishod Wookly at
 No. 361 Broadway, Now York

Cbarles allen munn, President
Frederick Converse Beach, Sec'y and Treas.
TMS TO SUBSCRIBERS.
One copy, one year, for the United States or Mexico $\$ 3.00$
One copy, one year, for Canada
O.7
One copy, one year, to any foreign country, postage prepaid, 18s. $6 d$.
4.50
the scientific american publications. Scientific American (established 1845)......................... $\$ 3.00$ a y
Scientific American Suppiement (established 1876) American Homes and Gardens $\mathbf{0 . 0 0}$ 3.00 American Homes and Gardens.... 3.00 " The combined subscription rates and rates to foreign countries, includng Canads will be farnished upon application. Remit by postal or express money order, or by bank draft or check. MUNN \& CO., Inc., 361 Broadway, New York.

NEW YORK, SATURDAY, OCTOBER 23rd, 1909.

The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sharp, the articles
short, and the facts authentic, the contributions will receive special 8hort, and the facts authentic, the contribations will receive s.
attention. Accepted articles will be paid for at regular space rates.

a tale with wilbur wright.

"No. The next advance in the art of human flight will not be so much in improving the motor as in the practice of high flying. Personally, I am perfectly satisfled with our motor; not that one, but the later type, which has been strengthened in the very part where the cylinder gave way just now." Thus Wilbur Wright. It was in the gathering gloom of an October afternoon, and we were standing alone in the shed which had been built on Governor's Island to house the Wright aeroplane during the late Hudson-Fulton Celebration. A few minutes earlier the machine was on its launching ways, with everything primed for an hour-long flight, in which Wright had purposed to travel up the East River, over the four great bridges that span it, across Manhattan Island, over the Hudson and the Palisades, and return to the starting point, with a wide detour over the Jersey Meadows and across the Upper Bay. We had seen Wright and his mechanic crank the engine by a swift turn of the propellers; had heard the loud explosion and crash, as the forward cylinder tore loose from the crank case; and had seen the wrecked cylinder tear its way through the upper plane and fall at Wright's feet. At the very moment when a million people were lining both shores of the Hudson River, watching with absorbing interest to catch the first glimpse of the author and past master of the art of human flight, lo! here was his machine, rendered an absolute wreck, and the possibility of a Hudson-Fulton flight shut out for good! Under such dramatic conditions of disappointment a Frenchman would have wept. Not so Wilbur Wright. Picking up the broken cylinder, he turned to the small group of which the writer formed one, smiled, gave an almost imperceptible shrug of his shoulders, and quietly remarked, "It is all over gentlemen.'

If there is any appetite for the sensational or melodramatic in Wilbur Wright, he certainly keeps it under masterful control. The fact that he had been opposed to the giving of public exhibitions of flight, and that this was the first and only exception that he had made, would, for most men, have rendered the complete breakdown of his machine a most aggravating dis aster. Yet, five minutes later, when we were alone with him and his disabled air craft, he was perfectly composed, and showed his philosophical estimate of the true significance of the mishap by pointing to the broken cylinder and remarking: "This is merely an incident: The machine is an old one that I used at Kitty Hawk. The metal was rather light at the point of fracture. The defect has been remedied in our later motors.'

A few months ago we expressed the opinion in these columns that the element which needed most attention in the aeroplane was the motor, and that until the latter had been brought up to the degree of reliability of the automobile motor, the art of flying could not make much material progress. Wilbur Wright, however, does not agree with us. "I have de veloped my motor to the point at which it has ceased to give me any more anxiety than the motor of an automobile. I have run the later pattern of this motor in an endurance test (not, of course, in the air) for seven consecutive hours, and my machines have made 280 consecutive flights without experiencing motor trouble."
"In what direction, then, will the development of the
future be made?" we asked, and again the answer came back: "High flying; we must get up clear of the belt of disturbed air which results from the irregularities of the earth's surface. From now on you will see a great increase in the average elevation at which aviators will make their flights; for not only will they find in the higher strata more favorable atmospheric conditions, but in case of motor trouble, they will have more time and distance in which to recover control or make a safe glide to earth."
Next we raised the question of suitable starting and stopping places, and suggested that the art of flying was handicapped by the present necessity for broad open spaces for the purpose. This brought the reply that since trains, trolley cars, steamboats, and sailing yachts are all provided with special points of departure and arrival, it was a little unfair to quote the necessity for such conveniences as an objection to the aeroplane. "But the problem of alighting, especially during a cross-country flight, is not so serious as you might suppose. It will be largely solved by the you might suppose. It will be largely solved by the
high flying to which I referred just now, for, the high flying to which I referred just now, for, the
greater the elevation, the larger the section of greater the elevation, the larger the section of
country from which the aviator can select a suitable alighting place. Suppose," said Wright, "in making a flight, say of 100 miles, I rose to a height of one mile, and that while at that elevation motor trouble necessitated an immediate descent. Commencing to glide down the air on a grade of one in seven, I would traverse seven miles of country in a straight line before reaching the ground, that is, supposing that the ground were fairly level. But the gTide could be made ground were fairly level. But the gTide could be made
in any direction, and consequently I could choose a in any direction, and consequently I could choose a
landing place on any one of the 150 square miles that would be included in a circle of 14 miles in diameter. The chances would be therefore decidedly in my favor of finding some fairly smooth fleld, free from obstruction, on which I could come down safely."

Of course, the question of speed came in for discussion, and the reply to the question whether we shall see any great increase in speed in the near future was characteristic. "Why should we wish to increase the speed? It was only a few years ago that the world believed the construction of a successful flying machine to be impossible, and yet there are not many birds that I cannot overtake with that machine." This was presenting the speed question from a new and very sensible standpoint; for it must be admitted that to have surpassed the average speed of the birds thus early in the game is one of the most sensational achievements of this, the latest and most sensational of man's inventions.

THE NEW BRITISH "DREADNOUGHTS" AND "INFLEXIBLES."

Rather complete particulars have lately been made public of the latest British "Dreadnoughts" and "Inflexibles," which are now being built in government and private dockyards. Taking the "Neptune" as the latest representative of the "Dreadnought" type in the British navy, we find that the length has been increased by 20 feet and the beam by 4 feet, and that the displacement has been increased from 17,900 tons to 20,000 tons. The speed, 21 knots, remains the same, and no changes of any consequence have been made in the disposition of the armor for the protection of the hull or the barbettes and turrets.

The most important changes-those which serve greatly to increase the power of this ship as compared with the original "Dreadnought"-relate to the armament. In the "Dreadnought," it will be remembered, ten 12 -inch guns were mounted in the following positions: Two on the forecastle deck; a pair on each beam amidships on the main deck, with the superstructure between them; and four in two turrets on the main deck astern and on the center line of the ship. This plan has been changed in the "Neptune" by placing the two wing turrets en echelon, or diag onally, with sufficient distance between them in the fore and aft direction to permit the guns of both turrets to flre on the same broadside. Another change is to raise these two turrets and also turret number 4, one deck higher, placing them at the same elevation as the forward turret. The aftermost turret will be located, as in the "Dreadnought," on the main deck. By this redistribution the "Neptune" can flre six guns ahead, eight astern, and ten on each broadside, as against six ahead and astern, and eight on each broadside, in the original "Dreadnought." The "Neptune" will carry a new 50 -caliber, wire-wound 12 -inch gun, and not, as reported, a 13.5 -inch gun. For torpedo attack a battery of 4.7 -inch guns will be mounted in a lofty central armored redoubt surrounding the smokestacks, which will protect both the guns and the smokestack bases.
The improved "Inflexible," known as the "Indefatigable," has 25 feet more length, 2 feet more beam and 2,000 tons additional displacement than Admiral Seymour's flagship. The speed is the same; but the extra 20 feet of length will enable the midship turrets to be placed farther apart in the fore and aft direction than they are in the "Inflexible," with the
result that the broadside angle of fire of what might be called the "off turret," that is to say, the turret which is on the side of the ship remote from that on which an engagement is taking place, will. be greatly increased.,
Great Britain evidently is well pleased with her 26 -knot battleship cruisers of the "Inflexible" type, for she is now preparing to lay down on the ways vacated by the "Indefatigable" another ship of the same type but of far greater dimensions. She is to be 600 feet in length, and equipped with turbine machinery of even greater horse-power than that installed in the "Lusitania" and "Mauretania." As these liners exert over 70,000 horse-power when they are making their maximum speed of 26 knots, it can be understood that to secure the 28 knots required in the new cruiser-battleship, the horse-power must run up to 80,000 or more. It is probable that the vessel, on her trials, like her predecessors of the "Inflexible" class, will exceed the requirements by about a couple of knots. The "Inflexible" and her sisters made 28 knots over short distances, and it is likely that the 600 -foot ship will be able to carry her battery of eight 12 -inch guns for a short spurt across the high seas at a speed of 30 knots an hour, which is higher than the average speed of the torpedo-boat destroyers.

SOME PHOTOCHEMICAL REACTIONS

A quantity of benzaldehyde, inclosed in a sealed glass tube and exposed to light, is almost entirely converted into a red brown, transparent resin which, when treated with ether, leaves a small quantity of a crystalline residue, fusing at 475 deg . F. and identical with the trimeric modification into which benzaldehyde is converted by the action of iodobenzol.
The resin deposited by the evaporation of the ether from the ethereal solution yields, on distillation, benzoic acid, hydrobenzoin, and unaltered benzaldehyde, and leaves a resinous residue which has the percentage composition, but four times the molecular weight of benzaldehyde, of which it is probably. a tetrameric form. It may, however, be a ketone, of the formula $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}(\mathrm{CO})_{2}(\mathrm{COH})_{2}$.
Dibenzyliden acetone in alcoholic emulsion exposed to light for a year yields di-isosafrol in addition to the molecular weight of the ketone.
Isosafrol mixed with a trace of iodine and exposed to light for a year yields di-isosafrol in addition to a large proportion of resin, but safrol is unaffected by light. Analogous results are obtained with methyleugenol and isomethyleugenol. Propenyl compounds are found to be more affected by light and more readily converted into polymeric forms than members of the allyl group. The action of light on mixtures of benzaldehyde with safrol and isosafrol produces resinous substances which, when purifled and analyzed, prove to be simple addition products.

THE SPECTRUM OF MARS.

A bulletin has recently been issued by the Lowell Observatory, in which the results of Mr. Frank W. Very's quantitative measurements of the intensification of great B in the spectrum of Mars are given. The general result of the investigation is that the great B in Mars is 15 per cent stronger than in the spectrum of the moon at the same altitude, and that B in the spectrum of Mars is relatively more intense by eight times the probable error of the result. Mr. Very states that while there is considerable variation, there are no contradictory results. In Mr. Very's opinion, the measurement proves, beyond a doubt, that it is possible to discriminate differences of a few per cent in the intensities of spectral lines, although it would take much wider variations to attract the attention of a casual or even of a careful observer, if deprived of such assistance as can be given by the spectral band comparator. In his recent Mount Whitney studies, Prof. W. W. Campbell, of the Lick Observatory, stated that the A band was faint in both the lunar and solar spectra when the bodies were low, fainter when the bodies were higher, and very faint when the bodies were at their highest; but for equal altitudes, the A band in the Martian and lunar spectra were equally intense, plainly signifying that the observed bands were due to water vapor in the earth's atmosphere above the summit of Mount Whitney. Here is obviously a conflict which must be settled before we know deflnitely whether or not the spectrum of Mars does contain water vapor.

In the Revue de la Soudure Autogène, Bournonville describes a method of repairing cracked iron pulleys by local heating. The crack in the rim is opened by means of an expansion screw acting on the two adjoining spokes, so as to make a gap about $1 / 16$ inch to $1 / 24$ inch in width. Welding metal being then melted in the crack by means of the oxy-acetylene flame, the expansion screw is withdrawn quickly, while the metal is still red hot, and the elastic pressure of the rim counteracts the contraction of the joint in cooling. No special care is needed in cooling, and the metal can be tempered without risk of cracking.

AERONAUTICS

Santos Domont has been making excellent cross Santos Domont has been making excellent cross
country flights near Paris of late with a new mono plane, fitted with a 30 -horse-power double-opposed-cyl nder motor. The machine complete weighs only 242 pounds. The Clement company is building a number of these machines, to sell for about $\$ 1,250$ each.
The second Aeronautic Show to be held in-Paris opened in the Grand Palais on September 25th and lasted three weeks. This exhibition demonstrated how the aeronautic industry has advanced by leaps and bounds within the year. Some thirty different aero planes and a score of aeronautic motors were shown as well as one small dirigible and several plain ba cons. A complete description of the show will b given in next week's Scientific American Supplement
Before starting to teach Lieutenants Lahm and Humphries the operation of the recently acquired gov ernment biplane, Wilbur Wright tried the machine out on October 9th and had his pupils time him for a distance of a kilometer in a closed circuit. This dis tance, including the turn, was covered in $483 / 5$ sec onds, or at a speed of exactly 46 miles an hour. Allow ing 100 meters extra for the turn, the speed was 50 miles an hour. Thus it seems that the new govern ment aeroplane is quite as fast as the Bleriot or Cur iss machines, which made over 47 miles an hour at Rheims.
With the great aviation meet at Rheims as model, almost all the other large cities on the Continent have arranged for a similar event. After Brescia (Italy) and Berlin, Spa, Boulogne, and Dieppe in France; Frankfort in Germany; and Blackpool in England have put up large cash prizes to secure Latham, Ble riot, Farman, and some of the less well-known but ully as daring aviators. The Frankfort authorities even went so far as to pay the traveling and hote expenses of the "bird men." A big meet was held at the new Juvisy aerodrome near Paris from the 7th to the 21st of this month, no less than 37 machines being entered, of which 13 were Voisin biplanes. On October 10th thousands of people flocked to Juvisy. The train service was inadequate, and there was such demonstration by the crowd that the troops had to be called out.
On October 13th a course of lectures upon aviation to be given by Wilbur R. Kimball was inaugurated at the rooms of the Young Men's Christian Association, 318 West 47th Street, New York city. Besides Mr. Kimball's lecture, which was illustrated with a number of models, Mr. Hudson Maxim, the inventor of maximite and an authority upon explosives, spoke upon the dropping of explosives from aeroplanes. He thought the public should be rid of the fallacy that much harm can be done in this way. The aeroplane, he believes, will be used for scouting and raiding, but not as an instrument of destruction in itselt. Mr. Winthrop E. Scarritt, an ex-president of the Automo: bile Club of America, gave an interesting talk on the future of aeronautics.

In connection with the Centennial Celebration at St. Louis, Glenn Curtiss made a number of short but good exhibition fiights. There was also a balloon race on the 11th instant, in which 10 balloons competed. The "St. Louis III.," piloted by Louis von Phul, won, covering 545 miles in $411 / 2$ hours duration, and landing at Lawrence, Minn. The "Indiana," with H. H. McGill pilot and J. M. Schauer aide, landed near Albany, Minn., 500 miles distant. Mr. McGill was taken violently ill, and his aide was finally obliged to bring the balloon to earth to get medical assistance. The "Centennial," H. R. Honeywell pilot, made a flight of 480 miles and landed at Silas, Ala. The "Cleveland," J. Wade, Jr., pilot and A. H. Morgan aide, covered 459 miles and landed near Alexander City, Ala. Baldwin, Knabenshue, and Beachy also made fiights at the celebration in their dirigibles. Messrs. Post and Harmon, in the "New York," won the endurance race in 48 hours 26 minutes.
The third international balloon race for the Bennett trophy started from Schlieren (near Zurich), Switzerland, on Sunday, October 3rd. There were 17 starters representing 9 nations and divided as follows: America 1, Austria 1, Belgium 2, England 1, France 3, Germany 3, Italy 2, Spain 1, Switzerland 3. For the second time in four years the cup was won by an American, Mr. E. W. Mix, of Columbus, Ohio-our sole representative-having the good fortune to travel over 648 miles in 35 hours, and, after passing through a drenching rain and having some exciting experiences in the Bavarian Alps, to finally land in the trees in the forest of Gutova, some miles north of Warsaw in Russian Poland. Mr. Mix and his aide were obliged to throw out their life preservers and provisions in order to keep afioat so łong. After doing this at Breslau early Monday afternoon, they rose to a height of 9,000 feet, from which elevation they gradually fell until the balloon landed at 3 A . M. October 5th. Second place went to Alfred Leblanc with a record of 631 miles.

ELECTRICITY

The New York Public Service Commission report that 3,327 persons were injured last August on the sur that 3,327 persons were injured last August on the sur-
face traction lines of New York city. This is 12 less face traction lines of New York city. This is 12 less
than the record for August, 1908. The serious injuries for this August were 204, or 32 less than for the cor responding month of last year.
The Canadian Pacific Railroad has found the telephone so serviceable for train dispatching that the present system of about 500 miles of telephone lines will be extended to 1,000 miles within a year. The company states that about fifty per cent more traffic can be handled now than was possible under the old telegraph system of dispatching.
Every once in a while we hear of wireless tele graphic communication over an enormous range. Re cently the army transport "Buford," while nearing Honolulu, succeeded in exchanging messages with the Pacific coast. The distance covered was 3,500 miles This does not mean that there has been a wonderful advance in wireless telegraphy, but merely that at mospheric conditions were unusually favorable.
The electrification of the street railway line from Woolwich Arsenal to the London County Council free ferry has been brought to a halt owing to possible disturbance of the delicate instruments at Greenwich Observatory. The Astronomer Royal has the power to stop any undertaking within three miles of the ob servatory that is liable to affect the instruments, and the railroad company must obtain his consent before proceeding with the electrification.
Manufacturers of electrical apparatus have recently wakened to the fact that there is quite a demand for a transformer which will permit of operating elec ric bells, buzzers, toys, etc., with current taken from ine circuits in place of storage or primary batteries Small direct-current battery apparatus may ordinarily oe operated on an alternating current without an change in the windings or connections, provided th oltage is sufficiently reduced. A transformer of this ype has recently been put on the market, which will reduce from 110 volts to from 3 to 26 volts
A very ingenious method of overcoming the friction of intermeshing gears has recently been devised. The gear teeth are electromagnetically held in engagement, without actually contacting. The teeth of the driving gear are magnetized by means of suitable coils, while the teeth of the driven gear serve in pairs as arma tures for the magnetized teeth. Of course such an ar rangement would hardly be suitable for slow, heavy work, because the cost of current would be greate than that of lubricating oil and the loss due to friction but for light, high-speed work the electromagnetic en gagement would undoubtedly prove very advantageous.
Portable telephone instruments are being made by the Western Electric Company for use on interurban electric railways. The telephone instruments are carried on the cars, and stations are located at various boints along the line. The conductor or motorman can connect the instruments to the station by merely inserting a pair of line plugs, and thus can get into direct communication at once with the dispatcher. in case of delay on, the road, or an accident, these instruments are invaluable, as they enable the dispatcher to learn the particulars at first hand, and make arrangements to relieve the situation.
An apparatus for sterilizing water has recently been put on the market in France, in which ozone is used to destroy the bacteria. The ozone is generated by means of electric discharges, and the gas is introduced into the water by means of an aspirator. The ozone is led into a mixing tube screwed to the water faucet, and the water is forced by a small pump through several compartments, so that it is divided into a number of fine jots. In this way an intimate mixture of the gas and water is obtaind. The device is so arranged that the ozone is generated only when the faucet is opened.
A large electric freight locomotive is being built or the New York, New Haven \& Hartford Railroad, with which it will be possible to test thoroughly the advantages of handling freight trains electrically. The locomotive will also be used for hauling heavy passenger trains. Following the present tendency, the motors are placed above the axles, thus raising the center of gravity and reducing the shocks and strains to which the roadbed and track are subjected by locomotives in which the motors are mounted on the axles. The locomotive is mounted on two trucks, one of which is pivoted on a center pin, while the other has a fore-and-aft movement as well as a pivotal movement, permitting it to negotiate curves. Four 350 -horse-power single-phase motors are used, which may be operated either with 11,000 -volt alternating current or 600 -volt direct current. A flexible connection between the power and the wheels is accomplished by gearing the motor to a quill on the axle, which is provided with driving arms that project between the spokes of the wheels. These arms are connected with coil springs, which serve to absorb shocks and strains of transmission and equalize the torque on the gears.

