HEW SPEED INDICATOR FOR MARINE

 PROPELLERS.When the steamship "Perry G. Walker" collided with the lock gates at Sault Sainte Marie, causing the wreck of two other steamers and doing damage to the locks which required weeks for repair, the captain stated under examination that he had signaled to his engineer to go astern, but that his signal had some how been misunderstood, and the engines had started full-speed ahead. Such an accident is con clusive and incontrovertible evidence of the need of a reliable system of indicating the direction and speed of rotation of the pro pellers of vessels. It is but one instance of a chapter of marine accidents occurring annually from either the incorrect interpre tation of signals given to the engine room from the bridge or the execution of signals given by the bridge which, owing to mental stress from impending accident, are in correctly given. It is always extremely diffcult for a board of inquiry to determine just with whom the error lies
In the above instance, it is claimed by the captain that the correct signals were given, but instead of the engines being reversed at the critical moment, they were sent ahead; and before the error was discovered, such headway had been gathered by the vessel as to preclude all hope of stopping her within the limited lock space
There is no question of the importance of enabling the captain and pilot to be at all times familiar with the interpretation and execution of signals. Errors are there by immediately discernible, and correspondingly corrected before damage is done.

In the absence of a tachometer to show at a glance the rate in revolutions per minute at which the propeller shaft is turning, signals are executed by the engineer accord ing to his best judgment. For instance, the execution of "half speed astern" may vary eight or ten revolutions per minute, and the pilot, depending upon a speed-checking effect, may be thrown off in his calculations by too slow a rate of turning of the engines.
When equipped with a tachometer sys tem, however, the signals can be obeyed at an exact predetermined propeller-shaft speed, with corresponding increased accuracy and efficiency of handling the vessel. Warships in line or column formation must correctly execute the orders of the flagship, setting their speed to con form to the desired headway between ships, quickly and accurately. Otherwise a collision is probable.
The absence of an accurate and dependable tachometer up to the present, has made it necessary to arrive at the revolutions per minute by noting the turns successively by the revolution counter for preferably at least a half minute. If the speed of the shaft is too high, a rough guess must be made as to how much the throttle is to be closed, and another counting gone through. All this takes time, and is on too much of a cut-and-try system. With a tachometer to guide him, the man at the throttle has but to operate the throttle until the pointer of the tachometer rests on the desired R. P. M.
Range finding, for the accurate sighting of the guns, includes the determination of the distance of the object to be fired at, angle at which the warship is
approaching or receding from the target, and the speed at which the vessel is traveling.
The first two factors are quickly and accurately determined by means of the modern range finder in the hands of skilled men, located on the masts or range towers of the warship. This is telephoned to the fire control sub-station. It then becomes imperative that the rate at which the engines are turning over at that instant be immediately determined, in order that the

A NEW SPEED INDICATOR FOR MARINE PROPELLERS,

proper Instructions may be telephoned at once to the turrets. The sooner the discharge of the projectile is effected after the range has been determined, the more accurate is the aim, and the greater the execution done.
In these calculations, the effect on ship speed by propeller speed, taking into consideration the extent and direction of wind and tide, is quickly and accurately calculated.
Relation between ship speed and propeller speed is frequently calibrated with due reference to increased fouling of the ship's bottom from marine growth, and is immediately available. Even when the engine-room forces are endeavoring to maintain an exact prearranged speed of rotation, this speed often varies, owing to the absence of accurate deadbeat tachometers for indicating at all times the rate of revolution.
Aside from the strategic advantages of a tachometer for indicating engine speed of rotation, the economic (Continued on page 167.)
powerful hoisting and conveying machine.
Nowhere in the field of mechanical engineering has American ingenuity in the design of labor-saving plants been shown to more striking effect than those great hoisting and conveying plants, which are such a prominent factor in our modern constructive and industrial operations. The rapid and cheap raising, removal, distribution and deposit of materials in large bulk is one of the most serious problems of the day; and it is the ingenious solution offered by American hoisting and conveying apparatus that has enabled our engineers to dig canals, build embankments, handle enormous loads of coal, iron ore, wheat, and corn with an economy undreamed of in an earlier day We present illustrations of a powerful electric bridge tramway, designed and erected by the Brown Hoisting and Machinery Company for the Michigan Alkali Company which is an excellent sample of the type of machinery above referred to.

