A HEW SPEED INDICATOR FOR MARINE PROPELLERS.
When the steamship "Perry G. Walker" collided with the lock gates at Sault Sainte Marie, causing the wreck of two other steamers and doing damage to the locks which required weeks for repair, the captain stated under examination that he had signaled to his engineer to go astern, but that his signal had some how been misunderstood, and the engines had started full-speed ahead. Such an accident is con clusive and incontrovertible evidence of the need of a reliable system of indicating the direction and speed of rotation of the pro pellers of vessels. It is but one instance of a chapter of marine accidents occurring annually from either the incorrect interpre tation of signals given to the engine room from the bridge or the execution of signals given by the bridge which, owing to mental stress from impending accident, are in correctly given. It is always extremely diffcult for a board of inquiry to determine just with whom the error lies
In the above instance, it is claimed by the captain that the correct signals were given, but instead of the engines being reversed at the critical moment, they were sent ahead; and before the error was discovered, such headway had been gathered by the vessel as to preclude all hope of stopping her within the limited lock space.
There is no question of the importance of enabling the captain and pilot to be at all times familiar with the interpretation and execution of signals. Errors are there by immediately discernible, and correspondingly corrected before damage is done.

In the absence of a tachometer to show at a glance the rate in revolutions per minute at which the propeller shaft is turning signals are executed by the engineer accord ing to his best judgment. For instance, the execution of "half speed astern" may vary eight or ten revolutions per minute, and the pilot, depending upon a speed-checking effect, may be thrown off in his calculations by too slow a rate of turning of the engines.
When equipped with a tachometer sys tem, however, the signals can be obeyed at an exact predetermined propeller-shaft speed, with corresponding increased accuracy and efficiency of handling the vessel. Warships in line or column formation must correctly execute the orders of the flagship, setting their speed to conform to the desired headway between ships, quickly and accurately. Otherwise a collision is probable.
The absence of an accurate and dependable tachometer up to the present, has made it necessary to arrive at the revolutions per minute by noting the turns successively by the revolution counter for preferably at least a half minute. If the speed of the shaft is too high, a rough guess must be made as to how much the throttle is to be closed, and another counting gone through. All this takes time, and is on too much of a cut-and-try system. With a tachometer to guide him, the man at the throttle has but to operate the throttle until the pointer of the tachometer rests on the desired R. P. M.
Range finding, for the accurate sighting of the guns, includes the determination of the distance of the object to be fired at, angle at which the warship is
approaching or receding from the target, and the speed at which the vessel is traveling.
The first two factors are quickly and accurately determined by means of the modern range finder in the hands of skilled men, located on the masts or range towers of the warship. This is telephoned to the fire control sub-station. It then becomes imperative that the rate at which the engines are turning over at that instant be immediately determined, in order that the

a NEW SPEED INDICATOR FOR MARINE PROPELLERS,

proper instructions may be telephoned at once to the turrets. The sooner the discharge of the projectile is effected after the range has been determined, the more accurate is the aim, and the greater the execution done.
In these calculations, the effect on ship speed by propeller speed, taking into consideration the extent and direction of wind and tide, is quickly and accurately calculated.
Relation between ship speed and propeller speed is frequently calibrated with due reference to increased fouling of the ship's bottom from marine growth, and is immediately available. Even when the engine-room forces are endeavoring to maintain an exact prearranged speed of rotation, this speed often varies, owing to the absence of accurate deadbeat tachometers for indicating at all times the rate of revolution.
Aside from the strategic advantages of a tachometer for indicating engine speed of rotation, the economic (Continued on page 167.)
powerful hoisting and conveying machine.
Nowhere in the field of mechanical engineering has American ingenuity in the design of labor-saving plants been shown to more striking effect than those great hoisting and conveying plants, which are such a prominent factor in our modern constructive and industrial operations. The rapid and cheap raising, removal, distribution and deposit of materials in large bulk is one of the most serious problems of the day; and it is the ingenious solution offered by American hoisting and conveying apparatus that has enabled our engineers to dig canals, build embankments, handle enormous loads of coal, iron ore, wheat, and corn with an economy undreamed of in an earlier day We present illustrations of a powerful electric bridge tramway, designed and erected by the Brown Hoisting and Machinery Company for the Michigan Alkali Company which is an excellent sample of the type of machinery above referred to.