SCIENCE.

The Cook-Peary controversy will probably be settled by a commission of inquiry appointed by Dr. Ira Remsen. The commission will examine and repor on the Arctic records, observations, and data collected by both explorers.
Boomerangs are now made of celluloid and hard rubber. Celluloid is better than cardboard because it is waterproof, light, very hard to break, and can be worked into the peculiar curve and twist so necessar to give the boomerang its peculiar properties.
The owners of a St. Abbs fishing boat have made the important discovery that'a net dyed as nearly as pos sible the hue of the sea, instead of the traditiona brown, yields much larger results in the matter of fish caught. The discovery was, says the Western Morning News, put to the test a short time ago, when out of a fleet of sixty-five boats, the boat with its net dyed blue made far and away the largest catch. The dye used is bluestone. The discovery has aroused much interest among the fishermen.
Peat, as it comes from the bog, contains from 85 to 95 per cent of water. According to Dr. Ekenberg, it appears that the peat contains a hydrocellulose which is of the nature of a jelly. If the peat is subjected to pressure the hydrocellulose passes through very much as soft soap might, and without separating the wate from the peat. If, however, the peat is heated to about 320 deg . F., this jelly is immediately destroyed and most of the water can be separated by a pressur of about 240 pounds per square inch.

The steamer "Conqueror" at Leith has been char tered by Dr. W. S. Bruce, Edinburgh, the leader of the recent Scottish National Antarctic Expedition, for the purpose of undertaking another expedition to the polar regions. The expedition, it is expected, will be ready to sail in a little more than a fortnight. The presen intention is that the expedition will be away for two or three months. Important observations in the neighborhood of Spitzbergen are premeditated, Dr Bruce being a recognized authority on that region.
A process has recently been patented by two Italian entlemen for rendering calcium cyanamide inoffens ive. At present this product has several serious draw backs owing principally to its causticity, and the am monia and hydrocyanic ethers which it gives off. The process in question proposes to add sulphuric acid, diluted with its weight in water, to the cyanamide; after introducing the cyanamide in small quantities to the iquid, the whole should remain slightly acid. After an intimate mixture, the product is dried at 40 to 50 deg. C., and then pulverized.

The following experiment, writes Mr. C. S. Jackson, in Nature, is easily tried, and throws some light on a certain type of inlusions. A small cogwhee from an old American clock is the only apparatus re quired. Holding the axle in the finger and thumb of the right hand, give it a twirling motion, say, counter clockwise. Let the teeth of the wheel click gently against a small card, or the finger-nail of the left hand On looking at the wheel the spokes appear to revolve counter-clockwise (as they do) and the teeth to revolv in the reverse direction.
Radium appears to have a marked action on the development of the eggs of the Philine aperta. M. Jan Tur, of Paris, made a series of over forty experiments with a very strong radio-active preparation, about 9 milligrammes of radium bromide acting through a thin glass plate upon the eggs in different stages. In the first stages of development, the eggs do not seem to suffer from the effect of the radium, but after a certain period it is found that the organs will no longer be formed. A longer exposure causes the larvæ to shrink up and they become only one-fifth of their nor mal size. After 6 to 9 days there remains nothing but a shapeless mass of cells and the mass is observed to have a rapid rotary movement inside the shell of the egg. The larvæ are found to die in 9 or 10 days after the laying of the eggs, without being able to leave the shell.
The occurrence of ores of tungsten in Canada is the subject of a report by Dr. T. L. Walker, recently issued by the Canadian Department of Mines. After pointing out that the metal is used not only in the manufacture of metallir flament electric lamps, but also in the production of tungsten steel and of the tungstates which are employed as a mordant in dyeing in giving weight to silk goods, and in rendering cotton goods fireproof, he goes on to give particulars of the chief tungsten ores, their geological occurrence, and the methods used in treating them, as well as some statistics of the world's production of them, which has been advancing rapidly of late years. He then gives a detailed account of the occurrence of such ores in Can ada, and finally remarks that, though no tungsten pro duction has yet been credited to the Dominion, and that she has no well-developed and established tung sten ore mines, still there are many districts where such ores occur.

THE FIRST GERMAN MONOPLANE TO MAKE SUCCESSFUL FLIGHTS.

Our illustrations show the monoplane of Herr Grade, who is the first German to make successful flights in a heavier-than-air machine. This monoplane resembles that of Santos-Dumont in its general makeup, the aviator being placed below the plane, and the motor-a 4-cylinder air-cooled engine of the \mathbf{v} typebeing located at the front edge, and carrying a propeller on its crank-shaft. The wings of the monoplane are set at a slight dihedral angle, and are provided with a flexible edge at the rear. A tail with vertical and horizontal surfaces is mounted upon a bamboo pole extending out behind. While making an attempt to win the Lanz prize of $\$ 10,000$ at the Mars aerodrome near Berlin, Herr Grade experienced a bad fall fortunately without injury. The flight re quired was one of $21 / 2$ kilometers (1.55 -mile) in the shape of a figure eight. The aviator made a splendid start, but in the middle of his flight, when at a height of nearly 100 feet, the propeller broke, and the machine came forcibly to the ground. Fortunately; the shock of striking the ground was less ened by the alighting of the monoplane in some low pine trees. The machine was badly damaged, but Herr Grade expected to repair it in a few days.

THE AVIATION MEET AT BERLIN AND
 LATHAM'S FLIGHT ACROSS THE CITY.

The aviation meeting which was held recently at Berlin was specially noteworthy for the great feat of Hubert Latham in flying across the city of Berlin from the Tempel hofer field to the aerodrome at Johannisthal This flight was made on September 27th, the second day of the meeting, and it has already been mentioned in these columns. Our photograph shows the machine as it flew across the sheds which were erected for the aeroplanes at Johannisthal. The great height at which Latham flew is indicated by the small size of the monoplane, which looks like a huge bird of prey winging its way in the upper air. Latham made the flight of $61 / 4$ miles across the city in less than 10 minutes. He first made two circuits of the Tempelhofer fleld, and then started straight off across the city at a height of about 300 feet. As soon as word was received by the waiting spectators at Johannisthal that Latham had started, they all strained their eyes in an effiort to see the machine in the distance. Soon it appeared, a mere speck in the sky. It came rapidly nearer, and finally passed overhead, as shown in our illustration. Before coming to earth, Latham completed two circuits of the aerodrome, a distance of about $121 / 2$ miles. Upon alighting, he received a decided ovation. The total length of his flight was about 24 minutes.
The opening day of the meeting, Sunday, September 26th, was not very auspicious. Baron De Caters made several circuits of the $21 / 2$ kilometer (1.55 mile) course, and Bleriot did likewise. Neither aviator kept aloft long enough, however, to qualify for the speed prize. Leblanc started on his Bleriot monoplane, but only succeeded in making a half round of the course.

The arrival of Hubert Latham at Johannisthal after his flight across Berlín
In this instance for the first time an aviator arrived at an aviation meeting on his machine, after taking a direct atr line tHE AVIATION MEET AT BERLIN AND LATHAM'S FLIGHT ACROSS THE CITY.

Suicide of Scorpions.
only reached a height of 100 meters. (328 feet). Edwards, who was operating a Voisin biplane, had a bad tumble after completing three circuits of the course. He fortunately escaped with only a few slight cuts. Baron De Caters damaged his biplane in making a sudden landing.
On September 29th, Rougier made 31 rounds of the course, and covered an official distance of $771 / 2$ kilometers (48.12 miles) in 1 hour and 37 minutes, a meters (48.12 miles) in 1 hour and 37 minutes, a
speed of 28.73 miles an hour. Latham covered $671 / 2$ kilometers (41.91 miles) in 1 hour and 14 minutes.

This is the first German aeroplane to make satisfactory short fights,

THE GRADE MONOPLANE IN FLIGHT

His average of 41.22 miles an hour in the 20 -kilometer speed test caused him to be declared the winner of the speed prize of $\$ 2,000$. On October 1st Rougier won the distance prize of $\$ 10,000$ for 2 -hour 41 -minute 50 second flight, in which he covered $803 / 4$ miles at an average speed of 30 miles an hour.
M. Bleriot's monoplane was attached by the management when the champion aviator attempted to leave with it for Cologne. He had been paid $\$ 5,000$ to fly at Berlin on five days, and because he refused to stay, his machine was retained. M. Leblanc also stopped when Bleriot quit. On the whole, this meeting was fairly successful, especially in view of the fact that it was run during the time of the aeronautic show at

On September

27th very little was accomplished, but the following day several excellent attempts were made to win prizes, the best of these being that of Rougier, who flew 44.75 kilometers (27.78 miles) in 52 minutes. Latham and. Farman both attempted to win the speed prize. The former covered the required distance of 20 kilometers (12.42 miles) in 18 minutes $43 / 5 \mathrm{sec}$ onds, and the latter in 20 minutes $92 / 5$ seconds. M. Bleriot did not quite succeed in completing the 20 kilometers. Rougier, in his lofg flight, attempted to win the height prize presented by Count Zeppelin, but he

Paris, which opened on September 25th. Latham struck the ground forcibly in one of his landings, breaking a wheel and damaging his propeller as shown in one of our photographs.

Holland compound is a solution of 5 parts of soda water glass and 1 part of carbonate of soda, or a powder mixture consisting of 3 parts of calcined soda and 1 part of dry potash water glass. Ten parts of this mixture is said to be sufficient to render $\mathbf{1 0 0 , 0 0 0}$ parts of hard water soft.

Italian naval engineers advised the government to purchase all the scrap iron from the San Francisco fire that could be obtained.

The United States Treasury Department will soon take up the subject of providing sanitary paper money. Not the least of the reforms proposed is the proposition to wash national bank notes. It is said that the idea of washing bank notes is by no means infeasible, for it is possible by means of a chemical solution or bath to clean the notes without injuring the printing.

Until recently, experimental physics has been taught by rather superannuated methods in the lycées and colleges of France. The teachers lacked simple apparatus suitable for the initiation of their pupils into the mysteries of acoustics, optics, electricity and magnetism; although some of the schools possessed magnificent instruments, copies of those of half a century ago, which, in the language of M. Chassagny, the M. Chassagny, the
inventor of the inventor of the
apparatus deapparatus de-
scribed below, scribed below, "were a joy to their makers" but of little use to their possessors. There were costly Hiero's fountains and Morin's machines which were used only once a year. The pumps and hydraulic presses were equally expensive and they gave the pupils a totally false contotally false conception of the pumps and hy-
draulic presses $\begin{array}{ll}\text { draulic } & \text { presses } \\ \text { employed } & f \circ r\end{array}$ employed for
practical purposes. Babinet's improved pneumatic apparatus is remarkable chiefly for its chiefly for its
great display of polished copper. The Gay-Lussac eudiometers, Ramsden electric machines, condensers of Aepinus, Watts's machines and many others have now only historical interest. For several years French teachers of physics have been trying to modernize their cabinets of apparatus and to modify their instruments in order to simplify experimental observations. Prominent among these progressive teachers is M. Chassagny, inspector of the Academy of Paris, who has invented a number of efficient instruments of neat and'substantial, though inexpensive, construction, with each of which various instructive experiments can be performed
The complicated machines of Atwood and Morin for the study of the laws of falling bodies are replaced by the mechanical recorder (Fig. 1), which is useful also

Fig. 1.-The mechanical recorder.

f'ig. 2.-Apparatus for combining vibrations in the same plane.
driving pulley. The center of gravity can be brought accurately to the axis of rotation by means of sliding weights attached to two of the spokes. At one side of the drum a short pendulum, formed of a heavy castiron cylinder, is mounted on an axis perpendicular to that of the drum, on the blackened surface of which a record is traced by a flexible needle attached to the pendulum. The drum and the pendulum can be sto. ped, together or separately, by means of an adjustable lever, and the driver is also provided with an emergency brake.

With this apparatus some fifteen experiments can be
in explaining the laws of the compound pendulum and the graphical method of recording movements in general. A bicycle wheel is mounted with its axle horizontal in a flat wooden frame. The rim of the wheel carries a wide band of sheet brass, forming a sort of drum, which can be covered with a band of smoked paper, and one end of the axle bears a small grooved
performed, illustrating the static equilibrium of moments, inertia; the action of constant forces, the law of velocities, proportionality of force to acceleration, resistance of the air, friction, isochronism of small oscillations, the graphic method of registering movements, etc.

In demonstrating the principle of inertia the needle is brought into contact with the band of smoked paper carried by the drum, and the drum is turned. The pendulum being in the position o f equilibrium, the neade traces the needle traces a line which, when the paper is removed and laid flat, will be straight and will constitute a base line. This line having been traced, the pendulum is drawn to one side, a rotary impulse is given to the drum with the hand, the pendulum is released by moving the lever which holds it, and the needle traces an needie traces an undulating line tween consecutive intersections of this line with the base line represent equal intervals of time, corresponding to equal vibrations equal vibrations of the fochro nous pendulum, and as these distances are also found to be sensibly equal in length, the experiment proves that the drum set in motion by a momentary im pulse, continues to rotate with practically uniform velocity (the effect of friction being negligible).
In studying the action of a constant force, the base line is traced as before. A cord is then wound round the drum and a weight of about one-quarter pound is attached to its free end, as shown in Fig. 1. The zero point is marked by allowing the pendulum with its needle to swing across the base line while the drum is held at rest. The pendulum is then drawn aside and, by a proper adjustment and manipulation of the lever, the pendulum and the drum are released simul(Continued on page 304.)

Fig. 4.-Uhassagny's electroscop:

A New Process for Developing Photographs in Daylight

If an ordinary dry plate, after it has been exposed n the camera, is placed in a bath of potassium iodide, the silver bromide is converted into the non-sensitive iodide, and the latter can then be developed in day light with a suitable developer. It is recommended to carry out the process as follows:
The plate is laid for two minutes in an actina solution (i. e., four per cent potassium iodide). This can be done in a suitable cloth bag. After this the de velopment may be carried out in subdued daylight using equal parts of the solutions A and B.

Water	600 grammes.
Anhydrous sodium	20 grammes.
Metol	1 gramme.
Hydroquinone	8 grammes.
Potassium bromid	40 gramme

B. A three per cent caustic potash solution.

The plate should of course be rinsed before developing. The latter operation takes about five minutes. The fixing is carried out as usual, except that it takes a little longer. The exposure should be ample. The potassium iodide solution may be used over and over but the developer should be mixed fresh for every plate.-Chemiker Zeitung.

Limitation of the Speed of Automobiles.

In England a recent municipal police ordinance requires high-power automobiles to carry apparatus which will give warning when the city speed limit is exceeded, or will automatically diminish the speed in exceeded, or will automatically diminish the speed in
such cases. An apparatus of the first class, which is much used; consists of an air-compressing cylinder prolonged at the bottom by a smaller cylinder containing piston which has two peripheral vents and is forced forward by a spring.
The piston of the air-compressing cylinder is connected with the driving mechanism, and its velocity is proportional to the speed of the vehicle. So long as this speed is below the prescribed limit, the pressure of the air, which continually escapes through one of the vents of the small piston, remains too low to move this piston and compress the spring. When the legal speed limit is exceeded, however, the pressure rises, and the small piston is forced back until the second vent comes opposite a whistling vent in the wall of the small cylinder, so that the whistle is sounded by the escaping air.
An apparatus of the second class comprises an oil pump, the pipe of which is provided with a three-way cock. This cock is controlled by a centrifugal regulator, and its third channel communicates with a cylinder containing a piston which controls the accelerator, the brake, and the transmission. When the speed exceeds the normal limit, this third channel is opened by the action of the centrifugal regulator, and the oil is forced into the cylinder where, by its pressure on the piston which operates the brake, etc., it reduces the speed of the vehicle to the normal limit. This limit is indicated on a dial, and it can be varied by adjusting the spring of the centrifugal regulator by means of a key.

The Current Supplement

In the industrial development which the last one hundred years has witnessed, it may well be claimed that the industry of iron and steel stands among the foremost. Mr. F. W. Harbord in an interesting article in the current Supplement, No. 1764, considers the various causes which have assisted in these vast developments; how on the one hand the engineer and chemist have made this progress possible, and how on the other hand the metallurgist, responding to the call of the varied modern requirements, has supplied the materials without which modern engineering developments would have been impossible. Dr. Alfred Gradenwitz tells how standard clocks are operated by wireless in the city of Vienna. The exhaustive review of recent improvements in the internal-combustion engine which has formed a feature of the last two numbers of the Supplement is concluded. Mr. Fred W. Lane shows how a practical telephone may be employed C. van Langendouck writes on the wonderful armored concrete viaduct of the Rotterdam and Scheveningen line. "The Seven Styles of Crystal Architecture" is the title of a paper which was read by Dr. A. E. H: Tutton before the Winnipeg meeting of the British Association for the Advancement of Science. That paper is published in the current Supplement. Emile Gadeceau contributes a popular article on marine plankton. Under the title "The Red God of the Sky," a popular article on Mars and theories of Martian habitability is presented

Himly gunpowder contains 45 per cent chlorate of potash, 35 per cent of saltpeter, and 20 per cent of coal tar. In making it up, the tar is dissolved in benzine, the solution mixed with the salts and the benzine then evaporated.

SATURIN AND HIS RDNGS.

