meaburing a biver's fíow.

 by a. mate bail.The increasing attention which is being given to the conservation of natural resources, particularly to water power and the irrigation projects of the United States Reclamation Service, renders timely some description of the manner in which the water supply is

Gaging the flow of a mountain stream with hand instrament.
measured and recorded. Through the kindness of Mr . H. C. Rizer, Chief Clerk of the United States Geological Survey at Washington, the writer has been given facilities for a study of the system generally adopted, which is as follows:
The quantity of water fiowing in a stream is expressed in various terms according as it represents the drainage from a watershed of given area, the rate of continuous flow as for power purposes, or simply volume, and it may be as well to commence with a definition of these terms.
"Second-foot," an abbreviation for one cubic foot per second, is the quantity of water flowing in a stream one foot wide, one foot deep, at a rate of one foot per second. It is generally used as a fundamental unit, from which others are computed.
In connection with pumping and a city's water supply, the water is generally measured in "gallons per minute."
The "miner's inch" is the quantity of water that passes through an orifice one inch square under a head which varies locally. It has been commonly used by miners and irrigators throughout the West and is defined by statute in each State in which it is used.
The average number of cubic feet of water flowing per second from each square mile of area drained, on the assumption that the run-off is distributed uniformly both as regards time and area, is given as "second-feet per square mile."
"Run-off in inches" is the depth to which the drainage area would be covered if all the water fiowing from it in a given period were conserved and uniformly distributed on the surface. It is used for comparimg run-off with rainfall, which is usually ex pressed in depth in inches. An "acre. foot" is equivalent to 43,560 cubic feet and is the quantity required to cover an acre to the depth
of one foot. It is commonly used in conneetion with storage for irrigation work. There is a convenient relation between the second-foot and the acre-foot. One second-foot fiowing for twenty-four hours will deliver 86,400 cubic feet or approximately two acre-feet.
Gaging stations are located upon streams as far as possible at points above and below which the channel is straight, where there are no cross currents or backwaters and where the bed of the stream is smooth and its banks high. Their equipment consists of fixed gages graduated to show the vertical fluctuations of the water surface and permanent bench marks indicating the points of measurement up and down stream: when the channel conditions are satisfactory bridges are used, as from them observations may more readily be made and the cost of equipment is small.
Current velocity is measured sometimes by floats and sometimes by means of the meters illustrated herewith. In measuring by floats, of which there are several kinds, the simplest being a corked bottle weighted at the bottom and carrying a flag at the top, little affected by wind, observation is made of the time taken by the float to pass over a selected "run" of the stream 00 to 200 feet long. A number of velocity determinations are so made at different points across the stream and the mean velocity of the whole section estimated.
The discharge is the product of that mean and the mean sectional area of the run, which is determined by measurements and soundings of the two ends of the run and at intermediate points.
When meters are used they are held stationary in the current at a number of points across the width

A meter calibrating station : the meters are drawn through still water at a known speed, and the revolutions they make recorded.
conteal buckets similar to that of the smaller instruments; these are rotated by their offering more re sistance to the current at their large than at their small ends, the axis of the wheel carrying an eccen tric by means of which electrical contacts are made

On the left a small Price electric meter, sounds received at the earpiece being transmitted by current from the small battery shown ; on the right a Price acoustic meter.
and broken in a suitably-protected water-tight compartment. The number of revolutions made by the wheel are thus electrically recorded by the current of a battery operating the clockwork of the indicator dials. Two of the small portable meters are also shown: in one the revolutions are recorded by the striking of a small hammer on a diaphragm, the sound being conveyed by a tube to the ear of the observer who counts the revolutions, and in the other an electric current from the small battery shown oper ates a buzzer when the contact is made and broken as has been described for the larger machine.
In each case the meter is supported above a pointed weight, provided with fins which keep it pointing straight upstream both is the vertical and horizontal plane.
To insure the coincidence of readings by different meters each individual instrument has to be separately "rated," to determine the exact number of revolutions it will make in a current of a certain speed. This is done by drawing the meter through a measured space of still water at a number of different speeds and noting the number of revolutions made, from which a rating table is prepared giving the velocity per
of the stream and at different depths, and the velocities recorded are averaged as before. A typical meter much used in the government service is shown in the illustrations, designed by Mr. W. G. Price. Its submerged portion consists of a small wheel carrying five second corresponding to any number of revolutions. Current-meter measurements may be made by an observer on a bridge, suspended from a cable, in a boat or wading, and gaging stations are classified in accordance with the method used. A wading station is shown

Great Falls of the Missouri River in Montana: A hitherto ondeveloped water power.

The velocities indicated by the meters at different points in the stream are averaged by a variety of methods known as "multiple point," "vertical integration," etc. In the various multiple point methods the stream is divided theoretically into strips in the direction of its flow and (Concluded on page 171.)
(Concluded from page 1i0.) ing a run of twenty-four hours, when handling material at the speeds as speci fied in the contract, no part of the motor will rise in temperature more than 70 deg. C. above the surrounding air. All electrical equipment is designed for a direct current of 220 volts. The grab bucket has a cubical capacity of 100 cu bic feet of limestone, and the scoop bucket of 132 cubic feet. Both buckets are especially designed for working in imestone. The grab bucket has an over all width of about 7 feet 6 inches and an over-all length when open of 17 feet 6 inches. The capacity of the machine is 200 tons per hour. The hoisting speed is 250 to 275 feet per minute; the racking speed 900 feet per minute; and the whole bridge travels at the rate of 100 o 150 feet per minute.