The bridge, which is designed to handle the limestone in the stock yard of the company, has a span of 256 feet from center of pier to center of shear, with the center depth of 17 feet, and the total over-all of the structure is 286 feet $41 / 2$ inches. The height from top of rail to top of bridge at the shear is 59 feet 9 inches, and at the pier 61 feet 9 inches, the bridge being level. To the bridge span and its projection is attached a runway carrying a special trolley, arranged to handle either a two-rope grab bucket or a scraper bucket.
The pier consists of two specially designed shear legs mounted on a portal structure arranged to straddle over two lines of railway track. The two shears are joined to gether at the top by a yoke connection, de signed to carry the bridge structure. By this arrangement a free opening is allowed for the passage of the buckets through the pier support. The structure of the pier throughout is of medium open-hearth steel. The portal or lower portion of the pier consists of two pairs of legs joined together by girders and braces, and arranged to carry a bin for the reception and distribu tion of the limestone. The lower portion of the portal is mounted on four two-wheel equalizing trucks. These wheels are connected by bevel and spur gears to the driving machinery in the house on the bridge. The shear-leg support is of A-frame construction, mounted on twowheel equalizing trucks, arranged to run on a single line of rail. At the top of the shear is a ball casting upon which the main bridge is hung. The track wheels are connected with the moving gear in the engine by bevel and spur gears.
The bridge span consists of two parabolic pin-connected trusses, supporting the cross beams, from which the track stringers are suspended. The bridge span is supported on the pier support by roller bearings, and held in place by a vertical center pin. At the shear support it is hung from a ball-and-socket connection, in such a manner that the bridge may be skewed in either direction from its normal axis, so as to give an angle of one foot crosswise to nine feet lengthwise of the bridge span. The moving gear is operated from the main operating mechanism located (Continued on page 169.)

Classified Advertisements

Advertislng in this column is 75 cents a line. No less
than four nor more than ten lines aceepted. Count
seven words to the line All orders must be acom-
panded by a remittance. Farther information sent on panled by a remittance. Farther information sent on
request.
request.
READ THIS COLOMN CAREFCLLLY.- - You wihinnd
inquiries for certaln classes of articles numbered in inquiries for certan If you manafacture these goods write us at once and we will send you the name and
addreas of the party desiring the information. There
ts no charge for this service. In every case it is ts no charge for this service. In every case it is
necesary to give the number of the inquiry.
Nhersarsing Where manufacturers do not respond promptly the
inquiry may be repeated. MUNN \& CO.

BUSINESS OPPORTUNITIES.

 Inquir
buttons.

FOR SALE.-Model Printing Press Co. Established Over 40 Vearo. Fixcellent opportunity for machinitet. Mail

 Box 103, Victoria, B. C.
Jinquiry No. 8921.-Forthe mannfacturers of gilt

PATENTS FOR SALE.

Inquiry No. S931.-For partien who manufactur
the Western Stamp sorer for horink stumps.
 Jnquiry No. Neat1- For manufacturers of ma-
chinery for making fy sereens.

SALESMEN WANTED.

SALLESMANWANTED to handle anexceptionally at
tractive real estate and timber provosition, Which cran be
sold on annual, eemi-annual or nountby instalments

 Ingairy No. 8960.-For the address of the Wind
sor
cuIfs.

HELP WANTED.

 nity insantaneous ilkting ssstem known to scienced
 Inquiry No. $\mathbf{N a 6 9 . - \text { Wanted }}$ machines that make
accordiondress plaiting (steam).

 Inquiry No. ©977.-For manufnecturers of ma-

LISTS OF MANUFACTURERS.

 lunguiry No. C9S0.-For the address of manurac.
 Inuiry No. 89s4.- Wanted the
manufacturers of Cypress wash tuts.

 Inaniry
mano. 9001 .- For the the address of progressive

Inquiry
Help-a-Phone.

 fnquiry No. 9018.- Wanted. the addressof parties
manuacururing gold-plated pens for use in cheap tounInauiry No. 9019.-Wanted, address of The old
Town Canoe co. Inquiry No. 9020.-Wanted
man ifacturers of metai
novelties.