ET PROP. FREDEE
The study of Saturn and his rings is one of the most fascinating in astronomy. The enormous bulk of th planet (second only to Jupiter in diameter); its low density (less than that of any other planet); the grea difference between the polar and equatorial diameter; and the rapidity of its axial rotation, alone make Sat arn an object of peculiar interest. But the conspicu ous features of the Saturnian system, viz., the vast

Fig. 1.-SATERN'S RINGS IN 1907.
rings and the brilliant retinue of ten satellites, which distinguish the planet from the other members of the solar system, constitute the problems of chief interest n the study mentioned.
Among the many advances in astronomical discov ery is included a more accurate knowledge of Saturn rings, the plane of which coincides with that of the planet's equator. It has been clearly proved that the theory of a rigid ring is untenable, and this view has ong since yielded to the more scientific conclusion hich maintains that the rings are in a mobile state and that they are probably composed of swarms of

Fig. 2.-SATURN'S RINGS IN 1909.
meteors or satellites too small to be distinguished in the telescope. These hodies, obedient to the laws which govern the motions of satellites around their primary, would arrange themselves in the order as it now exists. The complexity of the problem is apparent. Since the thickness of the rings is not more than a hundred miles, and the diameter of the outer ring about one hundred and seventy thousand miles, the dimensions of these bodies must be very small, and their number extending over such a vast area well nigh incalculable. The installation at the present time of larger reflectors in our observatories augurs well for the value of observational work; and it is to be ex-

Fig. 3.-RELATIVE POSITIONS OF SATURN AND THE EARTH.
pected that in the future a more accurate knowledge of the constitution of the rings of Saturn will be obtained.
Saturn is now in that quarter of his orbit which includes perihelion. At an opposition which is near perihelion the planet approaches nearly one hundred million miles nearer the earth than at an aphelion opposition. As a consequence the apparent diameter of the planet and of the rings will increase at each opposition until perihelion is reached.
The plane of Saturn's orbit is inclined at an angle of
nearly $21 / 2$ degrees to the plane of the ecliptic. In the diagram the full line represents that part of the orbit which is above the ecliptic; the dotted line the part below. The intersection of the plane of the orbit with that of the ecliptic is $N N^{\prime}$, and these points ar respectively the ascending and descending nodes. $A P$ is the axis of the orbit whose center c is nearly fifty million miles from the sun. The revolution of the planet at a mean distance of 886 million miles from the sun is accomplished in nearly $291 / 2$ years; opposi tions occurring at average intervals of 378 days. The positions of Saturn at successive oppositions are shown from 1891 to 1911. The plane of the rings is inclined at an angle of 28 degrees to that of the ecliptic, and the plane traverses the earth's orbit twice during each revolution in opposite directions in a little less than a year ($=360$ days). When it passes through the sun it is pierced by the planet's orbit at a and a, the posi tions of Saturn at opposite points in the orbit, which are reached at intervals of about fifteen years. When the planet is at either of these positions an edge view of the rings is presented to the sun. The extreme points of contact of the plane of the rings with the orbit are b and e; and when Saturn is at either of these positions the rings are seen to the best advantage, i. e., they open to their greatest apparent width. The minor axis of the ellipse representing each ring is nearly one-half the length of the major axis.
At the date of the opposition of 1899 the planet was near b, and a satisfactory view of the northern hemi sphere of Saturn and of the upper surfaces of the rings was obtained. At the opposition near e the southern lemisphere and the under or southern surfaces of the rings will be visible. Also the planet will be nearer the earth, and the apparent dimensions increased about one-eighth. Saturn will be in the northern heavens and therefore seen to good advantage in high lati tudes. The plane of the rings traversed the earth's orbit in 1891-2. Fifteen years later, in 1907, this plan again crossed the earth's orbit, and an edge view was cbtained. Fig. 1 shows Saturn and his rings in this position, making apparent the difference between the polar and equatorial diameters. The thickness of the rings is estimated between fifty and one hundred miles. But this measurement is so small in compari son with the diameter of the ring that it is impossible to represent it in correct proportion by the scale of the figure. The fine white line may therefore be ac cepted as a representation of the rings for a short period of time just before and after the edge view was presented, when they entirely disappeared, and the planet alone remained visible. The positions of Saturn and the earth are shown at the date of opposi tion in 1909. It is scarcely necessary to say. that while the planets are correctly proportioned in th plot, their dimensions are enormously exaggerated in order to compare their magnitudes. If they wer drawn to the scale of the orbits they would shrink to mere points. Saturn's axis moves parallel to itself To an observer on Saturn (if life were possible on the planet) the heavens would appear to move in the sam reneral direction as they appear to us but around an other pole, and in less than half the time, as Saturn' rotation on his axis is accomplished in about ten hour and a quarter
Two years have passed since the edge view wa presented to the earth. The rings are gradually widen ing, and their under surface becoming visible. Fig. 2 shows saturn and his rings as seen in a telescope a the date of opposition this year. As the telescope gives an inverted image, in order to obtain a correct view Fig. 2 should be inverted. The larger area of the planet in the drawing represents the southern hemisphere which is turned toward the earth. The figure shows the division between the outer and inner rings and between the "crape" ring and the planet. At each successive opposition the rings will widen and the markings on their southern surfaces will be more easily distinguished.
The present time offers an excellent opportunity for a telescopic study of Saturn and Mars. Both planets are evening stars, and both are near opposition. They are slowly approaching each other and will be in conjunction on December 31st.

Various salts added in small quantities to the water used in mixing Portland cement appreciably accelerate or retard the setting of the mixture. The setting is retarded by water containing 4 per cent or more of sodium chloride, and by weak solutions of calcium chloride, but the latter salt in concentration higher than 9 per cent acts as an accelerator. Aluminium chloride accelerates, while iron chloride, fiost soluble sulphates, and even plaster of Paris retard setting. Aluminium sulphate is an accelerator, and in the compound alums its effect preponderates over that of the retarding alkaline sulphates and produces a slight acceleration. The alkaline carbonates accelerate in weak solutions, but soda acts as a retarder when its concentration exceeds 10 per cent. Borax, boric acid, phosphates, chromates, and chromic acid in any concentration retard the setting.

cimxtexpondente.

AN ODD PADDLE-WHREL BOAT.

To the Editor of the Scientific American: Among the odd boats in your recent issues, I failed
o note a duplicate of one I saw'in Canadian waters. It was a small excursion boat, sidewheeler, propelled by power furnished by a team of horses working on a treadmill. The speed was not great, but the boat surely moved, and furnished amusement for a goodly party which it happened to have the day I saw. it. A band was playing and people shouting as we sped by on a steamer.
J. Doux. Utica, N. Y.

THE HEIGHT OF MOUNT RAINIER

o the Editor of the Scientific American:
Reading to-day in a recent issue of the Scientific American, I saw this statement in reference to Mount Whitney: "This peak is the highest in the United States." Height given, 14,501 feet.
1 was with Prof. McClure in 1897 when he ascended Mount Rainier, and helped him to carry instruments for use in determining the height. Although he was killed in the descent, his notes were complete, and the subsequent calculations made from them by his friends gave the height as 14,528 feet above sea level. I believe these figures have been accepted as the true height.
New York city.
THE SCIENTIFIC AMERICAN AT JERICHO.
To the Editor of the Scientific American :
I inclose you a portion of your issue of February 7th, 1885, which was given me by a friend of mine, Dr. Herman Bryan, a returning medical missionary from the island of Hainan. Dr. Bryan took a trip through the Holy Land, and found in the reading room of Cook's Hotel at Jericho, on April 10th of last year, a copy of this issue, which was the sole American reading matter provided by the hotel management. Dr. Bryan has returned, to China now, but he asked me to mention this to you, and suggest that the Scientific American might well be represented by a more recent copy.
New York city.

WHY NOT A MONUMENT TO FITCH?
 To the Editor of the Scientific American:

It gave all members of my family great pleasure to read the Scientific American editorial of October 9th. It strikes the keynote of the situation in regard to our unequal distribution of acknowledgment to steamboat inventors. My father (James Arthur) pronounces it the best column that has appeared to date. We of course all realize that it is impossible to do honor to all the early inventors, but we should at least do justice to the United States of America by placing its steamboat successes in the right century We have just been celebrating the fact that the United States had a steamboat in the nineteenth century while as a matter of fact we had several successful ones in the eighteenth century, and the one referred to in your editorial attained a speed which was not exceeded until the following century was several years old.
We all hope that your timely remarks will bear fruit and that a bronze tablet will be placed near Collect Pond, and that the grave of John Fitch may at least be properly marked.
New York, N. Y.
" INFLEXIBLE" AND "CONNECTICUT" COMPARED. To the Editor of the Scientific American:
Pardon me for the presumption of criticising anything in your very valuable paper, but an article in the issue of October 9 th, dealing with the visiting warships anchored in the Hudson River, I think is misleading in one particular. In comparing the broadside fire of the three battleships representing France, England, and the United States, the statement is made that the "Inflexible" has eight 12 -inch guns which can be fired on one broadside. But, if I am not mistaken, the "Tnflexible," like all her sister "Dreadnoughts" of the English navy, is unable to fire all her 12 -inch guns on both broadsides, on account of the position of the two wing turrets. If this is true, then the "Inflexible's" superiority would be mainly in her great speed. I believe that the "Connecticut;" with her rapid-fire 8 -inch and 7 -inch guns, coupled with her four 12 -inch guns, would more than hold her own with an "Inflexible." Although the 8 -jnch and 7 -inch guns, theoretically, will not penetrate the "Inflexible's" amidship armor belt, still the rain of shells from these lighter guns would play havoc with every part of the vessel above the low 7 -inch armor belt of the English cruiser. This would not affect the crews in the 12 -inch turrets, but when the ship is riddled fore and aft, with all the upper works, containing all the range-finding apparatus, carried away, it would tend to demoralize the entire personnel. The article also mentions that the "Inflexible" could close in to a range of 6,000 yards
and quickly overcome the "Connecticut," by the mere concentration of her 12 -inch guns. Now, I think it would be extremely unhealthy for the "Inflexible" at this range, as the terrible broadside of the "Connecticut's four 12 -inch, four 8 -inch, and six 7 -inch guns would completely overwhelm the six 12 -inch of the former. Even admitting that the 7 -inch guns of the "Connecticut" are protected with comparatively light armor, still the tremendous rate of fire of that battery, in addition to the four 8 -inch and four 12 -inch, would so blind the gunners on the enemy, that they would be unable to properly handle their guns. Even up to 9,000 yards, the 8 -inch and 7 -inch guns would be very effective in carrying away the upper works of an enemy, thus destroying his ability to handle his ship. So I would like to see our "Connecticut" placed in a more favorable light in a comparison with the "Inflexible."

Emerson B. Manley,
U. S. S. "Kansas." Machinist's Mate. Condary battery of the "Connecticut" would riddle the unprotected parts of the "Inflexible." The midship pairs of 12 -inch guns on this ship are placed diagonally, and therefore all four guns can be fired on either broadside, through a limited angle.-Ed.]

RESULT OF A LIGHTNING STROKE

To the Editor of the Scientific American:
The accompanying photograph was taken recently at Velva, N. D. Three young men were putting up hay, when a thunderstorm came up, and all three were knocked down, the lightning killing a team of horses, and rendering the two men who were holding them unconscious for some hours. The third man saw the others fall, and then lost consciousness himself. His

RESULT OF A LIGHTNING STROKE.

team, standing a couple of rods away from the other, was knocked down, and a hole was torn in his cheek, whether from the fall or from the lightning it might be impossible to say. He came to, mounted a horse, after pulling one of his companions from under one of the dead animals, and rode for help. Securing that, he returned, and then fainted, partly from loss of blood, and remained unconscious several hours. The other two men regained consciousness that night, and all three were practically over the effects of the stroke within a week after the occurrence. The photo shows a new pair of shoes worn by one of the men, and a new, heavy pair of overalls, just as they were taken from him after the accident. HuGH J. Hugres.
Agricultural College, N. D.

THE NUMBER OF OUR ANCESTORS.

To the Editor of the-Scientific American:
If you and your readers are not tired of this question, may I suggest another solution than that Mr. Solon De Leon gives? I may perhaps point out that, originally, I simply stated the problem, did not say it vexed me, and made no false sociologic assumption. Let X represent the first generation, and so assume $X=2$. Assume continuity of descent, and let $X v$ represent some later generation. We need not trouble about what value we give to y; all we want is that the number of individuals of the generation is represented by $X y$. We get, say, $20,000,000$ of individuals descended from 2 original individuals, and see at once that there is some consanguineous relationship between all the individuals of the $X y$ generation. So,
if we assume all of us now existing are descended rom some original man and woman, it is clear we are all of us consanguineously related
Now consider any one individual existing at the present time. Then his parents are consanguineously related, but in most cases the blood relationship is so remote that he will treat the relationship as non-ex istent. We have, in the simple form of the problem I use, a series, X, X^{2}, X^{4}. . $X \boldsymbol{y}$, where each ind vidual of the $X v$ generation relates back in consan guinity to the original generation X; but there being so many intermediate-generations, his collateral consanguinity to any other individual of his generation is so remote that to him it is non-existent. For an example of this we have the fact that man as an organism is related to the monkey as an organism through some arboreal ancestors. But the collateral consan guinity is so remote, that we treat it as non-existent

F. C. Constable.

Wick Court, near Bristol, England.

THE HIGHEST HOMAN ASCENT

To the Editor of the Scientific American:
On page 239 of your issue of October 2nd, 1909, you state: "The record of altitude in aeronautics has been attained by Sig. Placenza and Lieut. Mina, in an ascen sion made from Milan on August 10th, 1909. Their great spherical balloon . . . reached an elevation of 38,700 feet, or more than seven miles." This statement, based probably on the press reports, is incorrect, as proved by a letter from the aeronauts themselves, Messrs. Mina and Placenza, published in the French journal L'Aerophile, of September 1st, from which it appears that the maximum height was only about 9,200 meters, or 30,180 feet. Since their cotton balloon held only 80,500 cubic feet and contained illuminating gas, this was a remarkable performance; and though there is some doubt as to the barometric observations, it probably exceeds both the French and Italian records. The world's record is, however, still held by Messrs. Berson and Süring, who ascended from Char lottenburg, near Berlin, on July. 31st, 1901, in a bal loon of nearly 300,000 cubic feet capacity partially filled with hydrogen gas, to the height of 34,450 feet.
A. Lawrence Rotch.

Blue Hill Observatory, Hyde Park, Mass.

AERIAL WARFARE IN 1798.

To the Editor of the Scientific American:
In connection with the letter published in your issue of September 18th it may be of interest to cite an earlier suggestion of invading England by balloon. In R. P. Heame's "Aerial Warfare" a copy of a print of 1798 is reproduced from the collection of Capt. Baden-Powell, and this print bears the following inscription:
"The Grand Republican balloon intended to convey the Army of England from the Gallic shore; for the purpose of exchanging French liberty for Engtish happiness! Accurately copied from a plan presented to the executive directory by Citizen Monge."
The Grand Republican balloon is depicted as having a spherical gas bag to which is suspended, by means of rope ladders, a peculiar contrivance half ship and half house. On top of the gas bag is the Gallic cock holding a tri-color surmounted by a liberty cap. Halfway down the sphere is a great circle on which is encamped a detachment of troops and a guillotine. Pipes to let out the inflammable air also appear, while a pair of ornamental wings are noted. A small captive balloon to serve as a boat is fastened to the great circle from which a lighthouse juts out.
The lower portion is a jumble of houses and sails with apartments for the officers in the hold. Below this again is the magazine suspended by cables, while a box-like structure on one side bears the designation of "water closet." The print bears the mark of a London publisher and forms an interesting addition to the cartoons of that period.

Gerald Ellis Cbonin.
The aperation of the 1,200 -volt direct-current system of interurban railway control is dealt with by Mr. C. D. Eveleth in a paper read before the Street Railway Association of the State of New York. Four lines have adopted the system in America. The obvious advantages, assuming that there are no drawbacks, which Mr. Eveleth sets out to demonstrate, are that the first cost is low, maintenance is not more expensive, and extensions to existing lines can be entered upon with much more ease and confidence. There are now in operation or under contract eleven systems of 1,200 -volt direct-current railways, employing motors of 50,75 , and 150 horse-power, and Mr. Eveleth predicts that in a few years the 1,200 voltage will be as common as 600. The cars can be easily operated on 600 -volt sections where necessary. Those electrical engineers in Great Britain who still hope that the authorities will some day "encourage" the construction of rural and interurban light railways will welcome these American experiences as suggesting further sources of economy in rendering their schemes commercially attractive.

THE LATEST SUBMARINES OF THE UNITED STATES NAVY.
As in all mechanical development an improved type As any particular device is an evolution from its prede of any particular device is an evolution from its prede-
cessors, so in general, the modern Holland torpedo boat, of which the government is now building a number, is a descendant of the original little craft of that name, which first made its appearance at the close of the Spanish war.
below the surface of the water. At these depths the pressure of the water is great, so that the hull must be made sufficiently strong to withstand it.
Up to the present, it has been found that the most efficient size for a boat is about 140 feet long and 14 feet in diameter. With such dimensions, a boat can be built which will fulfill all requirements which the naval authorities of the world demand from it. That is to say, it can cruise on the surface for long dis-
pletely submerged with nothing visible above water for a distance of 150 miles
There are two distinct conditions in which the boat may be used. In the first, commonly known as the surface condition, the boat is prepared for cruising. A considerable portion of her hull is above water, a removable navigating bridge is in place, and she is driven by large, powerful, internal-combustion engines. Under these conditions she is managed in about the

The dark object in the center is the conning tower. The periscope to which the flagstaff is attached pre dark object in the center is the conning tower. The periscope to which the fagstaif is atache
projects above water when the boat is submerged and by its means the commanding officer can
view surroundling objects as clearly as though he looked through a fleld glass at the surface.

Submarine beginning to dive.

'Lo ngnt and left are the electric motors which drive the boat; when submerged, at 10.5 knots
Looking aft in engine ruom.

The hand wheel to the right operates the diving rudders used for steering in a vertical plane. In The hand wheel to the right operates the diving rudders used for steering in a vertical plane.
front of the wheel is a gage whose pointer shows the depth in feet of the boat below the surface. Diving wheel and depth pressure gage.

These engines are used only in traveling at the surface. They can drive the boat at 14 knots. For submerged work they are uncoupled and the boat is driven by two electric motors. The lat-
ter take theirenergy from storage batteries which have been charged by the gas engines.

One of the twin internal-combustion engines of the submarine.

In the center are the two torpedo discharge tubes. To the left is the electric motor and gear by
whick the doors in the nose of the submarine are opened for discharge of torpedoes. View on main floor looking forward,

This shows the roof, not the floor, of the submarine interior. The horizontal eyepiece and the - vertical telescope tube are rotatad by means of the hand-wheel whose pinion engages
ain

Eyepiece at bottom of periscope.