The bridge, which is designed to handle the limestone in the stock yard of the company, has a span of 256 feet from center of pier to center of shear, with the center depth of 17 feet, and the total over-all of the structure is 286 feet $41 / 2$ inches. The height from top of rail to top of bridge at the shear is 59 feet 9 inches, and at the pier 61 feet 9 inches, the bridge being level. To the bridge span and its projection is attached a runway carrying a special trolley, arranged to handle either a two-rope grab bucket or a scraper bucket.
The pier consists of two specially designed shear legs mounted on a portal structure arranged to straddle over two lines of rail way track. The two shears are joined to gether at the top by a yoke connection, de signed to carry the bridge structure. By this arrangement a free opening is allowed for the passage of the buckets through the pier support. The structure of the pier throughout is of medium open-hearth steel. The portal or lower portion of the pier consists of two pairs of legs joined together by girders and braces, and arranged to carry a bin for the reception and distribution of the limestone. The lower portion of the portal is mounted on four two-wheel equalizing trucks. These wheels are connected by bevel and spur gears to the driving machinery in the house on the bridge. The shear-leg support is of A-frame construction, mounted on twowheel equalizing trucks, arranged to run on a single line of rail. At the top of the shear is a ball casting upon which the main bridge is hung. The track wheels are connected with the moving gear in the engine by bevel and spur gears.
The bridge span consists of two parabolic pin-connected trusses, supporting the cross beams, from which the track stringers are suspended. The bridge span is supported on the pier support by roller bearings, and held in place by a vertical center pin. At the shear support it is hung from a ball-and-socket connection, in such a manner that the bridge may be skewed in either direction from its normal axis, so as to give an angle of one foot crosswise to nine feet lengthwise of the bridge span. The moving gear is operated from the main operating mechanism located (Continued on page 169.)

 Coteritur

Engine and Foot Lathes
 SEBASTIAN LATHE C0.: 120 Culert St., Cincinnati. 0 .

 STODDARD INCORPORATING COMPANY, Box 8000
PHOENIX, ARIZONA

How to Construct An Independent Interrupter

Two Good Books for Steel Workers

 Hardening, Tempering, Annealing and Forging of SteelBy JOSEPH V. WOODWORTH

T"

 saws, ilarge and smial.. The uses to which the lead,
ing brands of steel may be adapted are discussed
and their treatment for working under different conditions explained; arso special methods for the
hardening and tempering of special brands. A
The American Steel Worker