(Continued from page 169.)

hoisting drums is connected through its clutch mechanism to the driving shaft, and the other main hoisting drum is allowed to work through the equalizing gear mechanism loose on its supporting shaft, the motion of the drums will be in opposite directions and with the same speed, and when working under this condition the motion produced on the trolley drums will be nil, thus giving to the trolley a motion or translation along its supporting runway, and by the reversal of the motion of the main hoisting drums the trolley will be traveled in an opposite direction. Further, if the main hoisting drums are both rotated in the same direction, the drums on the trolley will be rotated in opposite directions with respect to one another, and by the proper reeving of the ropes from the small drums on the trolley, the suspended load may be raised and lowered by the reversal of the motions of the main hoisting mechanism. When equipped with grab bucket, the opening and closing of the same is accomplished by the ropes leading from one of the main trolley drums. The shell lines from the grab bucket are attached to the other of the main trolley drums, and for the same reasons as given bove, the bucket may be raised and low ered. But to carry out the motion of opening and closing, the two main hoisting drums in the machinery house are
held stationary, and the small auxiliary held stationary, and the small auxiliary hoisting and closing drum is put in operation. This drum is connected to a sliding loop attachment located at a convenent point on the bridge structures, and in such a way that the ropes leading rom the large section of the drum conrolling the opening and closing lines of the bucket are reeved through this sliding loop mechanism, and, by the opera tion of this closing drum, the one set of lines leading to the trolley is lengthened while the other set is shortened. By this means the one drum, controlling the opening and closing of the bucket, may be rotated in either direction by the proper operating of the closing drum above referred to. . From this descripion it will be seen that in reality the main hoisting mechanism consists of the two main hoisting drums and the auxil iary closing drum, all of which drums are under the complete control of the operator, and work in conjunction with one another to properly carry out the various motions of the trolley and its load.
In the operation, however, of the scoop bucket, with which the above bridge crane is equipped, only one main drum on the trolley is used, this being the drum operating the shell lines of the grab bucket. The lines leading from the small drum sections of this main drum are arranged to work in parallel and
carry the shovel bucket. All of the clutches, brakes, etc., going to make up the main operating machinery are connected to the operator's cage by suitable rods and levers, so that the entire mech anism is under the complete control of one operator
The 200 horse-power motor and elec rical equipment is designed so that dur
(Concludea on page 171.)

Practioal and Instructive Scienitific bioks

A popular outline of the many changes which are revolutionizing the methods of farming and the hatito of fam life. It it one of the most prace tical treatises on the subject which has ever been
 tidal tre issued.
 ALCOHOL.-Industrial Alcohol. Its Manu- facture and Uses. By John K. Brach- vogel. 8vo. 528 pages; 107 illustra

 This very interesting volume is acknowledged to............... tricks are performed. MECHANICAI MOV EMENTYS.-Mechanical Movements, Powers, and. Devices. By Gardner This is illustrations.................. 83.00 MECHANICAI, APPLIANCES.-Mechanical Appliances, Mechanical Movements, and

 tical instructions are given instance build complete prac-
articles.
comprions COMPRESSED AIR.-Compressed Air. Its
Groduction. Uses, and Application. By
Gardner D. Hiscox. 8vo.; 665 pages
540 illustrations.
 DrES. Their Construction and Use for the
Modern Working of Sheet Metals. By

 A new focketbook consisting of twentive sections;
each written by a specialist of enginering experi-
ence and contaning the latest data and information
regarding standard electrical practice.

 tical handing of machinery, details of constrac-
tion, and computations such as will be encountered
in everyday practice.
GAS ENGGINES. Modern Gaas Engines and
Producer Gas liants

bilities, the care of gas engines and producer gat
plants, with a chapter on volatile hydrocarbon, and
oil engines.
GAS ENTGINES.-Gas, Gasoline, and Oi

 work in actual progres, wogether with the of the
sioned working drawing
of the various clearly the sizes
otails.

Hift pumps, etc.
INDUGTrion Coms.-The Design and Con
gtruction of Induction Coils. By A
Frederick Collins. 8 vo., 295 pages; 160
illustrations.
 to a large one giving 12-inch sparks. The d!men
sions of each and every part down to the smanlest
screw are given, and the descriptions are written
in language easily comprehended.