THE LATEST SUBMARINES OF THE UNITED STATES NAVY.

The form of hull is generally described as cigarshaped. It is built of the very best quality of mild steel, and the workmanship is of the highest order, for the reason that every seam and rivet must be perfect ly tight, in view of the service which the boat is called upon to perform. Not only do vessels of this type undergo all the stresses of sea and weather which other vessels are subjected to, but in addition they are required to navigate at considerable depths
tances at a speed of fourteen knots. At lower speeds its radius of action extends to several thousand miles. For submerged work large storage batteries are provided, which furnish energy sufficient to drive the hoat from ten to eleven knots for a period of over an hour. The same electrical energy will drive her at a lower speed for a much longer time. The latest submarines, built for the government by the Fore River Company, at about five knots speed can run com-
same way as any vessel built to run upon the surface. As for sea-going qualities, our submarines have been found in practice to be excellent. In ordinary weather they are fully as comfortable as any surface craft of the same dimensions, and even in the heaviest weather they are entirely seaworthy

The second distinct condition exists when the boat is submerged. To pass from the surface to the sub(Continued on page 305.)

AN ALL-SEEING EYE FOR THE SUBHABINE.
Vision under water is limited to but a few yards at best, and hence a submarine boat, when submerged, would be as blind as a ship in a dense fog and would have to grope its way along guided only by'chart and compass, were it not for a device known as a periscope, that reaches upward and projects out of the water, enabling the steersman to view his surroundings from the surface. Of course the height of the periscope limits the depth at which the craft may be safely sailed. Nor can the periscope tube be extended indefinitely, because the submarine must be capable of diving under a vessel when occasion demands. But when operating just under the surface, where it can see without being seen, the craft is in far greater danger of collision than vessels on the surface, because it must depend upon its own alertness and agility to keep out of the way of other boats. The latter can hardly be expected to notice the inconspicuous periscope tube projecting from the water in time to turn their great bulks out of the danger course.
The foregoing article describes the type of periscope now in common use on submarines and one of the engravings on this page clearly illustrates the principles of the instrument. A serious defect of this type of instrument is that the field of vision is too limited. The man at the wheel is able to see under normal
jectives C and D (Fig. 3) between which a condenser \boldsymbol{E} is interposed at the image plane of the lens \boldsymbol{C}. A the bottom of the periscope tube the rays are reflected by means of a prism F into the eyepiece. Two eyepieces are employed. One of low power, G, is a Kelner eyepiece, the purpose of which is to permit inspection of the whole image, while a high-powered eccentrically placed Huyghenian eyepiece, H, enables one to inspect portions of the image. The two eyepieces are mounted in a rectilinear chamber, I, which may be rotated about the prism at the end of the periscope, thus bringing one or other of the eyepieces into active position. The plan view, Fig. 4, shows in full lines the high-powered eyepiece in operative position, while the dotted lines indicate the parts moved about to bring the low-powered eyepiece into use. A small catch, J, shown in Fig. 2, serves to hold the chamber in either of these two positions. The high-powered eyepiece is mounted on a plate, \boldsymbol{K}, which may be rotated to bring the eyepiece into position for inspecting any desired portions of the annular image. The parts are so arranged that when the eyepiece is in its uppermost position, as indicated by full lines in Fig. 2, the observer can see that which is directly in front of the submarine, and when the eyepiece is in its low position, as indicated by dotted lines, he sees objects to the rear of the submarine. With the eyepiece at the right or

Red and White Meat.

The flesh of cattle, sheep, horses, wild hogs, deer hares, pigeons, ducks, geese, and salmon is red or dark colored, while the flesh of calves, domestic hogs, rab bits, trout, pike, all flat fishes, lobsters, and crabs is white or pale. In fowls, white meat is found in the breast, dark meat in the legs and thighs. The con trast is most sharply marked in wild fowl. In frogs on the contrary, the legs are white and the rest of the flesh is dark. The mackerel, the eel, and many other kinds of fish also have both white and dark flesh.
Knobloch has shown that this anatomical distinction between white and dark muscles runs parallel with the distinction between agile and sluggish muscular fibers which has been established by physiological experiment. In general, pale muscles are more active than dark or red muscles. They contract more quickly, but they become fatigued sooner than the dark muscles, because they produce, in performing the same amount of work, 'a larger quantity of lactic acid, which is the fatigue product of muscles. The two classes of muscular fibers differ also in sectional dimensions. The ad ductor, or shell-closing, muscle of the mussel consists of a white and a gray portion, which can be clearly distinguished from each other, and the presence of both kinds of fibers is explained by the habits of this mollusk.

FORMS OF PERISCOPES FOR sUBMARINES. THE EYE THAT LOOKS IN ALL DIRECTIONS AT ONGE.

conditions only that which lies immediately before the boat. It is true that he can turn the periscope about so as to look in other directions, but this, of course, involves considerable inconvenience. On at least two occasions has a submarine boat been run down by a vessel coming up behind it.
As long as the submarine has but a single eye it would seem quite essential to make this eye all-seeing; and, since the two lamentable accidents just referred to, an inventor in England has devised a periscope which provides a view in all directions at the same time. This has been attempted before, but it has been found very difficult to obtain an annular lens mirror which would project the image down the periscope tube without distortion. The accompanying illustrations show how this difficulty has now been overcome. While we will not attempt to entef into a mathematical explanation of the precise form of the mirror lens, it will suffice to state that it is an annular prism. The prism is a zonal section of a sphere with a conoidal central opening and a slightly concave base. All the surfaces, however, are generated by arcs of circles owing to the mechanical inconvenience of producing truly hyperboloidal surfaces. The lens mirror is shown in section at A in Fig. 1. The arrows indicate roughly the course of the rays into the lens and their reflection from the surface B, which is preferably silvered. The tube is provided with two ob-
at the left he sees objects at the right or left, respectively, of the submarine. The high-powered eyepiece is slightly inclined, so that the image may be viewed normally and to equal advantage in all parts. Mounted above a plain unsilvered portion of the mirror is a scale of degrees which appears just outside of the annular image. A scale is also engraved on the plate K with a fixed pointer on the chamber, making it possible to locate the position of any object and rotate the plate K so as to bring the eyepiece H on it. The scale also makes it possible to locate the object with respect to the boat.
This improved periscope is applicable not only to submarine boats but for other purposes as well, such as photographic land surface work, in which the entire surroundings may be recorded in a single photograph. The accompanying photograph taken through a periscope of this type shows the advantages of this arrangement and gives an idea of its value to the submarine observer when using the low-powered eyepiece. Of course, by using the other eyepiece any particular part of the view may re enlarged and examined in detail.

Cement for Meerschaum.-Stir very flne meerschaum chips with white of egg or dissolve caseine in water glass, stir in finely powdered magnesia and use the cement at once. It hardens very quickly.

The mussel propels itself through the water by quickly opening and closing its shell, but in the pres ence of danger it keeps its shell closed for long periods. The rapid swimming movements are started by the pale and agile muscular fibers and maintained by the automatic operation of the dark, sluggish fibers, which also serve to hold the shell closed. The same biological law of division of labor appears to govern the character of the muscular structure of higher animals. The relative proportions of pale, agile fibers and dark, sluggish fibers are determined by the method of locomotion. The incessantly leaping frog possesses a much larger proportion of white muscle than the slowly creeping toad. The leg muscles of fowls are dark because the legs almost continually support the weight of the body, but the breast muscles are white because the wings are used only occa sionally, and for short periods. The dove, continually on the wing, has dark-colored breast muscles. The flesh of the sportive calf and lamb is white, while that of the contemplative cow and sheep is red. The ever-active heart and respiratory muscles, and the very frequently-used muscles which move the eyes and jaws, are red. The flesh of calves and lambs and the white legs of young chickens darken with advancing age. Knobloch infers that the white muscles represent the primitive stage, through which every dark muscle has passed.-Prometheus.

COL. JOHN JACOB ABTOR'S NOVEL STEAMSHIP chair.

Many people in crossing the ocean have experienced inconvenience by reason of the fact that the chairs in the saloon and card-rooms are rigidly screwed to the floor. The chairs are secured at such a distance from the tables that they will accommodate persons of very ample proportions, and, therefore, when a comparatively thin person occupies a chair, he finds it necessary to sit merely on the edge, for should he endeavor to lean back in the chair, he finds himself too far from the table.
While recently returning from Europe, Col. John Jacob Astor conceived of a very simple and practical scheme whereby the chairs may be firmly held in place at any desired distance from the tables or may be easily released and moved about. Col. Astor's scheme involves the use of a vacuum cup beneath the chair and so mounted that it may be pressed into engagement with the deck or floor to hold the chair by suction, or the vacuum may be broken, the cup lifted and the chair released.
If the chair is on a deck or hardwood fioor or on rubber tiling, the vacuum will hold indefinitely, while if used on a carpet it will probably be necessary to depress the cup and raise \dot{j} again occasionally to form a new vacuum. This device will undoubtedly add greatly to the comfort of the traveling public, as chairs may then be quickly and securely fastened at the desired distance from the table to accommodate either fieshy or thin persons. Col. Astor intends to present this invention to the public, as has been his custom: with all his recent inventions.

Gold Dredging in Alaska
 by aforan r. walbe.

The continued exploitation of new gold fields by the big gold dredges in different parts of the world has given to this industry many new points of economy which the companies are tak ing advantage of. The great districts where the gold dredges have been in most successful opera tion are Australia, California, and Alaska. In both of the former places the wholesale dredg ing of the ground by the mammoth "gold ships" has caused some trouble with the official authori ties, and the question of restoring the dredged fields to something like their former condition has been adjudicated in the courts.
In Australia the work of reclaiming the dredged ground has been accomplished by ad vance stripping of the surface soil, so that this can be separated from the coarse sand and silt from below. The surface soil is first stripped and deposited in separate places before the gravel is touched; and then after the dredging is completed, the surface soil is replaced, so that the land can be used for other purposes. In California, where the gold ships threatened to interfere with the flow of the rivers, the dredging companies have been compelled by the State au thorities to restore the dredged land in certain districts, so that the normal water flow will not be interrupted.
No such trouble, however, is found in Alaska where gold dredging has been carried on ex tensively in the past year or two. Alaska is more suited to this form of gold mining than. any other country, and great stretches of river soil await the companies with dredges. When the first big gold dredge was shipped to Alaska in sections and then assembled there, it was looked upon as a very uncertain investment. Owing to the short open season when the dredges could be operated, and the great cost of getting the dredges into the distant mining regions, it was not looked upon with favor by capitalists.

Subsequent events and experience have changed al of this. In the first place, the enormous area of gold land suitable for bucket dredging makes it possible for the gold ships to operate indefinitely without be ing transported to new regions. In fact, the field is almost inexhaustible. Consequently, the investments in the big dredges cannot prove other than very profit able, even if for the first year or two they could make little. But even with the comparatively short open season when the ground is not frozen hard, the gold ships have proved extremely profitable, and the flee up there has steadily increased from year to year.

In California, where the gold dredges can be oper ated the year around, the dirt yields on an average only 15 cents per cubic yard, and yet with this low yield the work is very profitable. On the other hand the placer fields of Nome run from $\$ 1$ to $\$ 20$ per cabic yard, which accounts for the fact that the dredges make more money in their short summer season than the California dredges can do in twelve months of the year. A five-foot bucket dredge can wash as much gravel as 3,000 men can do by hand, and consequently it can secure a profit on dirt so low in grade that hand washing is utterly impossible.

There are more than a dozen gold dredges now in operation in the Nome district, and every one of
these is earning big profits. The Guggenheims of New York have been operating three dredges for several years, and several new ones are now in the course of construction. The Nome Gold Dredge and Power Company, composed chiefly of New York capitalists and engineers, has installed several more dredges in the Nome district. This concern owns or controls nearly 2,000 acres of placer ground, which on a low estimate yields about $\$ 3.50$ of gold per cubic yard.
It costs about $\$ 120,000$ to get one of these dredges up in Alaska and ready for operation in the placer district, but such a dredge will yield a net return of nearly $\$ 600,000$ per year. Such enormous returns on the investment certainly justify the installation of new dredges. A dozen such dredges now in operation in Alaska yield annually several million dollars' worth of gold, and most of this is reclaimed from districts that the hand operating companies overlook. The craze for new districts that yield enormous returns continues to attract the average miner, and he passes over unnoticed the placer mines that prove rich harvests to the dredge companies. There is no interference by State authorities with dredging in Alaska, and no thought or consideration of restoring the surface after operations enters into the calculations of the companies.
The character of most of the gravel in the Nome district makes it ideal for either dredging or hydraulicking. It is almost entirely free of large bowlders, clay substances, and roots which might obstruct the operations of the dredge or sluicing apparatus. The

COL. JOHN JACOB ASTOR'S IMPROVED STEAMSHIP CHAIR.
placer lands lie for the most part in valleys between sloping hills. This land is covered with snow early in the fall, and thus prevents hard freezing. As a resuit, dredging operations can begin as early as the first half of June and continue fully four months, or for about 120 days. This makes a season's work, and then the dredges have to stop operations for the long winter. It seems like a very short season for mining operations, but owing to the character of the soil and the gold yield, it proves very profitable.

Before an investment is made in a gold dredge of this character, the placer land is first carefully investigated and the probable gold output estimated. Thus, before the first dredge was shipped to Alaska, upward of a hundred shafts were sunk to depths rang ing from 10 to 15 feet, and the lowest yields of gold were found to be $\$ 3.50$ per cubic yard, while in the river beds the gold often ran as high as 15 cents per pan, or over $\$ 20$ per cubic yard.

Except at the foothills, the dredge companies around Nome have never yet struck bedrock, and the lowest shaft put down was 15 feet in depth. Further sinking was prevented by the shafts filling with water, but from every indication the bedrock is at least 25 to 30 feet below the surface. This bedrock is composed of mica schist and slate. In all the dredging operations of these placer mines, the values increase more steadily at bedrock than at higher points; and even from 6 to 18 inches into the bedrock the returns are large. The whole character of the land is ideal for dredging, and there is plenty of water for as many dredges as could possibly be used

The fact is, the coming of the big gold dredges in Alaska and their successful operation, with unlimited
possibilities for work for many years to come, has marked a new era in mining for the precious metal in this far northern country. It is the beginning of the end of aimless, unscientific gold mining. The great finds of gold where prospectors can pick up gold in quantities are no longer so common as a few years ago. The field has been pretty nearly investigated, and the character of the mining must change to suit new conditions. This means that the influx of fortune hunters will gradually cease, and mining will fall into the hands of companies, who are willing to get their returns gradually through improved, though somewhat expensive, methods of work. A great many owners of ordinary plàcer claims are today renting out their land to gold-dredging companies, and others are organizing for the purpose of installing their own dredges. Taking the returns for a period of five or ten years, the profits of a gold dredge company are infinitely higher than another which depends entirely upon making rich finds and then gathering the surface gold for quick returns. Gold dredging in Alaska is thus an infant but lusty industry, and its growth in the next few years must be phenomenal and steady.

Has the Earth's Ciimate Changed in Historic Times

The explorations in Central Asia have laid bare the ruins of once fiourishing cities. M. Boutquin, in the French journal Ciel et Terre, proves, by historical evidence and modern scientific discoveries that the abandonment of these regions by the human race was brought about by causes entirely unrelated to such supposed meteorological changes as a general cooling of climates or a progressive desiccation of the globe. In Europe, for example, a sensitive lowering of the temperature and decrease in the precipitation of rain and snow would have caused a well-marked and continuous recession of glaciers, but no such recession is shown by the records of more than two thousand years. Heim has proved that, although the glaciers of the Alps receded during the latter half of the nineteenth century, they are now far more extensive than they were in the Middle Ages.
Polybius, in the second century B. C., described the rich gold and silver mines of the Tyrol. These mines yielded abundantly until the middle of the sixteenth century, after which date their productiveness rapidly diminished because the mouths of shafts became covered with ice. A shaft sunk at this epoch was covered in 1570 by a glacier 65 feet thick. Resistance to the invasion of the ice soon became impossible. In the eighteenth century the glacier was more than 300 feet high, and in 1875 it had attained a height of 460 feet.
For many years it was asserted that the east coast of Greenland had formerly enjoyed a mild climate, which favored the growth of vegetation and gave rise to the name Greenland. The historical researches of Rink and Von Maurer, however, have proved that the decay of the posts established by the Norwegians in olden times was caused by the introduction of a contagious disease and by the adoption, by the Norwegian government, of an unwise economic policy, which provoked hostile attacks by the Eskimos. Equally erroneous statements have been made in regard to Iceland.
In the British Isles, the cultivation of wheat formerly extended much farther north than it does at present, simply because it was then, in the absence of foreign competition, more profitable than it is now. Yet it has been very difficult to gain acceptance for this elementary truth; the popular belief in a change of season or climate for a long time prevailed over all evidence.

In Belgium and other countries, also, agriculture has been radically transformed by the operation of economic laws, improved methods of culture, and a more intelligent choice of crops. In the Middle- Ages and until the fifteenth century the vine was cultivated in Bavaria and in other parts of Germany from which it has now almost entirely disappeared, but its disappearance is not due to climatic changes. The wine produced in these districts was generally of inferior quality and, with the growing refinement of taste, it was gradually supplanted by foreign wines and good native beer.
The culture of the vine has practically disappeared from Belgium for similar reasons. Two Belgian abbeys still possess vineyards and make wine for sacramental use. In France, it has been proved that the vintage season has not shifted appreciably since the fourteenth century. It has likewise been demonstrated that, contrary to the popular belief, the olive was never cultivated in Switzerland except to a very small extent in gardens, and that no change has occurred in Swiss agricultural products in general.Cosmos.