MEASURING A RIVER'S FLOW

Concluded from page 160.) the velocity recorded at à number of different depths in each strip. By the vertical integration method the meter is moved at a slow uniform speed from the surface of the stream to the bottom and back again.
For convenience of reference and comparison the results obtained are plotted in the form of a curve on a chart
Another illustration shows the Grea Falls of the Missouri River in Montana. A gaging station at the point from which the photograph is taken was established by the Geological Survey in July, 1902.

The river is favorable at this point for water-power development and shows the kind of stream, apart from navigable rivers, measured and reported upon by the Survey. In this way the Survey constantly brings to the attention of the investing and developing public many previously unnoticed but valuable waterpower sites.
We are indebted to the director of the U. S. Geological Survey for the use of the accompanying illustrations.

the aviation meeting at rheims.

 (Concluded from page 159.) with their Bleriot monoplanes. Both Bleriot and Curtiss tried to lower their speed records for one circuit of the course, and the latter succeeded in making 2 seconds better time than before. His time of $8: 091 / 5$ corresponds to almost 45.7 miles an hour. Bleriot made the circuit in 8:08 2/5, which was 4 seconds slower than formerlyAt the end of 2 hours, 22 minutes, and 51 seconds, Farman had flown 140 kilometers (86.99 miles) and beaten Paulhan's record. It was getting dark rapidly and the spectators could only see the machine as it passed before the grand stand Ten minutes and 19 seconds later he completed his fifteenth round, and less than five minutes later he had beaten Latham's record. One hundred and sixty kilometers (99.4 miles) were covered in $2: 43: 352 / 5$, and 180 kilometers (111.88 miles) in 3 hours, 4 minutes, $552 / 5$ seconds. As it was now 7:30, the nineteenth round afterward made by Farman was not counted in the official figures. He actually covered over 190 kilometers (118.06 miles) and remained in the air all told about $31 / 4$ hours. As he finished in front of the grand stand a searchlight was thrown upon him. He was pulled from his machine and carried upon the shoulders of his friends, receiving a decided ovation Thus, for the second time, he has won a $\$ 10,000$ cash prize, the first instance being when he flew 1 kilometer in a closed circuit on January 13th, 1908. It is possible that he will try again to win this sum by making the 140 -mile flight from New York to Albany. In the flight for the Grand Prix, he carried enough fuel to fly $31 / 2$ hours.

The other prizes awarded in the Grand as follows

Second, $\$ 5,000$, won by Hubert Latham on his Antoinette monoplane. Distance 154.5 kilometers (96 miles)

Third, $\$ 2,000$, won by M. Paulhan with his Voisin biplane. Distance, 131 kilo meters (81.4 miles)
Fourth, $\$ 1,000$, won by Count de Lambert with his Wright biplane. Distance 116 kilometers (72.1 miles)

Fifth, $\$ 1,000$, won by Paul M. Tissan dier. Distance, 111 kilometers (68.97 miles).
Sixth, $\$ 1,000$, won by M. Roger Sommer with a Farman biplane. Distance, 60 kilo meters (37.3 miles)
The distances covered by the other com petitors were: 50 kilometers (31.1 miles) by M. Delagrange, with a Bleriot mono plane; 40 kilometers (24.9 miles) covered M. Bleriot with one of his monoplanes 30 kilometers' (18.64 miles) covered by Mr. Curtiss with his biplane; and 21 kilo meters (13.04 miles) covered by M. Le febvre with his Wright machine
This first aviation meeting has demon strated beyond a doubt that the real fly ing machine is here. That aeroplan races will soon supersede the dangerous automobile races, there can be no ques tion. We expect in our next issue to
give ftill details of the successful machines at Rheims and their motors, as well as further particulars of the flights which
we

A Promise to Pay

$W^{\text {OULD you accept a stranger's note? }}$ No. Then why accept from a stranger any other promise to pay? A Fire insurance policy is such a promise. Ought you to accept it without knowing all about the Company? Your usual business confidence is based on knowledje. Why make an exception in that part of your business which deals with insurance? A name is worth nothing on any kind of a promise to pay unless it is backed by character and resources.

The Hartford Fire Insurance Company favors insurance knowledge, particularly about itself. Its promise to pay has never gone to protest. Its obligations to its policy holders are backed with such a good reputation and such ample financial resources that the more you know about it the more you will want protection by its policies.

It has published a book "Fire Prevention and Fire Insurance," which contains in separate chapters valuable information for Householders, Merchants and Manufacturers. It ought to be in the hands of every property owner in America. It may save you thousands of dollars, no matter in what company you are insured. It is free. Send for it.

Hartford Fire Insurance Co. Hartford, Conn.

RUBBER
MODELS \& EXPERIMENTAL WORK
左

A MACHINE SHOP BABBITT METALS.-SIX IMPORTANT

Magical Apparatus. 25 c, Parlor Tricks Catalogue, free. . MARTINKA \& CO.. Mfrs.. 443 Sixtb Ave., New Yor

MASON'S NEW PAT. WHIP HOISTS