Appliances, Mechanical Movements, and
Sovelties of Construction. By Gardne
D. Hiscox. 8vo.; 396 pages; 970 illus
trations. This book, while complete in itself, is in fact a
continuation of the author,'s "Mechanical Move-
ments, Powers, and Devices," ments, Powers, and Devices., The author present
to the reader Information regarding nearly all con
celiaboe devies for producem motion or accom
plishing mechanical results. phishing mechanical results.
SPECIAL OFFER: These two volumes sell for $\$ 3$
each, but when they are ordered at one time from each, but when they are ordered at one time from
us, wo the the prene preaid to any address in the
world, on receipt of
PATENTS. Practical Pointers for Paten
tees. By Fres.

 that information and advice about handiling patents
that should be possessed by every inventor who
would achieve success. YSICS-Experimental Science. Ele-
mentary, Fractical. and Experimental
Physics. By George

 and others interested in physics may readily make
the apparatus without great expense and perform
the experiments whithout dificuity
PLUMBIITG. MIodern Plumbing

 RECEIPTS.-The Scientific American Cyclo-
pedia of Receipts, Notes and Queries.

 This book deals with matters of interest to
ererybody.
more complete contand more
so,000 facts, and is much
exhaustive than anything
 you want in an instant in a more condensed forgi-
STEAM ENGGINE. Modern Steam Engi-
neering in Theory and Practice. By
Gardner D. Hiscox. 8vo.; 487 pages
 care and menagement of boilers, engines, pumps,
supereated steam, refrigerating, machinery, dyna.
mos, motors, elevators, air compresors, and all
other branches with which the modern engineer other branches with which the modern engineer
must be familiar.
TELEPHosr. Telephone Construction, In-
stallation, Wiring, Operation, and
 men, engineers, contractors, architects, and, others
miterested In the installation of telephone ex.
changes in accordance with standard practice. In.
tricate mathematics are avoided, and all apparatus,
circuits and systems are thoroughly describen.

 A complete practical treatise containing a valu-
able collection of drawings and descriptions of de
vices, the results of the author's own experience.
 A new and fully illustrated work describing in
ievery detail the construction, operation, and
manipulation of both hand and machine tools;
being a work of practican instruction in all classes
of machine shon practice ins of machine shoo practice.
SWra. Electric Wirng, Diagrams and
SWitchboards. By Ne, Non Harrison.
12mo.; 272 pages; 105 illustrations.
 the simple circuit and working up, to the practical
ever i-dip problems, all being presented in a simple
and intelliqente manner. It is in every respect a
handy, well written, instructive, comprehensive
volume on wiring for the wireman, foreman, con-

Our complete catalogue of scientific be sent postpaid on receipt of price.
MUNN \& COMPANY, - Publishers,
(Concluded from page 1で0.)
ing a run of twenty-four hours, when his handling material at the speeds as spec fied in the contract, no part of the motor will rise in temperature more than 70 deg. C. above the surrounding air. All electrical equipment is designed for a direct current of 220 volts. The grab bucket has a cubical capacity of 100 cubic feet of limestone, and the scoop bucket of 132 cubic feet. Both buckets are especially designed for working in limestone. The grab bucket has an over all width of about 7 feet 6 inches and an over-all length when open of 17 feet 6 inches. The capacity of the machine is 200 tons per hour. The hoisting speed is 250 to 275 feet per minute; the rack ing speed 900 feet per minute; and the whole bridge travels at the rate of 100 to 150 feet per minute.

MEASURING A RIVER'S FLOW

Concluded from page 160.) the velocity recorded at á number of different depths in each strip. By the vertical integration method the meter is moved at a slow uniform speed from the surface of the stream to the bottom and back again

For convenience of reference and comparison the results obtained are plotted in the form of a curve on a chart
Another illustration shows the Great Falls of the Missouri River in Montana. A gaging station at the point from which the photograph is taken was established by the Geological Survey in July, 1902.

The river is favorable at this point for water-power development and shows the kind of stream, apart from navigable rivers, measured and reported upon by the Survey. In this way the Survey constantly brings to the attention of the investing and developing public many previously unnoticed but valuable waterpower sites.
We are indebted to the director of the U. S. Geological Survey for the use of the accompanying illustrations