AN EASILY CONSTRUCTED EQUATORIAL MOUNT FOR gMALL TELESCOPES.
BY PROF. a. W. WOOD, JOHis ROPKNB UNVBRETY, BLLTRORE.
In the course of some experiments which I have heen making at my summer laboratory in East Hampton, Long Island, on the photography of the moon in ultra-violet light ($=3,100-3,200$) it became necessary to provide an equatorial stand with a slow-motion screw for accurate following. As a polar axis is often desired in a hurry for special work, and as there are doubtless many amateurs who sometimes feel the need of such a stand, it seems worth while

THE SLOW-MOTION SCREW.

to give a short description of a very efficient, though hurriedly improvised, one which I constructed for my purpose.
It was made from the irame of a discarded bicycle, the bearings of the steering rod being, however, in good condition, with little or no lateral movement. The wheels, sprockets, saddle, etc., were removed, and the frame stood up in a wooden box, in such a position that the steering axis was approximately at the latitude angle. The box was then filled with Portland cement (1 part cement with 3 parts of clean sand and sufficient water) which was allowed to solidify. The larger places were filled with bricks and rock fragments to economize the cement.. A day or two is sufficient for the solidification, after which the box can be knocked to pieces, leaving the frame rigidly mounted in a solid and very massive block. This block was placed on a small brick pler and the adjustment of the polar axis made by blocking up one end of the cement base. A short piece of 2×4-inch joist was lashed to the handies of the bicycle with strong wire, which served as a support for the declination axis. The rest of the stand is to be designed according to the use to which it is to be put. In my own case I required merely a device which would enable me to keep my quartz telescope pointed accurately at the moon for two minutes. From odds and ends which had accumulated in my shop the arrangement shown in the illustration was built. A short plank was mounted on the 2×4 on a horizontal steel axis turning in brass bearings. To the forward end of the plank a rod was fastened which passed through a wooden block clamped between the lower ends of the wooden block clamped between the lower ends of the turned to suit the elevation of the telescope, and the rod fastened with a "set-screw," shown by an arrow in the picture.
Slow motion about the polar axis was accomplished by a brass rod, hinged to a larger piece of rod which fitted into the T tube which formerly carried the saddie. A small plece of brass tubing was solderèd to a small piece of $1 / 4$-inch sheet brass, through which passed the slow-motion screw, sharpened to a point and turned by a small wooden wheel, made from a
spool (indicated by an arrow). The brass tube and screw could be clamped at any point on the long brass rod by means of a set-screw. The point of the slowmotion screw turned in a small conical pit in a piece of brass fastened to the end of the 2×4 joist. The weight of the instrument belng carried on the handles, that is, above the polar axis, the instrument always tended to turn (by gravity) upside down, except when pointed at the meridian. This it was prevented froll doing by the pressure of the point of the slow-motion screw; and by turning the screw either forward or backward according to whether the instrument was pointing east or west of the meridian, a very uniform rotation about the polar axis was secured. A diagram of the slow-motion screw is given in the accompanying line drawing.
The instrument was set approximately in the meridlan by sighting the pole star in line with the edges of the two front tubes of the diamond frame. The proper elevation of the polar axis was secured by trial, observing whether, in following the moon, it moved up or down in the field of the telescope. In half an hour I got the thing in such shape that I could keep the center of a small crater on the point of intersection of the cross hairs of the telescope for ten minutes, and as this was more than the required accuracy I let it go at that. The instrument as conaccuracy I let it go at works admirably except when pointed at the structed works admirably except when pointed at the
meridian. On passing the meridian the slow-motion meridian. On passing the meridian the slow-motion
screw is carried over to the other end of the 2×4 screw is carried over to the other end of the 2×4
joist, this movement being allowed by the hinge at the end of the rod. When accurate following is not necessary, that is, when it is merely necessary to keep the object in the field, a more convenient arrangement would be a brass cog wheel attached to the steering rod below the handles, and turned by a worm wheel: this would obviate the trouble when crossing wheel: this would obviate the trouble when crossing form motion as the arrangement described, unless accurately and carefully made.
For mounting a small telescope any device can be used which will permit the instrument to swing up and down in a plane.
It is quite remarkable how well the old bicycle frame lent itself to the construction of the stand. The front forks which hold the "elevation" fixed, and the saddle tube for supporting the slow-motion rod, could hardly be improved upon if made for the purpose.

ALTERSATING CURRENT EXPERIMENTS.

bX frederice m. ward.
Students and amateurs who like to make electrical experiments are particularly fortunate if they have alternating current lighting service in their homes, as the alternating current lends itself especially well to the performance of easy experiments that are at the same time both amusing and instructive. Of the many kinds of experiments that may be made with simple apparatus there are perhaps no others that are more interesting than those which illustrate the principles of the rotary magnetic field and its application to electric energy meters and to induction motors.
For making the necessary apparatus there are re quired two similar laminated fron rings about $31 / 2$ inches inside diameter, $41 / 2$ inches outside diameter, and $\$ / 4$ inch thick. These may be built up by colling up a sufficient length of thin sheet iron strips, cut $8 / 4$ inch wide, using a round wooden block to start on. Compact iron wire bundles of about the same dimensions may be substituted with good results, or, better than either of the above, rings made up of a suftcient number of thin shoet-iron punchings. After the rings are made, all sharp edges should be rounded off with a file and a smooth covering of cotton tape be appited as shown in Fig. 1, A.

If there is any choice between the two rings, select for the field the one that comes nearest to being a true circle on the inside. For the winding on this ring use No. 23 or No. 24 double cotton-covered magnet wire. Have the wire on a spool small enough to pass through the ring easily, and begin at any point such as B, Fig. 1. Wind the wire in a single layer, with turns as smooth and close as possible on the inner circumference, until exactly onequarter of the latter has been covered. Next reverse the direction of winding as shown at C, Fig. 1, and cover the second quarter of the ring by passing the spool through in the opposite direction, after tying down the little loop at O with a piece of thread. Make similar reversals at the half and three-quarter points, and cut off the wire near the place of beginining. This completes one-half of the winding. The second half is to be wound on top of the first half, and is to be similar in all respects except that the place of beginning must be shifted to a point 45 deg . away, as at D, Fig. 1.
The second ring, which is for a reactance, is to be wound with 600 turns of magnet wire of any size larger than No. 20. This winding
must not have any revereals in it, all of the turns being passed through the ring in the mame direction. Lay the two rings down flat on a plece of board and make connections to a 110 -volt 60 -cycle supply circuit as shown in the diagram in Fig. 1, where 8 indicates a snap switch or knife switch, and L, L, L, L four 16 -candle-power 110 -volt lamps. When the switch is closed, current flows through the two windings on the field ring in such manner as to produce four magnetic poles that are not stationary but rotate

Fig. 1.-DETAILS of tee expertimetal apparatos.

or progress around the ring 1,800 times per minute. A pocket compass placed close to one side in the field as shown will rotate at this speed and illustrate the principle of the synchronous motor, in which the magnetized rotor is dragged around by the rotating magnetic poles of the field just as positively as if it were geared directly to the dynamo. If the compass be placed close to the ring on the outside, it will turn in the opposite direction. The field can be reversed by exchanging the connections to either one of its two colls.
To show the poles made by the field, lay a sheet of white paper on the ring and sprinkle some fine iron filings on it while the current is on. It is not so easy to show the movement of the poles in this way, but it may be done as follows: Shake some very fine iron filings through a piece of cloth on a sheet of paper, and then hold up the latter by one corner. The larger particles will slide off, and only the very finest will cling fast like dust. Lay the paper on the ring while the current is off, and close the switch for the briefest possible moment. Do this several times in succession, and considerable movement of the particles will be observed.
Drive a large pin through a plece of wood as shown in Fig. 1, F, and balance on the point a brass box cover or bell so that the latter is free to turn. If the magnetic field be then placed around the bell, the latter will be slowly dragged around by reason of the eddy currents set up therein, and will illustrate in part the principle of the driving mechanism of some forms of integrating wattmeters. Observe how the speed of the plece of brass varies in proportion to the number of lamps that are lighted at L.
If an iron (tin) box cover be substituted for the brass one the speed will be higher and the pull more vigorous, illustrating the principle of the induction motor. If an empty tin can be thus supported in the field, it will be rotated with considerable force and soon get. off the pin. Fig. 2 shows how the field may be supported in a vertical position and provided with a better rotor, from which it is possible to get enough power to drive light toys. The details of the rotor are shown in Fig. 1, where W is a turned wooden support provided with a small shaft X, and having in its periphery an iron hoop Y over which is slipped a copper hoop. Z. To be efficient the rotor must be made of a diameter as large as possible without touch-

Fig. 2.-ALTERMATLNG CURBENT MOTOR.
ing the windings of the field. It should be made to run true, and turn easily on its shaft.
The performance of the above experiments and of others that will be suggested by them can be made more interesting by studying the reasons why from some good textbook on the elements of alternating currents, to which the reader is referred for a fuller. explanation of the principles involved.

DEVICE FOR REMOVING WOOD SCREWS

 James paterson.In the Handy Man's Workshop department of July 31st, a device for removing wood screws was described which struck me forcibly. Another device for the same purpose has been designed by William Laycock, a weaving section hand in the Arlington Mills of Lawrence, Mass. Quite often screws in the shuttle springs for holding down the spindle will break, and the difficulty formerly was to get out these screws with-

\rightarrow -

DEVICE FOR REMOVING WOOD SCREWS.

out injury to the shuttle, so Mr. Laycock bethought him of an old screw-driver spindle, cut the point off, him of an old screw-driver spindle, cut the point off, right angles as indicated in the illustration. The grooves were made as wide as possible and fairly deep, leaving the edges sharp. In use the tool thus prepared is pressed against the broken piece of screw and digs into it sufficiently to permit of turning and thus removing the screw.

MENDING A BROKEN METALLIC FILAMENT. y howard w. nichols.

A carbon-filament incandescent lamp, when the filament breaks, is of no further value, but in the case of a tungsten or tantalum lamp it is often possible to mend the filament so that the lamp will be nearly as good as new. Place the lamp with the broken filament in a socket which is connected to the lighting circuit by a flexible lamp cord. Turn on the current and gently shake the lamp so that the broken ends of the filament will strike against the main part, and draw a small arc which will weld them securely to it and thus allow the current to pass through the filament, lighting it up brighter than before breaking. This mending process usually cuts out only a small section of filament; but if a comparatively large portion of the filament should happen to be cut out of the circuit, it would reduce the resistance of the remaining flament to such an extent that an excessive current would flow and thus soon burn the filament out. However, while it lasted, the lamp would give a very bright light.

\triangle sImple froit cellar.

Doubtless many readers of the Scientific American have found it difficult to keep apples and the produce of their gardens, such as carrots, beets, turnips, selery, etc., in perfect condition until they could be used. The accompanying drawings show a cheap and easily made fruit cellar in which I kept twelve bushels of apples, besides carrots, squashes, and potatoes, from October until April. My house was six feet wide, eight feet long and six feet high, and cost me

about \$4. Smaller ones can be built for a proporionally smaller sum
I dug a hole about eighteen inches deep and set the house over it, as shown in the cross section. The entrance is made like a box, about twelve inches deep, so that soil or manure can be spread over the roof to a depth of about ten inches. Cleats A on the inside of the opening hold slats B at the bottom of the box opening. In the space C I stuff an old tick filled with straw or leaves. Outside cover D protects the tick from moisture. The rafters should be about two inches square, or 1×3. Provide a chimney, E (of
ood), which must be stuffed with straw during zero weather. The chimney is not absolutely necessary, as the house can be ventilated through the door during mild weather. The proper slant for the roof is about 45 deg., as earth can be packed on at that slope. Cover the roof with a cheap grade of building paper, or with newspaper, before putting on the earth, but do not use a paper that has a strong smell, like tar paper.
I have had this house in use now during three winters, and it has saved me more than its cost every year. Apples and vegetables keep fresh and plump in it, and do not shrivel up as they will in an inside cellar.

HOW TO MAKE A PAPER TELESCOPE BARREL. र c. r. M'GAHEY.

The making of a paper telescope barrel is shown in the accompanying illustrations. First we make wooden mandrel, A, that represents the various reduc tions in the barrel of the instrument. These portions of the mandrel are made of such diameters as to bring the interior of the barrel to the proper size. Wrap on a layer or so of paper having a dull black finish so as to keep down any reflection of the rays of light on the interior of the instrument. When several layers of this paper have been carefully applied, Manila paper such as used by draftsmen in making pencil drawings should be laid on over it. It is understood hat this paper is laid with glue between each layer and this can be done to best advantage with th wooden mandrel placed between lathe centers. When the paper has been wrapped on to a thickness of about $1 / 4$ inch we shall have good substantial tubes. The exterior may be varnished or covered with cloth or paper of fancy pattern. The stop pieces are simply rings aid on as shown at B. When these stop rings have been placed in position the ring E is anvlied and lued fast, after which the lens is fitted against it and a second ring F is applied to hold it in place.

A PAPER TELESCOPE BARREL.

These rings must be of dull black finish. The eyepiece may be applied in the same way. This makes a most excellent case for a telescope.

RESTORING A DRY CELL

Having experienced a great deal of trouble with the usual small cell batteries, such as are used for medical wall plates, gasoline engines, etc., I have experimented until I have discovered a very simple method of restoring the ordinary dry cell sal-ammoniac battery. My method is as follows: Midway between the carbon and zinc at the top of the battery drill a hole $3 / 16$ inch in diameter down to within $11 / 2$ inch of the bottom of the cell. On the opposite side drill a hole through the sealing wax covering $1 / 16$ inch in diameter and 3 inches deep. Place a small glass funnel in the large hole with the stem at least 2 inches long. Into this pour one ounce C. P. hydrochloric acid. After this is thoroughly absorbed pour in the fun nel one ounce of water. When all is absorbed, seal the holes with ordinary stationer's sealing wax. After twelve hours it will be found that the batteries so treated will.work with increased voltage and amper age over a new dry cell. They will work well on either closed or open circuit and have from four to six times the life of a new dry cell. I am using a series now that I employed in my office for three years, and during that time have renewed them thre years, and during that time have renewed them three
times. The batteries will work until the zinc pole is times. The batteries will work until the zinc pole is
completely exhausted if the chemical elements are kept completely exhausted if the chemical

THE HANDY MAN'S SUB-CALIBER GUN.
 \section*{by august mencien}

Those familiar with heavy artillery know that sub caliber work forms a very important part of the drill Very accurate work can be done by this method, but of course the range is very much shortened and the recoil and noise are missing.
Anyone having a large-bore rifle, such as the old model Springfield, and wishing to use it for short range or gallery shooting, can sub-caliber it very easily in the following way:
Take an empty regulation shell and bore out the head so that its inside diameter will be the same throughout its length. Then take a 0.32 caliber 3 -inch revolver barrel-the hexagonal kind used in cheap re volvers is good enough for this purpose-and turn it
up until it fits in the shell snugly but not so tightly as to swell the shell. Then carefully chamber the barrel to take the 0.32 cartridge. Great care must b taken in doing this, as the accuracy of the gun de pends greatly on this part of the work. Next counter sink the revolver barrel, B, so that the head of the 0.32 will lie flush with the head of the regulation shell A, as shown in the illustration. If this is not done the breech will not close and the shell may be accidentally exploded. Pins, C, should then be driven through the shell and barrel to keep the latter in place. This will not be needed if the barrel and in side of the shell are slightly tapered, the taper in creasing from the muzzle end to the breech.
For ranges from 25 feet to 100 feet this method will

THE HANDY MAN'S SUB-CALIBER GUN.
work very well, and if the rifle is built so that a longer barrel could be inserted, of course its range would be increased.

A DEVICE FOR EMPTYING \triangle TUB.

by c. w. faibbank.

Considerable difficulty is often experienced in emptying and refilling the common form of movable wash tubs. Stationary washtubs are usually provided with suitable plumbing connections whereby the water may be easily and quickly drained off, but with the ordinary form of wooden movable washtubs the entire tubful of water must either be lifted and carried to the sink or other drain to empty it, or the water must the sink or other drain to empty it, or the water mus be bailed out of the tub and carried to the sink or drain by the pailful. The lifting of the tubful of water is often a physical impossibility, and the carrying of the water from the tub to the sink by the pailful is a tiresome task. If the house be provided with running water at the sink, a very simple contrivance may be devised for utilizing the city water pressure for the emptying of the tub. By providing a simple form of ejector at the faucet and connecting one inlet of the ejector to a short piece of hose leading to the sink, the water may be very easily drawn out of the tub into the sink, even though the latter be at a higher elevation. In the accompanying sketch, there is shown a simple contrivance of this character, in which the ejector is formed of a block of wood adapted tc be detachably secured to the faucet. The ejector includes two passages intersecting at an angle and having a common outlet as shown in section in Fig. 2. One of these passages receives a stream of water under pressure from the faucet, and the escape of this water from the lower end of the ejector tends to draw water out of the tub through the hose and to deliver the latter to the sink.
The same device may be used for refilling the tub. To secure this object, it is merely necessary to close the lower end of the ejector with a plug or in any other suitable manner. As shown; a short rubber plug is connected to a strap tacked to one side of the block. By inserting the plug within the open lower end of the passage and securing the free end of the strap to a button on the opposite side of the block, as shown in dotted lines, the water will be caused to fiow from the faucet. down through one passage and

up through the other to the hose and thence to the washtub.

An interesting experiment to determine whether the strength of iron and steel was affected by magnetism was carried out at the Technical Institute of Belfas with the following reported result: Bars of mild steel and wrought iron 8 inches long by $1 / 2$ inch to 1 inch in diameter were used, part of which were magnetized by being saturated in a solenoid. When tested, the elongation of the magnetized parts decreased 3 to 16 per cent, and the average breaking load seemed to ne increased.

RECENTLY PATENTED INVENTIONS. Electrical Devices.
electrical FUSE.-A. G. Fay, Highland Park, III. The fuse is for use in blasting, the more particular purpose being to protect the materials and containing shells of the fuse
against moisture. To this end the invention relates to the addition of an outer shell and a filling, the size of the diameter of the outer shell being slightly reduced at one end there-
for for sharpening the effect of detonation of for for shas.

of General Interest

bOAT.-F. M. Thompson, East Liverpool, Ohio. Among the characteristic features of this patent is a vertically rocking rudder or tail plate, the movement of which causes the prow
of the boat to rise and fall in the water to a degree desired. To overcome any suction and break up formation of vacuum at the plate the latter is made hollow and means are provided to discharge air, into and through. Horizontal rudders or vertical axes are provided in front
of the plate and in rear of the propellers for of the pl
steering.
crate.-D. F. Payne, Corpus Christi Texas. The invention relates to crates used for shipping, the more particular purpose being to provide a type of crate which may be folded
readily when not in use, and provided with top and bottom members detachable from other portions of the crate and adapted to be sprung into position for the purpose of holding them into position.
WINDOW.-H. Mortenson, New York, N. Y.
This invention is an improved window, in which either the upper or lower sliding sash may be turned end for end and brought in ward in the lower portion of the window
frame, where the outside of the sash is easil frame, where the outside of the sash is easily accessible for washing or other purposes, an a ventilatin
RECORD-HOLDER.-W. T. Long, Sumner, Wash. The object here is to provide a holder arranged to accurately and securely hold the record in central position, to accommodate records of different sizes, to compensate for varia-
tions of the inside diameter of the records, to tions of the inside diameter of the records, to
hold the record against accidental shifting in hold the record against accidental shifting in
an axial direction and to allow placing it conveniently in position on the holder or re moving it therefrom
embalming apparatus.-J. E. Coppola Mexico, Mexico. An object in this invention
is to provide a simple apparatus capable of is to provide a simple apparatus capable of
holding the liquid and compressed air in a reservoir, and devices for connecting the same with trocars or needles for injecting the fluid under pressure into a cadaver.
FLASK FOR FORMING GATED MOLDS.tion provides a construction of flasks wherein the gated molds may be formed in tiers, and the pattern members withdrawn therefrom provides flasks wherein the cores may be in-
serted from the outside of the flask and held serted from the outside of the flask and held
firmly in position; and provides a flask adapted to be mounted in tiers and arranged to ac commodate molds of various sizes.
DRY SEPARATOR.-R. R. SNowDen, Housthe object is to provide a separator more espe cially designed for treating crushed phosphate rock and other materials so that the materia in a revoluble screen is subjected to alternate
brushing and jarring actions, to thoroughly separate the valuable material from the ex

SCREEN.-C. J. Jewetr, Fort Smith, Ark.
The invention relates to screens which may be used for clay, coal, or other materials, and an object is to provide a screen with adjustable screen bars, and means to move the bars to
predetermined distances from each other. predetermined distances from each other.
Means prevent the material from becoming Means prevent the material f
clogged between the screen bars.
DAMPER-REGULATOR.-R. P. Mitchell and R. V. Brawley, Statesville, N. C. A spring is adjusted to retain a disk against predeter-
mined pressure in the boiler. Means permit the cylinder to exhaust; but should the presprovided to close or partially close the dampe in accordance with the excess of pressure. A valve is so elevated that a disk closes the
inlet opening to the pipe, but when pressure inlet opening to the pipe, but when pressure falls, means permit the cylinder to exhaust,
the piston to move downwardly, to allow a weight to swing the damper into open position.
Parallelerdler.-F. W. Sterling, Chiing instruments, and its purpose is to provid a new and improved parallel ruler, more espe
cially designed for the use of mavigators and cially designed for the use of ravigators and quickly transfer parallel lines when translating curses on a chart.
CIGAR-PERFORATOR.-E. F. HALL, Fowler, Cal. The improvement is in that class of of opposite points or prickers pivoted and ar ranged convergently in such manner that when the tip of a cigar is pressed down between them they enter the same and thus form lateral holes which assist in producing an easy draft.
WINDOW-VENTILATOR.-G. W. STEIN, Chicago, IIl. The inventor provides a device
the same time the ventilating opening is shaded
without the necessity of using a projecting awning or other similar device. He provides a device which while permiting good ventilawhile the device is in ore snow from entering while the device is in use.

Hardware

WRENCH.-W. A. Pratt, Stamford, Conn. This wrench is adapted for screwing up or unscrewing caps or jars and other packages,
and for ${ }^{\circ}$ loosening the caps from the rubber or other packing rings, it being adjusted for grip ping objects of various sizes, and having with each other at their ends and a supple mentary jaw adjustably and removably at tached to one of the jaws ${ }^{\circ}$ to co-act with the
WOODWORKER'S PLANE.-J. H. Brown Boston, Mass. The intention here is to pro-
vide for a plane that facilitates the exact adjustment of the cutter bit laterally and longi tudinally in the throat of the plane stock enable the quick and exact graduation for size
of the throat opening in the stock, provide of the throat opening in the stock, provide
means for clamping the cutter bit when admeans for clamping the cutt
justed in the throat opening.

TUBE-CUTTER.-O. R. Young, Riverhead, N. Y. The invention is useful for various diferent purposes, andeparticularly in facili
tating the removal of defective tubes in a boiler or similar tubular structure. In a
boiler access cannot easily be had to the exboiler access cannot easily be had to the ex
terior of the tube and some difficulty is ex perienced in removing the tube unless it be cut in two from the interior.
COMBINATION TOOL.-W. J. Tweedale Saginaw, Mich. The intention in this case is to provide a wrench of ordinary construction
with attachments whereby it may be used as a pipe wrench or a drill, or a turning lathe and for many other purposes. The handle may slip out of the extreme end of the shank so as to gi
bit.

Heating and Lighting.

CORE-OVEN.-J. J. JoHnson, Newark, N. J. used for drying or baking cores used in molding. The object is to produce an oven which will be simple in construction, the temperature of which can be nicely regulated, and which will have a construction which w
illuminating sign.-J. F.-Druar, Buf falo, N. Y. This invention relates to advertis
ing signs such as those hung out in front of ing signs such as those hung out in front of
stores or shops to indicate the business done therein. An object is to provide an illuminated sign which can be read at night from a con siderable distance with ease and which can be equally as well read in the daylight.

Machines and Mechanical Devices.

COMPUTING-PUMP.-S. G. WISE and J. E. Troyer, Jr., Gas City, and J. E. Smisor puting pumps, and more particularly to pumps puting pumps, and more particulariy to pump fuids such as oil and the like. When one galon of fluid is pumped by the pumping mechan ane onallon is registered by the computing through the casing, the dial has made a com plete revolution
VENDING-MACHINE.-F. A. Slichter, Kansas City, Mo. The aim of the inventor to provide a machine more especially designed ranged to stores and other places, and ar merchandise in predetermined quantities, with out danger of packing and obstructing the rapid low of the merchandise, such as seeds of var ous kinds.
AIR-SHIP. A. E. G. LUBEE, San Fran hip cal. An object here is to provide ag connected therewith, together with an mproved steadying means. A further objec ss to provide a balloon composed of one o more separate gas bags inclosed within a shel prature. The propellers may be caused to ro tate horizontally or vertically.
FEED MECHANISM FOR BORING-MA The inv-A. Frex, Schöftland, Switzerland of being quickly changed for usse as a hand leed or an automatic feed, and arranged to phat convenient changing of the gearing so ing tool may be run at any desired speed ac
cording to the nature of the rock to be bored.

Prime Movers and Their Accessories.
ROTARY ENGINE.-F. O. Bible, Wilkinsburg, Pa. In this case the inventors desir parts are designed to permit of exact adjust ment for controlling the motive fluid to per uid of utilizing the expansive force of the in view the construction of an engine which will permit of the use of as many cylinders as
desired.

Rallways and Their Accessories. SAFETY SWITCH-LOCK.-A. Haddock and
Schmitt, New York, N. Y. An object her tor provide a lock which can be used in con nection with various switch systems and block signal systems without interfering with the
operations thereof, and which serve to lock a switch either open or closed as set by the
switchman, so that the switch cannot be ac switchman, so that the switch cannot be ach
cidentally displaced while a train is approach ing the switch or passing over the same.
LOCOMOTIVE-HEADLIGHT.-I. L. WAD patent the invention is an improvement in tha class of locomotive headlights which are pivoted and so connected with the front truck as
to be turned with the latter in passing around to be turned with the latter in passing around
curves. The headlight, yoke and arms may be curves. The headlight, yoke and arms may be
readily detached when required. SNOW PLOW.-C. A. Bellevd, Fairdale, . D. The object here is to produce a snow plow which will effectively operate to cut the the side. In its general construction the plow comprises a pair of cutter wheels which are mounted at a forward point, and behind these cutter wheels an apron is provided which assists in throwing the snow rearwardly into a drum from which it is discharged laterally, or a right angles to the track.

Pertaining to Recreation.

SOCKET POST FOR SUPPORTING CRO UET ARCHES.-H. B. Collier, Prairi
rove, Ark. The purpose of this inventor is to provide novel details of construction for socket post, which adapt it in pairs for a
secure embedment in the ground at suitable points in upright positions, and for the con venient insertion of the limbs of a croquet arch heremito, and thus afford stable support to th of the arch.

Pertaining to Vehicles

AUTOMOBILE-PROTECTOR.-D. F. ARM more particularly to protectors such as ar adapted to be arranged on the steering posts of automobiles to protect the drivers. It can be easily secured to the steering column of an a translucent shield to protect the driver. WHEEL.-L. Y. León, San Juan, Porto Rico The invention relates to wheels for genera ase, the more particular purpose being to pro ide a wheel suitable for a road vehicle, an
having a considerable degree of resilience du to the type of springs employed within the wheel and to the manner in which they a mounted and kept in position.
Note.-Copies of any of these patents will Please state the name of the patentee, title ot the invention, and datr of this paper.

Kindly write quer
about other matters, sunch as patents, sybscription
books, etc. Thatis will facilitate anstering your ques
tions. Be sure and give full name and address on every Fulil hints to correspondents were printed at the head
of this column in the issue of March 13th or will be
sent by mail on request.
(12127) A. C. Co. asks: We would like to get an approximate idea of the amount vessel of 700 tons net registry, drawing from vessel of 700 tons net registry, drawing from
9 to 15 feet, that is to say, the amount of
coal per hour burned in producing a speed of from 10 to 15 knots. A. It is impossible for us to give a reply to your question equally reason that coal consumption per horse-power aries so much with the efficiency of both given speed varies so much with the lines of the boat. For instance, a 700 -ton yacht with fine lines might be driven at a speed of 10
knots with half the horse-power required to knots with half the horse-power required to
give the same speed to a cargo boat of the engines of the yacht might easily have 50 per cent higher efficiency (say 30 per cent effl-
ciency as compared with 20 per cent) the yach might make the same speed as the cargo boa with one-third of the latter's coal consumption gain, every steamship has its maximum econof coal may drive it a little greater distance at a loal may distan higher speed will cause an increase of coal consumption out of all proportion to the in-
crease of speed gained. There might therefore be a great difference between coal consumption
at 10 and at 15 knots, and a boat of which the former was the economical speed migh sonable coal consumption, if at all. Although you only ask for an approsimate idea, we must therefore make this reservation to show you how widely an average figure may vary from that of your particular case. If you gave tonnage, economical speed, and horse-power, we
could give a fairly close figure for average
power, the chances of wide disparity are multiplied. With the foregoing reservation, we of three that the average coal consumption displacement in actual service of 700 ton knowledge, is 9 tons per day. The horse ou of these ranges from 400 to 600 and averages 500, which represents 15 pound of coal pe hour per horse-power, which is good marine practice for any except the most efficient mul-tiple-expansion engines. Only one of those boats has ever been, or could be, driven at 15 knots, and that was as an experiment, and
necessitated a consumption of 3,750 pounds of coal an hour, or nearly five times the econom ical consumption.
(12128) N. V. V. says: Being a constant reader of the Scientific American, tion : If it takes 10 tons of coal to run a loco
to motive 100 miles in 10 hours, how much cos would it take to run the same engine the san distance in 5 hours? I claim that, as based upon the mechanical rule, what you gain in speed you lose in power, it ought to be about
the same amount. A. It is impossible to an swer your question exactlyowithout a great dea more detail as to the locomotive, the load hauled, etc., but speaking generally, the fue consumption is likely to increase out of al proportion to the speed, if the latter is in creased above the economical speed of the en gine. Each engine has a certain maximum conomically; and whereas with a given loa tity of coal it can haul the same load greater distance at a lower speed, at a highe peed the coal consumption increases ver much more rapidly than the speed. For in stance, an engine burning 1,930 pounds of coa per hour at a speed of 40 milles per hou train 60 pounds per hour in hauling the sam coain consumpter hour, nearly doubling th speed, and 3,920 pounds at 70 miles per hour These are figures from an actual test the coa consumption varying directly with the horse power expended. In your case, however, 10
miles an hour is not likely to be the economical peed of the locomotive and it is probable tha could cover 100 miles in 5 hours with th same or very little morè coal than it would
take to cover the same distance in 10 hours

NEW BOOKS, ETC

astronomy of the bible. An Ele mentary Commentary on the As Scripture. By E. Walter the Holy F.R.A.S. New York: Mitchell Ken nerly, 1909. 34 ill
Mr . Maunder's attitude toward the celestial miracles of the Bible does not differ essentially
from that of the average non-astronomical Christian. He frankly regards the Bible as a nspired utterance. Although he does not hesi tate to present the scientific theories whic have been advanced to account for such miracles as Joshua's Long Day, the Dial of
Ahaz, and the Star of Bethlehem, he is more Ahaz, and the Star of Bethlehem, he is more
prone to consider them as divine portents prone to consider them as divine portents
rather than as ordinary astronomical occurrences. He constantly reminds us that the Scriptures were not intended to teach us the physical sciences, for which reason, in his
opinion, it is almost futile to offer scientific explanations of Biblical miracles. In the case
of the Star of Bethlehem, for example, Mr. Maunder is inclined to accept the miracle; nd although he presents the usual theories of a conjunction of planets, a comet, and a nova,
to account for the apparition, he regards the Star of Bethlehem as a specially devised mir acle for the guidance of the Magi.
Statistical and Chronological History
of the United States Navy, 1775-
1907.
Fellow of Yale-College. In two
volumes. The Macmillan Company,
1909. Quarto; 650 pp. Price, $\$ 12$ net.
In spite of the many books that have been navy, it is the opinion of the outhor that the record is yet incomplete. Hence he has underresearch and completeness that leave nothing to be desired; going back as far as possible to the original authorities, and-a most important eature-giving these authorities in the text. parts. The first three parts, here complete in themselves, and contain data concerning every engagement, capture, expedition, or other achievement of the navy prior to work may be considered as supplementary. This is a monumental work carried out with great idelity
Nelson and Other Naval Studies. By $\begin{array}{llll}\text { James } & \text { R. Thursfield, } & \text { M.A. } & \text { New } \\ \text { York: E. P. Dutton \& Co. } & 374 \mathrm{pp} .\end{array}$ York: E .
Unlike so much of the literature of the life of Nelson, the present work was written by a
civilian. The fact of his reviewing the life of a naval officer from the outside, as it were, gives a new point of view, and serves to bring into relief certain features which are apt to be overlooked by the professional naval writer. dithough the battles of the Nile and Copenhagen receive adequate notice, the Battle of
Trafalgar naturally takes the first place. Mr.

Thursfield＇s idea of the plan of attack at
Prafalgar differs somewhat from those com monly accepted；but after reading what he has to say，the impression is deepened that at Trafalgar，as in many other fights of that day， the plan of battle as outlined before the figh was greatly，modined to suit the exigencles of interest for American readers because so large a portion is devoted to an appreciative surve of the achievements of John Paul Jones． $\mathbf{M r}$ inence to remove the stigma which was at tached to Jones＇s name by the calumnious writers of his day，and reveal him as the admirable character that he was．One of the justice is done to Admiral Duncan，the hero of Camperdown whose exploits and，general pro fessional ability seem never to have recelved adequate recognition until late in his career．
Second Appendix to the Sixth Edition By Edward S．Dana and William E Ford．New York：John Wiley \＆ Sons，1909．8vo．； 114 pp．Price， $\$ 1.50$ ．
During the ten years of mineralogical in vestigation which this appendix covers，a large amidence of material has been published．An dred new names which are given in the classi－ fied list in the introduction．About sisty of ness of their descriptions seem to have a war－ rant for their acceptance as new species．The other names：are either of imperfectly described species．．The descriptions of the new species included in this book are given concisely bu completely．It was found，however，imprac－
ticable to follow the plan adopted in the Sys－ tem and the First Appendix of recalculating all the angles and crystal constants of the new species．This has been done in a few thes，but in the majority of the descriptions without of the authors have been accepted of the vew wing with the of some has been impossible to give the complete lists of the forms identified upon them．The method followed has been to give the more common and prominent forms and to indicate the num The not listed．
The Making of Species．By Douglas
New Yor，B．A．，and Frank Finn，B．A
$\begin{array}{llll}\text { New York：John Lane Company } \\ 1909 . & 8 \mathrm{vo} \cdot \mathrm{F} & 400 \% \text { pp．Price，} \$ 2.50\end{array}$
postage extra．
The authors＇aim in writing this book has been twofold．In the first place，they have attempted to place before the general public in simple language a true statement of the present position of biological science，and in nish the scientific men of the day with food for reflection．As the British nation seems to be slowly but surely losing，through its con－ servatism，the commercial supremacy it had the good fortune to gain during the last cen－ tury，so is it losing，through the unwillingness of any of her scientific men to keep abreast she gained in the middle of the last century by the labors of Charles Darwin and Alfred Russell Wallace．It is not among Englishmen but among Americans and Continentals that ideas．Therld has to look for advanced scientific
 What they attack is not many scientific men which is erroneously－called．Neo－Darwinism Neo－Darwinism is a pathological growth on Darwinism which，we fear，can be removed only by a surgical operation．The book is a
beautifully printed one and will doubtless in－ terest all naturalists．
The Elementary Principles of Indus
trial Drawing．By George Jepson．
Oblong 12 mo ．； 28 pp ．； 11 plates．
The aim of this little book is to present the dent after he has drawing，so that a stu－ contents，will have mastered all the essentia principles as applied to mechanical and archi－ all the principles of industrial drawing it is not a graded course of lessons，although if desired an elementary or more advanced course can be compiled from its contents． The author is an instructor in descriptive geometry，machine drawing，and shop work in the Massachusetts Normal Art school，and was for many years master of the Evening Science School of the city of Bo
book appears to be an excellent one
Hendricks＇s Commercial Register of
the United States for Buyers and
Hendricks Company，1909 Quarto；
1220 pp．Price，$\$ 10$.
This is the eighteenth annual edition of States．It is a complete and reliable annual index of industries，containing over 350,000 names and addresses of buyers and 33,000 business classifications．Full lists are given of manufacturers and dealers in everything em ployed in the manufacture of material，ma industries，from the raw material to the vanu factured article and from the producer to the consumer．It is indispensable as a work of

eference for the architect，engineer，contrac purchasing agent，and for the railroad ma chine shop，foundry，mill，factory，mine，and We have occacon to use severa opies of this book，and answers a vas umber of our inquiriea for manufacturers． it is a book which we can thoroughly com lt is mend．
 Legal Notices
 PATENTS

INVENTORS are invited to commanicate with Munn \＆Co．， 361 Broad way，New．Yorko or
625 F Street．Washington，D．C．，in regard to securing valid patent protection for their in－ ventions．Trade－Marks and Copyrights
registered． Patents secured．
A Free Opinion as to the probable patenta－ bility of an invention with
tnventor fornishing us wasdily given to any
with a model or sketch and a brief description of the device in question．All communicatious are strictly confdential．our Hand－Book on Patents will be sent free on request．
It was established over sirty years ago．
MUNN \＆CO．， 361 Broadway，New York
Branch Office， 625 F St．，Washington，D．C，

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending October 12，1909，
ANDEACH BEARINGTHAT DATE ［See note at end of list about copies of these patents．］

野涫

距

Air compressor，A．Neumann．．．． AIr cuahhon seat，D．B．© ${ }^{\prime}$ Kelly Air ships propeller meanim．

Animal trap，Dunn \＆Vought．
Anmal trap， \mathbf{H}.
M．Voter..
Annealing furnace，F．H．Daniels．\ldots.
Armor plates and other articles of stee．and
alloys of steel，manufacture of，F．Gio

 Auger，earth，F．Palmer
Automobile，B．A．Alperth
Automobile，B．A．Alpert．．．．．．．．．．．．．．．．．．．．
Automoble attachment， \mathbf{H} ．
Axle lubricator，J．J．N．Rickards．．．．．．．．．．

 Basin plug，wain，j．．．．．．．．．．．．．．．
Bearing，roller， $\mathbf{H} . \mathrm{V}$ ．Smith \ldots.
Bearing，
Bearings．

 Szymanski
$\begin{gathered}\text { Beverages，manuacturing fermented，} \\ \text { Kubn }\end{gathered} ~$
 Blank and the like， 100 ．
Blant feeding device，A．
Block．See
Bee Kee B．Dook
block．
Boat pluy，J．W．Doar oni...............
 Boiler check，fuace，E．H．H．Montsomery．....
Boiler superheater，steam，F．J．Cole．
 Book，tripicate sales，W．G．Wilson．．．．．
Boot and shoo cleaner，Predmore \＆Estel．
Boots and shoes，elastic tread for，P． \mathbf{W} ．

 Bottle holder，Infant＇s feeding，L．G．Black
Botle，non－refllable，J．S．Bromhead．．．．．
Bottle opener and cigar cutter，combine
 Box or can，F．Westerbeck．
Box or carton，G．B．OOnley
Bratded fabric，Thun \＆Ly

 Bread mixing machine，E．Mechini．．．．．．．．．．
Brash for cleaning glasses，hand，o．Beth
sold

\section*{| | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

 Bu

Bu
Cab
Cab}

 Castling metal pota，etc．，mold
Cattle guard，G．W．Youngs． Cement procese and Yaparatur or the man
ufacture of Portland，C．F．McKenna．

Holl
 ${ }_{93}^{936}{ }^{938}$

FOUR INTERESTING LETTERS

PEARY

New York, June 19th, 1908.
Dear Sir:-In regard to the watches
furnished me by the Waltham Watch Co. three years ago, the behavior of the meantime watches was particularly excellent

Watches carried by men in charge of different parties on the sledge journeys over the sea ice ran for other. This feature was a me in making me feel sure of my observations whe the drift of the ice had carried me far away from al dead reckonings.
Most of these watches are now on Eagle Island Maine, where I am going the end of this week. I
will endeavor to get them on to you as soon as possible Very sincerely,
(Signed) R. E. Peary, U. S. n.
Mr. James W. Appleton.