THE AVIATION MEETING AT RHEIMS. (Concluded from page 159.) with their Bleriot monoplanes. Both Bleriot and Curtiss tried to lower their speed records for one circuit of the course, and the latter succeeded in making 2 seconds better time than before. His time of $8: 091 / 5$ corresponds to almost 45.7 miles an hour. Bleriot made the circuit in 8:08 $2 / 5$, which was 4 seconds slower than formerly
At the end of 2 hours, 22 minutes, and 51 seconds, Farman had flown 140 kilometers (86.99 miles) and beaten Paulhan's record. It was getting dark rapidly and the spectators could only see the machine as it passed before the grand stand. Ten minutes and 19 seconds later he completed his fifteenth round, and less than five minutes later he had beaten Latham's record. One hundred and sixty kilometers (99.4 miles) were covered in $2: 43: 352 / 5$, and 180 kilometers (111.89 miles) in 3 hours, 4 minutes, $552 / 5$ seconds. As it was now 7:30, the nineteenth round afterward made by Farman was not counted in the official figures. He actually covered over 190 kilometers (118.06 miles) and remained in the air all told about $31 / 4$ hours. As he finished in front of the grand stand a searchlight was thrown upon him. He was pulled from his machine and carried upon the shoulders of his friends, receiving a decided ovation Thus, for the second time, he has won a $\$ 10,000$ cash prize, the first instance being when he flew 1 kilometer in a closed circuit on January 13th, 1908. It is possible that he will try again to win this sum by making the 140 -mile flight from New York to Albany. In the flight for the Grand Prix, he carried enough fuel to fly $31 / 2$ hours.

The other prizes awarded in the Grand Prix de la Champagne distance race were as follows:

Second, $\$ 5,000$, won by Hubert Latham on his Antoinette monoplane. Distance, 154.5 kilometers (96 miles)

Third, $\$ 2,000$, won by M. Paulhan with eters (81.4 miles)
Fourth, $\$ 1,000$, won by Count de Lam bert with his Wright biplane. Distance, 16 kilometers (72.1 miles)
Fifth, $\$ 1,000$, won by Paul M. Tissandier. Distance, 111 kilometers (68.97 miles)
Sixth, $\$ 1,000$, won by M. Roger Somme with a Farman biplane. Distance, 60 kilo meters (37.3 miles)
The distances covered by the other com petitors were: 50 kilometers (31.1 miles by M. Delagrange, with a Bleriot mono plane; 40 kilometers (24.9 miles) covered y M. Bleriot with one of his monoplanes 30 kilometers (18.64 miles) covered by Mr. Curtiss with his biplane; and 21 kilo meters (13.04 miles) covered by M. Le febvre with his Wright machine

This first aviation meeting has demon strated beyond a doubt that the real fly ing machine is here. That aeroplane races will soon supersede the dangerous automobile races, there can be no ques tion. We expect in our next issue to give ftill details of the successful machines at Rheims and their motors, as well as further particulars of the flights which

 Manufacturers. It ought to be in the hands of every property owner in America. It may save you thousands of dollars, no matter in what company you are insured. It is free. Send for it.
Hartford Fire Insurance Co. Hartford, Conn.

NOVELTIES \& PATENTED ARTICLES

 ARKER, STEARNS \& CO.. $288-290$ Sheffield Av., B’klyn, N

MODELS \& Experimental

MODELS AXPERIMENTAL WORK
M. P. SCHELLL., 1 Irgo Union Street, San Francised

Experimental \& Model Work

A Promise to Pay

$W^{\text {OULD you accept a stranger's note? }}$ No. Then why accept from a stranger any other promise to pay? A Fire insurance policy is such a promise. Ought you to accept it without knowing all about the Company? Your usual business confidence is based on knowledge. Why make an exception in that part of your business which deals with insurance? A name is worth nothing on any kind of a promise to pay unless it is backed by character and resources.

The Hartford Fire Insurance Company favors insurance knowledge, particularly about itself. Its promise to pay has never gone to protest. Its obligations to its policy holders are backed with such a good reputation and such ample financial resources that the more you know about it the more you will want protection by its policies.

It has published a book "Fire Prevention and Fire Insurance," which contains in separate chapters valuable information for Householders, Merchants and

Abstract

 $x=2$
x
$x=2$

DON'T BE BALD,

CONSULTING ENGINEER.

A MACHINE SHOP $\begin{gathered}\text { Good Work-Fatr Prices }\end{gathered} \begin{gathered}\text { E. DiAMOUR } \\ \text { Botiandstret } \\ \text { New York }\end{gathered}$ BABBITT METALS.-SIX IMPORTANT

Magical Apparatus.

 25c. Parlor Tricks Catalogue, free.MASON'S NEW PAT. WHIP HOISTS

A POPULAR ILLUSTRATED WEEKLY OF THE WORLD'S PROGRESS

NEW YORK, SEPTEMBER 4, 1909

This machine can liandle 200 tons of limestone per hour. The grab bucket, $71 / 2$ feet wide and $17 \frac{1}{2}$ feet long, when open can 6 grab 9100 cubic feet of