WELLMAN

Washington, D. C., Nov. 27th, 1899. American Waltham Watch Co., Waltham Mass. Gentlemen:-The nine watches made by you, which were carried in the Wellman Polar Expedition, proved entirely satisfactory. Two of these were njured slightly by the Norwegian sailors in the early winter. The remaining seven were used by me in longitude. Position of stars computed by the aid of these watches could bedepended upon to the accuracy of a second. Positions of longitude ascertained by Julius Payertwenty-five years previously were verified. Extreme cold affected the movements but slightly, and in no way injured them. After returning to comparing with Greenwich time.
In my judgment these movements are thoroughly
reliable for any use and in any clime, being thoroughly compensated. Yours truly,
(Signed) QuIrof Harlan,
Physicist to Wellman Polar Expedition.

The Shackleton Relief Expedition bRITISH ANTARCTIC EXPEDITION, 1907 S. Y. " Nimrod.' LyTTELTON, 27th March, 1909 Messrs. R. W. Cameron \& Co., Wellington. "Sir:-Herewith I forward to you, per Purser S. S "Maori," the seven Waltham watches so generousl our use in the Antarctic. Two of them unfortic One of them by an accidetely have been damaged. other during a sledge journey. 11 conditiable unde all conditions. After a time we gained so much confidence in their rates that we had no hesitation in trusting to them when taking observations whic
On their: behalf and my own
vey to your Company my thanks for the use of the watches. I am, Sir, Yours faithfully,
(Signed) Fred P. Evans, Lieut. R، N. R. Officer Commanding.

LEFFINGWELL

The Quadrangle Club, Chicago, Dec. 8th, '08.
Mr. E. A. MarsH, Waltham Watch Company.
the Anglo-American Polar Expedition' ' 08 . them from Robins, etc., here, and yesterday I returned three of them to the same people. I wrote to you from the North last summer telling of the remarkable performances of these watches and my private Waltham, during a two months' sled trip over the ice. They were compared with each other and chronometer corrected by observation nearly every day for a year and rates assigned for the ice trip. Daily comparisons were made among the watches on the trip, also, and with the chronometer after our return. The field rates were found to.be practically the same as those assigned from the rates during the several months previous to the field trip. If it were not that all three watches came out the same, I should say that the obscure field. rates were accidentally close to the calculated rates. The performance of your watches is emphasized by the fact that Capt. greatly from the mean of the other watches that it had to be disregarded after the first week. The rates of your watches were changed but a fraction of a second, while the Captain's watch increased 35 seconds in its daily rate.
I took the greatest care in getting the best possible performance from the watches. I wore two myself and insisted that others took good care of theirs. The watches were worn night and day next to the skin and every precaution taken to keep their temperature constant.

Thank you very much for your kindness to us in loaning the watches. Yours, etc.,
(Signed) E. DE K. LEFFINGWELL.
N. B.-In buying a Waltham Watch always ask your jeweler for one adjusted to temperature and position

Leveling instrument，hydrostatic，J．J． Bunting Lide or covers having beaded rims，devic
 Life Lifting Light
 Locomotive boiler，G．Coo

 ment for，A．A．Gordon，Jr．
Looms，thread changing apparatus for，
Looping machine，c．Hoily
Maill bag crane，A．H．Sto
Mail box holder，J．His ．Fis
Mail pouch catching and d

Mat．See Door mat．
Match box；automatic，W．A．A．
Mattress and furniture spring，

Metal，bluing，H．E．Sheidon
Metal，perpanent magnetc，S．．E．Gertler．
Metal plate bending machine，T．Ceschel
Metal rod cutting machine，G．H．Scott．．． Metal，treating，F．L．O．Wa
Metalk，plating．W．Grifth
Metals，treating．＇ Metals，treating，
Meter seal，Burgest \＆Londick．
Microccoove gage for fine measur
A．Reynlds
Milking machine，，G．E．Jonson
Milking machine adjusting devi

 Nozzle，spray Ing，A．B．
Nut lock，F．Brane ．．．．．
Nut lock，J．B．Lambeth

oil and air，apparatus oror supplying，hea
ing，and burning crude， \mathbf{H} ．E．Weave Oil burner，W．Scrimgeou
Oil buncer，H．S．M11ks
Oil waste clean．

 ratus，R．Luckenbach
Ores．amalgamating and separati．．．．．．．．iliic
R．Luckenbach and
 Packing，D．S．Paterson
Packing machine，J．Meriti
Packing Packing，piston，J．J．Hampson．．．．．．．．．
Paddle wheel，feathering．J．Rourke．
Padlock，L．A．E．C．Byrne．．．．．．．．．． Pain in 3 Feet of Shelf Room

44 Handsome Volumes Each 4\％$\times 6$ inches 10，000 Pages 400 Authors American，Enslifh，French
Rustian，
，tialian，Scrman，Spanish 1200 Separate Selections ose，Pootry，Fiction，Humor

Less Than 50 Cents a Volume

Our large manufacturing establishment and tremendous clientele has enabled
to offer some very good bargains in the past－but never one like this．The us to offer some very good bargains in the past－but never one like this．The
introductory edition of the MASTERPIECE LIBRAR is now ready．As long at it lasts，you can have a set for 50 cents down and $\$ 2.00$ a month for 10 monthg，
The coupon with 50 cents，brings a complete set express prepaid．If you don＇t The coupon，with 50 cents，rings a complete set，exppress prepaid．If you don
like it，send it back at our expense．If it is satisfactory，you pay for it in small like it，send it back at our expense．If it is satisfactory，you pay
payments，and get FREE The Litlle Masterpieces of Science．

PREE $\begin{gathered}\text { The Little } \\ \text { Masterpeces } \\ \text { of Science }\end{gathered}$

This is in six volumes，bound to match the rest of

—X－PRESIDENT Eliot of C．Harvard，＂first private citizen of America，＂says that the books a cultured person must read will go on a shelf 5 feet long．
But You will be glad to know that the REVIEW OF REVIEWS，after nine years o preparation，has
whose 44 exquisite volumes fill only three
feet of bookshelf，and into which Hamilton Wright Mabie，Dr．Henry van Dyke，Bliss Perry，George Tles and Tom Masson，as editors，have put a vastly more comprehen－
sive，useful，readable and necessary private sive，useful，readable and necessary private
library than Ex－President Eliot could pos sibly get into his five foot bookshelf． Ex－President Eliot himself says of one
section of this Masterpiece Library，which section of this Masterpiece Library，which
he saw before the whole was completed，＂ know of no more complete and delightful selection than that which you offer the public in these charming volumes．＂
Other attempts at such a collection cost
fre from one hundred to five hundred dollars．
And there never has been one with a board And there never has been one with a board
of editors equal to that of the Masterpiece of editors equal to that of the Masterpiece
Library：This one will cost you less than The

The Masterpiece Library

In this set you have the best work of－ Milton，Bacon，Swift，Goldsmith，Words－ worth，Tenny son，Scott，Thackeray，
Dickens，Eliot，Browning，Stevenson， Barrie，Voltaire，Balzac，Daudet，de Mau－ passant，Zola，Goethe，Heine，Boccaccio，
Hoffman，Turgenieff，Tolstoi，Franklin， Lincoln，Longellow，Lowell，Hawthorne Mincon，Longellow，Lowell，Hawthorne， more of the world＇s greatest writers．Much of the material is copyrighted and much
appears in English for the first time．The editors contribute critical essays，which
are＂the last word＂＂on their subjects． are＂the last word＂on their subjects． ままvevzo かion 93678

98647
986.345
936.59

Engine and Foot Lathes
 SEBASTIAN LATHE EO：． 120 Culvert St．，CIncinatl． 0

 STODDARD INCORPORATING COMPANY，Box 8000
PHOENIX ARI

AERONAUTIC

 MOTORS

How to Construct

 An Independent Interrupter
 Each sapplement coetst 10 cents； 20 cents 9 or th
\qquad

A SIMPLE METHOD OF TEACHING EX－ PERIMENTAL PHYSICS．
Continued from page 293．） taneously．The needle traces an undulat－ ing line which cuts the base line in a series of points whose distances from the zero point are proportional to $1,4,9,25$ etc．，that is，to the squares of the times n this way the laws of falling bodies can be verified to within 1 per cent．This is a much closer approximation than can be obtained with Atwood＇s or Morin＇s ap－ paratus，with which the beginning and end of the fall cannot be determined very accurately
In other experiments the drum is driven by a cord，passing over the pulley and a grooved wheel 6 inches in diam ter，attached to a simple driving clock， such as is used to turn a spit．With this arrangement the gradual diminu tion of the amplitude of succesive oscilla tions of the pendulum，and the more rapid diminution brgifight about by at－ taching to the pendulum a paddle dip ping into water，can be studied．The sochromism of small oscillations can be shown by giving the drum a uniform velocity of rotation，by means of the driving clock or of a weight which is stopped after it has fallen a certain dis tance．Then the base line and the undu lations having been traced as before，the wave length，or distance between con secutive intersections of the two lines，is ound to be constant，no matter what the amplitude or height of the wave may be provided that it is small．
Chassagny＇s apparatus for compound－ ing vibrations in the same plane（Fig．2） comprises two wheels mounted on para lel shafts．The first wheel is turned by a crank and drives the other by means of a belt．The ends of a fine violin string are attached to pegs inserted in the faces of the wheels at unequal distances from their centers，and the middle part of th violin string，which is kept taut by a spring，passes round a pulley，which turns freely on a vertical rod，attached rigidly to the horizontal axle of the nave of a bicycle wheel mounted in bearings． When the crank is turned both wheel revolve，and the horizontal displacement of the pulley，at any instant，is equal to the algebraic sum of the horizontal dis placements of the two pegs．The move ment of the pulley is followed accuratel by a writing point which is attached to the other end of the bicycle nave．Thi point presses against a strip of smoked paper wrapped round a drum，which is turned by the engagement of a toothed wheel on its shaft with an endless screw on the crankshaft．The amplitudes of the two vibrations whose combined effect is sought are varied by varying the dis－ tances of the pegs from the axes of the two wheels；the phases are varied by set ting one wheel，at the start，more or less in advance of the other by means of pointers attached to the wheels and fixed graduated circles behind them；the periods are varied by employing wheels of diameters proportiqnal to the periods desired．For example，two wheels of nearly equal diameters give a graphical record of the phenomena of＂beats．
Vibrations in mutually perpendicular planes are combined by means of an ap paratus based on the same principle （Fig．3）．The resultant curves are traced on smoked glass so arranged before lantern that the curves can be immediate－ y projected on a screen and explained and studied at leisure，with a thorough ness that is not possible with the evanes cent projections of Lissajous＇s figures made in the usual way，by refiecting pencil of light from mirrors attached to tuning forks．
Chassagny＇s apparatus for the study of refraction consists of a glass globe sup－ ported by fixing its horizontal neck in a copper sleeve．If the neck is regarded as one pole of the globe，the opposite＇pole is indicated by an interruption in a cop－ per meridian，and the equator is gradu－ ated in intervals of five degrees．Water is poured into a funnel attached to the upper side of the neck until its surface （Concluded on page 305．）

Home-Made Experimental Apparatus

 of which over 17,000 are 118 ted 1 ta a caretully
prepared catalogue, which will be sent free of
 Amerioan supplement cost 10 cents each. If there is any scientifc, mechanteal, or enis desired, some papers will be fonnd in this
catalogue, in which it is tully discussed by catalogege, in which
competent authority.
A few of the many valuable arttcles on the
maktng of experimental anparatus hat home are given in the following list:

 an suppletent 1568 .
 TELEGRAPH OUTFTT is told by A. Frraerick
 binio Amoarican supplement 1572 that anyone cai
 THE CONSTROCTION OF A STMPLE PHOC APPAABATVS 1 sis simply ex
 How To Mare AN AEROPLAAE OR GLID.

force
1.583.

AN EASMY MADE HMGH FREQUENCY APRENTB is described in scientific Americai
 sint Levden jas
the apparatus at home.
made

THE LOCATION ANDERECTION OFAA 100 .

 can 'supplement 1623 .
 illustrated with
Supplement
1624.
HOW TO MAKE A MAGIC LANTERN, Scien
tific American Supplement 1546. THE CONSTRUCTION OF AN EDDY KITE. THE DEMAGNETIZATION OF A WATOH is tharoughly desec
plement
HOW A CALORIC OR HOT AIR ENGINE with the help of illustrations, in Soientific
American Supplement 1573.
Th Scientific American Supplement 1594. ${ }^{\text {Thtined }}$ Good articles on SMALL WATER MOTORS
are contanine in Scientifl American Supplement
1494, 1049, and 1406. HOW AN ELECTRIC OVEN CAN BE MADE is explained in Soientific American Supplement THE BUILDING OF A STORAGE BATTERY
is described in Scientific American Supplement
1433. DESGENTNG-MACHINE MOTOR OF SEMPLE
DESIGN is described in Scientific American Supplement i210.
oan Whepatstone bridge, Scientific Ameri-
 tained in soientiifo American Supplements 1514,
1522, and 1527 FFll detalls are given so that
the colls can readily be made by anyone. HOW TO MAKE A TELEPHONE Is described
in Scientifi ${ }^{\text {American }}$ Supplement 966 . A MODEI STEAM ENGINE is thoroughly de-
scribed in Scientiflc American Supplement, 1527 . HOW TO MAKE A THERMOSTAT is ex -
plained in
1563, acientifo and 1566 . platine in in scien
1563 , and 1566 .
ANEROID BAROMETERS, Scientific American
Supplements 1500 and 1554. A WिATER BATE, Scientific American Supple-
ment 1464. VALUABLE CHEAP TATBE UPON WHCH MOCY VALUABLE WORK CAN BE DONE forms the
subject or an article contained in Scientifio
American Supplement 1562 .
Each number of the Scientific
plement costs 10 cents by mall.
Order from your newsdealer or from
MUNN \& CO., Inc., 361 Broadway, New York
attains the level of the break in the meridian. The laws of refraction and total reflection can then be studied by directing luminous pencils toward the center of the globe, in the equatorial plane, and viewing them with the eye placed in the same plane.
In his electroscope (Fig. 4) Chassagny has made use of the fact that platinized glass is sufficiently transparent to allow objects to be seen clearly through it and yet reflects bright images of objects nearer the eye. A vertical and rigid strip of copper and a flexible strip of aluminium foil are suspended from a cop per rod and inclosed in a case of which two opposite sides are of glass and the rest of metal. The rod cafries a charg ing disk at its upper end and is insulated by passing through a block of paraf fln, which rests on the top of the case One of the glass sides is platinized, and outside it is placed a graduated quadrant which is seen by reflection, while the deflected strip of aluminium is seen through the glass.
Chassagny's galvanometer (Fig. 5) is inclosed in a wooden case, which is attached to the wall. In a strong magnetic field, formed by placing the like poles of two horizontal horseshoe magnets almost in contact with each other, is suspended a coil of wire of electrolytic copper. The intensity of the field is further increased by a soft iron, cylinder, supported independently inside the coil. A large mirror, attached to the coil, reflects the image of a lamp to a screen, where the movements of the spot of light can be followed by the whole class. The gal vanometer is provided with three shunts. In Chassagny's apparatus for the study of electromagnetic induction (Fig. 6); a coil of wire is attached, with its plane vertical, to one end of a lever which can turn round a horizontal axis, and is bal anced by a counterpoise on the other end. A vertical horseshoe magnet, with its poles directed upward, is placed so that the coil can be brought between the poles, or raised above them, by turning the lever on its axis. The positive and negative currents produced by these movements are indicated by a galvanometer connected with the coil. An alternating current is produced by allowing the lever to oscillate freely. Other experiments in induction may be made by sending through the coil a current from a battery. M. Chassagny has devised a number o other -ingenious instruments, including a very practical rheostat, a eudiometer, baroscope, etc.

THE LATESI' SUBMARINES OF THE UNITED STATES NAVY.
(Continued from page 296.)
merged condition, certain valves in the interior of the boat are opened. This allows the water from the sea to run into great tanks built within the boat, and thus virtually sink her. These tanks are closely gaged, so that just the required amount of water is taken in. Under normal conditions, when the boat is at rest with the ballast tanks flled, she will have a few hundred pounds reserve buoyancy, which is represented by the top of her conning tower protruding above the water. If desired, this buoy ancy may be entirely destroyed by admitting a small additional amount of water, equal in volume to the volume of that part of the conning tower above water. While in the submerged condition, all communication with the outside atmosphere is necessarily cut off. The crew, usually about fifteen men, then breathes the air contained in the body of the boat. The amount of air origi nally contained within the hull is suffi cient to support life with comfort for at least twenty-four hours. But, in addition to the air thus contained, the boat carries a large supply of compressed air in steel flasks, which, if used for breathing purposes, would be sufficient for a num ber of days.
After having brought the boat to the submerged condition in the manne (Continued on page 306.)
 KOH-I-NOOR Pencils are made in 17 different degrees of hardness and softness-6B to 9 H .
 L. \& C. HARDTMUTH, Est. 1790, 34 E. 23d St., New York THE MIDDLE WEST NUMBER
To most Americans the Mississippi Valley and the rich country that spreads outward from either of its
shorez
but of a farmland-a country whichm may woll be regarded not only as the granary of the United States, but of a large portion of the worrid as well, a a country of wonderful engineering development and achieve
 Middle West region, a number which will set forth broadly and lucidly not only the agriculturalin interestso
that requ that region, but also those larger enginoering undertakings which are destined to transform the Mid
West In part at least, into manufacturing territorg;
With that object in view the Middle West Number will pubish articles on the following subjects:
I. THE CHICAGO AND GULF WATERWAY.-An illustrated description of Chicago's drainage canal, an engineering work which stands without a parallel in the world.
II. CHICAGO AS A RAILRADD CENTER. -Very few Americans realize that Chicago is the
greatest railload center in the world, and that it may be likened to a great hub from which radiate
the spokes of American transportation. III. THE WONDERFUL GRAIN TRADE OF CHICAGO.-Chicago is an enormous wheat bin, into
which much of the grain raised in the middle West is poured. The conveying and handling of that huge amount of grain has necessitated the erecting and constructing of ingenious machinery and
elevators
IV. SHIPPING ON THE GREAT LAKES.-Most of the fron ore that is now smelted in Penn
sylvania is mined in
the midde which will enable American steel makers to compete with foreign steel makers, it has been necessar to devise a new kind of lake transportation. Ships of 10,000 and 12,000 tons burden have been con
structed which conveg ore at small cost through the Great Lakes, and which are without a counterpart structed which conver
anywhere in the world.
is mined in the middie west and smiment of IRON ORE.-The above-mentioned fact that iron or special freight-carrying steamers, but also the designing or special machinery for loading and undoad-
ing the ore from the steamers. VI. FREIGHTING ON THE MISGISSIPPI.-The Mississippi is the great natural waterway of the middle West. It places the cities along its banks in direct water-communication with every port
in the world. That is why freighting on the Mississippi is a more important industry than most of
us may realize. us may realize. the scene of its atetivity is gradually shirting. One of the greatest steel plants in the world is that
which has been built at Gary. It is safe o say that nowhere else in the world will be found a
plant so remarkably equipped and so efficient. VIII. THE FREIGHT SUBWAAY SYSTEM
tem of handing freight by means of subways. tem of handling freight by means of subways. Freight is carried from the railway a car directly to
the warehouse by means of tunnels aggregating sixty miles in length. D. THE WATER SUPPI Y OF CHICAGO. - Chicago's songee of water is Lake Michigan. The
city is suppled. With water by means of a tunnel which extends two miles out into the lake. profect RECLADMNG ARID LANDS.-The United States Government has under way many irrigation XI. HARVESTING THE GRAIN OF THE MDDLE WEST.-Farms that cover not acres b square miles, crops that aggregate not simply bushels, but car-loads, have rendered it necersary to
plant and harvest on an unprecedented scale in the middle West plant and harvest on an unpreceedented scale in the middle West. The ingenious agricultural ma
chinery which has been designed to cope with these peculiar conditions is described and illustrated. The Middle West Number will be more than twice the size of the regular SCIENTIFIC AMERICAN, MUNN \& COMPANY, Inc., 361 Broadway, Now York City

Household Bills Paid

You Need This Policy Whether You Are Now Insured or Not

Classified Advertisements

 paniled. by a rem
request.
READ THIS COLOMN CARBFULLIF.-Tou will ind inquirles for c
consecutive order. If you manufacture there goods Write us at onee and we will send you the naime.and no charge for this servico. In every case it necessary to gi. e the number of the inguiry.
Where manufacturers do not respond promptly the
MUNN \& CO.. Inc.
BUSINESS OPPORTUNITIES
WILL FVRNISH capital for promoting good patent,
 lnquiry No. 8868.-Wanted to bay nickelold for

 Inquiry
Electro-Catalytic Sparkink Plug."
S91
 A RARE OPPORTCNITY presen ts itself for a hgh every street, in every ho e and storeas meil as halisand
ohurcase Snostantal oommisionor straikht purchase
plan. Standard Chicazo, 9 W. Michigan St., Chicago.

PATENTS FOR SALE.

 Inquiriry No.s.s.a22.-Wanted the address of Worth-
 Jo T. Ten and drop ont. Can be made eheap. Addres. Cohendet Motor Co.
 T. N. Reed, Itasca,

Inquiry No, X987- Wanted, the manufacturers ot
the Van Winkie
meters.

FOR SALE.

FOR SALE-Fngine lathe, swings 913 in. takes 25 in
 Inquiry No. N990. For information regarding
shoes notrade or leathe; but similar to the same and
are as durable.

 Inquiry No. 8996.-Wanted addresses of manu
facturars of machinery for worling orange wood m,
oure sticks.
 HELP WANTED. WANTEDD-A practical and experienced man, thor
oughy conversan
tems
 Inquiry No. 9091.-For
WA NTED BY NOFEMBER 1st,-Saperintendent fo cation and be well ip in m m , a shop practige and

PARTNERS WANTED.
 Patent No. 855.052 on a royalty basis or for sale, Goods
are staple and cheaply made. Partner, Box 73 , N. \mathbf{Y}. Hequiry No.. 9010.-Wanted to buy a Rector MISCELLANEOUS

LISTS OF MANUFACTURERS.

 Inquiry into No cothes. $\mathbf{9 0 2 5 .}$-Wanted, address of r

Inquiry No. 9027.-Wanted the addre. of mannIngiriry No. 9028. - Wanted, to buy
machne that is run bya ooll spring motor.

 Inquiry No. 9033. Wanted. to ony machinery,

${ }^{\text {Plow }}{ }_{\text {Prit cheapett }}^{\text {sera }}$

 ool or billatard ta
 Prectous metala from ores, extracting, Printing presses, pneumatic foiding me

```
l
```


Rrot ton
Rall 1 lisaurrew
Squires

Rallway tie, metal, H. J. Bueli. .
Ron

Rotary motor or pump, J. R. Kinney.
Rubber, reclaiming devulcanized, E. E.

Screa
Sea

Sealing veseis. J. A. Hicks
Sadrill Campbell \& Howi

$\substack{\text { Hem } \\ \text { Semin } \\ \text { Sem } \\ \hline}$

Sha
Shi
Shi

Shoe Sto Stoo sio

\qquad
spe

\begin{tabular}{c}
936,610

936,930

936

\hline 936

936,610

936,930

936,694

936,807

936,474

\hline
\end{tabular}

渵:| 936,451 |
| :---: |
| 936,992 |
| 936,570 |

.. ${ }_{936,816}^{936,945}$:20.泪
above described, powerful electric motors
are started by throwing in a switch. These motors derive their energy from storage batteries contai in the boat and drive the propellers. The same storage batteries furnish current for numerous auxiliary motors used for pumping, steering, handling torpedoes, etc.
The motion of the boat when under way is controlled by two sets of rudders; one of these sets, know n as the vertical rudders, directs the boat's course to port or starboard just as does the rudder of an ordinary ship. In addition, there are provided horizontal rudders, which serve to con trol the motion of the boat in a horizontal plane; that is to say, the depth at which she runs is regulated by these ruddens. For steering in the horizontal plane, instruments are provided, so that the boat may be navigated with the same degree of accuracy as boats on the surface. The first of these instruments is known as a periscope This consists of a vertical tube which extends from above the surface of th water to a few feet within the submarine At the top of the tube is an object glass; at the bottom an eye-piece. Two reflect ing mirrors, one at the top, the other at the bottom of the vertical tube, cause the image to be transferred from the object glass to the eye-piece. The operator can turn the periscope so as to sweep the whole horizon. To the writer, who re cently made a five-hour trip in one of our latest boats, the view was as clear as though he were at the surface looking through an ordinary field glass. . Hence when running submerged with the top of the periscope just out of the water, the navigator can see with perfect ease sur rounding objects. If for any reason it hould be desired to run at a still greate the course may be steered with accuracy For steering, submerged, in the vertical plane, instruments are provided which in a way take the place of the compass which these is a large pressure gage oat is running. Another is a form o pirit level, which indicates the inclina on of her axis. By the use of this, the man controlling the horizontal rudder is ble to $r_{u} n$ at a perfectly even depth boat is of course amply illuminated by electric lights. There are no ports or windows in the boat, and so far as sensa re are concerned, one is unable to de urface or submerged.
The arm of the submarine is the auto mobile torpedo. A number of these ma e carried. They are discharged through orpedo tubes located in the bow of th boat. Any modern type of automobil orpedo may be used. In view of the fact that the submarine is enabled to approach unseen to within a few yards, desired, of the most powerful battle uired long-range torpedo is not vored to motive power in the ordinary torpedo may be largely used to increas he destructive power, so that the prope arm for the submarine would be far mor nary autom obile torpedo.
While the project of the submarine is omparatively old, it has so happened hat but few of them have been used in o little herst case on record is that built by David Bushnell in 1776. Hav ng obtained permission from the Ameri can general in command to use this sub marine against the English fleet an chored north of Staten Island, he instructed a sergeant named Ezra Lee in its use. After several attempts, Lee made an attack on one of the ships. His purpose was to fix a torpedo to her side hus destroying the ship Unfortunat the ship was sheathed with copper, and he was unable to attach his mine. Lee then drifted away from the shil, having ing ab er an hour (Concluded on page 307.)

Important Books

Electric Wiring, Diagrams and Switchboards

bs newton marrison, be.
2y2 pages. 105 illustrations. Price $\mathbf{8 1 . 5 0}$

Practical Steam \& Hot Water Heating and Ventilation ALFRED G. KIN PRICE $\$ 3.00$

Telephone Construction, $\mathrm{In}=$ stallation, Wiring, Opera= tion and Maintenance.
By W. H. RADCLIFFE, E.E., and H. C. PRICE, $\$ 1.00$
 This book gives the princincles of
 stallith
mean
lightn
their

MUNN \& CO., Inc., Publishers 361 Broadway, New York City
ing up a great volrme of water, and thus warning the English of the great danger they had escaped.
Another case on record is that of the Confederate submarine "David," which, during the blockade of Charleston in the civil war, was manned by volunteers, and by hand power was propelled out to the U. S. S. "Housatonic," which she destroyed by the explosion of a mine in contact with her hull.
During the Spanish-American war the modern submarine had not made its appearance. During the Russian-Japanese war both sides ordered boats, but the war was finished before these vessels became available. At present all the leading naval powers are acquiring submarines in large numbers, so that during the next
war we may expect to see them figure war we may expect to see them
largely in the various operations.
In the trip in a submarine above referred to the Editor was impressed with the smoothness and accuracy with which the submarine went through her submerged evolutions. The movements, quick response, etc., of the boat were such as to inspire complete conilacy
her stability and general efficiency.
There can be no question that the submarine has at last "come into its own." Among the captains of the battleships and the line officers in general at Provincetown, there was noticeable a growing respect for these craft, due to the varied and accurate work which the flotilla had accomplished during the summer maneuvers. There has been a steady but slow
growth in the speed of the submarine. Its control is now perfect, and its radius of action is being rapidly increased Our largest boats have a radius of about one thousand miles; and two are under construction on the Pacific coast which will have a cruising radius of about three thousand miles. This means that the submarine is taking on full seagoing qualities. It must no longer be regarded as restricted to seacoast operation. The
time is not far distant when an admiral searching for the enemy upon the high seas may include a submarine flotilla in his fleet. The profound signiflcance of this fact upon strategy and tactics will be appreciated by every naval expert.

In his study of living beings, the physiologist has one guiding principle which plays but little part in the sciences of the chemist and physicist, namely, the principle of adaptation. Adaptation or purposiveness is the leading character istic of every one of the functions to which we devote in our text-books the chapters dealing with assimilation, res piration, movement, growth, reproduc tion, and even death itself. Spencer has defined life as "the continuous adjust ment of internal relations to external re lations." Every phase of activity in a
living being is a sequence of some antecedent change in its environment, and is so adapted to this change as to tend to its neutralization and so to the surmeant by adaptation. It will be seen that not only does it involve the teleo logical conception that every normal activity must be for the good of the organism, but also that it must apply to all the relations of living beings. It must there fore be the guiding principle, not only in physiology, with its special pre-occupation with the internal relations of the parts of the organism, but also in the other branches of biology, which treat of the relations of the living animal to its environment and of the factors which determine its survival in the struggle for existence. Adaptation therefore must be the deciding factor in the origin of species and in the succession of the different forms of life upon this earth.

In consequence of the part played by the gas-lighting equipments of the trains involved in some recent accidents, states a contemporary, the Prussian railway authorities have decided to convert all their sleeping cars now fitted for gas lighting (some 170 cars) for electric lighting.

 underwear for outdoor recreation. No sportsman, hunter, golfer, yachtsman or motorist should be without it.

Special Weights for Fall
DR. JAEGER'S. S. W. S. CO.'S OWN STORES:

we INVENTORS -

CONSULTING ENGINEER.

8OUTHERN 8TAMPING \& MFG, CO. rers of special and patent
R. B., Nashville. Tenn.

RUBBER $\begin{gathered}\text { Expert Manufacturess } \\ \text { PR }\end{gathered}$

MODELS \& EXPERMMENTAL WORK Chas. E. Dressler \& Coo, Metropolitan Bldg., 1 Madison Ave., New York

MOEFT \& COMPANY

New York Model and Experimental Works 2 East 166 th Street \quad New
 Had

SPARK COILS

Their Construction Simply Explained Scientific American Supplement
160 describes the making of a $11 / z_{-i n c h ~ s p a r k ~}^{n}$ coil alad eondens
 ensine ignition
 12tientifice American Supplement

The above-mentioned set of seven papers will be supplied for 70 cents Any single copy will be mailed for 10 cts. MG1 Broadway

A Failure at Fifty
 Out of a job at fifty-is the fate of the

 untrained man.Business requires not only natural ability but special training.
The Trained Man Can Defy Old Age The American School of Correspondence can
fit y ou for congenial, well-paid positions in your fit y ou for congenial, well-paid positions in your
early years, and make your services valuable in early years, and make your services valuable in
yourold age. Training only can compensate for

$$
\begin{aligned}
& \text { your.old age. Trainin } \\
& \text { the energy of youth }
\end{aligned}
$$

The energy of youth.
For thirteen years the School's Engineering
Courses have set the standard for thoroughness Courses have set the standard for thoroughness
and pracalness in correspondence instruction. The School has trained thousands of men for the technical professions, or has advanced them
to higher positions. To-day these courses repreto higher positions. To-day these courses repre-
sent the highest development of correspondence

The Courses in Commerce, Account
ancy and Business Administration set the same higb standard in the commercial
world. They prepare for the best-paid business positions; they are prepared by practical busi-
ness men who have "made good" by practicing what they teach; they are planned to meet the
needs of both the young man who is just starting in, and the older man who has almost "arrived." Get your training now, while you have the
time and energy for study. Mail the coupen time an
today.

American School of Correspondence CHICAGO, U. S. A.	
FREE INFORMATION COUPON	
American School of Please send me your qualify for position marked	orreapondence: letin and advise me how I can X.',
 Dreftuman \cdots...Architect … Civil Enginoer, … Mectrical Enical Engrineer … Sanitar Engineer Steam Engineer Fire Insarance Easineer Colleze Preparatory
NAME...	
ADDRESS	
OCCUPATION	

Learn Watchmaking
 BT. LOCIS WATCHMAKING SCHOOL, Bt. LouIs, Mo.

Models, Novelties
Manufactured by contract.
Punching Dies and Draving wack yEW YORK FLATIRON CO. Belle Mead, I.

HARDERFOLD

 HYGIENIC UNDERWEAR

${ }^{\text {and oit }}$ Over 1,100 Physclans
 IARDEEFOLD FABRIC Co. 163 Rive strext, Trov, N.

IUFKIM twiss wiuns

 ARE THE BEST.For sale everymbere.
catalog ©o

MEN WANTED
 The Aluminum Cook have Uonsil Address
Opportunity knocks, but don't expect the the door to be be itcked in. Pa.

GROBET Swiss Files in "The Tool-Monger." Sent free if you mention this paper when writing.

WE WILL MAKE ${ }^{\text {yart }}$ modes manuacture of any metal novelty. Automatic ma

园 "CASTELL"

Drawing, Copying and Ink Pencils

are the finest production of a house that has been manufacturing the highest grade lead pencils for 148 years; and has earned a reputation for excellence that has made the A TX A P Pamous all the world over. Sold by all staname of tioners and dealers in artists' and drawing materials Sample worth double the money will be sent you on receipt of 10c. A. W. FABER 49 Dickerson Street, Newark, New Jersey

Do You Gamble?

Some people spend their money and enerǵy housing a splendid crop of grain, cotton or tobacco, and then samble with Providence on its safety until sold. Do you?

Other people put the savings of years into a home and then rely on their luck to avoid the thousand and one chances of fire. Do you?

Still other people invest their entire assets in a store or a factory, and then wholly or in part insure themselves, thinking that they can carry the risk as well as the insurance company. Do you ?

The average man has most of his property in one place. To carry his own insurance is to depend upon chance, $i . e$. : to samble, with ruin as the penalty for losing. The business of the insurance company is founded on the law of averages. It can be safely conducted, but only when its stability is based on the experience of tens of thousands of risks widely distributed over a continental area.

The Hartford Fire Insurance Company offers unsurpassed indemnity. Its business is distributed among more than fifteen thousand cities, towns and villages throughout the United States and Canada. During 99 years it has paid every just claim-more than $\$ 125,000,000$ in all. Its policies are safeguarded by ample resources and an honorable record.

The "Hartford" insures all classes of property. It also serves property

The Engine-Not The Operator

I. H. C. $\begin{gathered}\text { Easinine } \\ \text { nines }\end{gathered}$

Not only efficient. but simple, sure, economical.
Buitit on right linies for fuli power service.

 international harvester co of america 15 Harvester Bldg., Chicago, U. S. A.

FALCON ALUMINOID PEN

A. L. SALOMON 2 s.

 3 Broadway, New Y - 1 NIOL ANYHING