by e. r. Markham

NEW SPEED INDICATOR FOR MARINE PROPELLERS.
(Continued from page 1.56.)
function enters largely. Each marine plant has its most efficient cruising speed, and in the case of cargo-bearing merchant marine vessels, every pound of coal saved means increased earnings, also in-
creased cruising area to warships. When his economical speed had been determined, with a tachometer system consisting of a plurality of indicators disengines can be kept at this rate of speed accurately and with but slight effort. The captain, in his cabin or on the bridge, the chief engineer when off duty-all can keep track of exactly what rotation speed
is being maintained.
The accuracy of dead reckoning is gready facilitated by an exact knowledge f what engine speeds have obtained dur ing stated and frequent intervals of time,
instead of having to take the total number of revolutions over a protracted
period and guess roughly at the distance traveled; because the distance traveled per minute by the ship at say 100 R. P. M. is not increased in proportion when 125 R. P. M. obtains. Therefore, during long periods the rate of speed of the shaf may vary considerably with no tachometer to guide the man at the throttle.
Efforts along this line have been made for a number of years, but have been productive of no dependable and accurate tem which is the subject of this article. Centrifugal devices are not susceptible to mechanical transmission to various re mote parts of the vessel, and lack extreme accuracy over protracted periods of operation. Pneumatic devices, oper ated by air-pumps actuated by the propeller shaft, are less accurate. Electrical tachometers have failed in accuracy heretofore because of the error intro-
duced, and varying from day to day, by duced, and varying from day to day, by foul, thereby introducing a resistance in the circuit with corresponding inaccu racy of reading of a voltmeter operate by the dynamo, calibrated in R. P. M. o the propeller shaft. Owing to the for-
mer use of direct-current instruments, commutators and brushes were necessar on the magneto. The spring tension of these brushes varied, the commutator bethe oxidized and covered by oil from crept in. As a warship going ten knots per hour with engines turning over 72
R. P. M. is not traveling ten knots at 71
or 7 R. P. M., it is seen that a tachome ter, to be of value, must be accurate to its caltion of a
All reciprocating encines, owing to use of connecting rods between the rank and the piston, impart rotation to their shafts of constantly varying angu lar velocity. The fewer the number of ylinders or the slower the speed of rota variations are smoothed out more or less by the flywheel on the stationary engine, but a marine engine has no flywheel ex ept a propeller, the weight of which not sufficient to possess flywheel action to any extent. Therefore, any tachomeer actuated by the propeller shaft by gearing or otherwise, has imparted to it an unsteady rate of speed. If the tachometer is geared up to the shaft so any momentary irregularity in the revo lution of the main shaft is multiplied in the tachometer proportionally to the ratio of gearing between the main shaft and dicating device is used in connection with the tachometer will pulsate, and the reading of the pointer on the scale of
the instrument will be largely a matter of guesswork between two values of low and high. Hence it is evident that some sort of compensating device must be used o take up these momentary fluctuations of the propeller shaft, and impart to the (Continued on page 168.)

ApureHavana filled cigar for 2 cents

Yes-Pure Havana Grown on the Isle of CubaImported from CubaPut into this cigar by usGuaranteed pure Havana by us

Is there any way to make it stronger? Mr.Smoker-You don't have to be
oold that therei i such a thing grown told that there is such a thing grown as real Hevana tobacco. You know there is. You have tasted it. You know that no other tobacco ever gave you
that delightul, rich, tasty that delightulu, rich, tast.
that Havana tobaccodoes. But the cost !
The point you want to
have to be shown $=$ is this: Is it possible to sell a genuine, pure Havana filled cigar of "decent" size for 2 cents?

Santa Clorias ${ }_{\text {Prerenid }}^{\text {Bo }} \$ 1.00$

©Exact size and shape shown. A clean, genuine Havana filler. A quickly rolled cigar-not expensively finished-but ubstantially made. Will please 99 ou of 100 experienced, exacting smokers ISANTA GLORIAS can be had of dealers everywhere. If you have the slightest diffiwith your name and address to the makers.
R. \& W. JENKINSON CO.
 162 Liberty Ave., Pittsburg, Pa.

Save Money by Machinery

A Home=Tlade 100=Mile Wireless Telegraph Set
 Numerous. adequate diagrams accompany the text.
price 10 cents by mail. Order frum your newsdealer or from

GEER MOTORCYCLES

Air Sthpa Mootora for nimwy velocipedes. Send for Catalog.
HARRY R. GEER CO., 851 Mclaran Ave., ST. LOUIS, MO.

Curtiss Motorcycles

The Bassett Adder $\$ 1.00$

J. H. BASSETT \& CO., 39D Aldine Square, Clicago, Ill FLY PAPERS. - HORMULAS FOR

For Everybody
 THE OINCINNATI ELECTRIG TOOL CO.
Schools and Colleges

 (1)

 }

Lo
Lo
Lo
Ma
Ma
Ma
M

$\mathbf{r} \begin{gathered}\text { Mat } \\ \begin{array}{l}\text { Mat } \\ \text { Mat } \\ \text { Mea }\end{array} \\ \text { Meat }\end{gathered}$
Mattress, 1. . J. Weinberg Orr
Measuring
M. Wilen

Meat Ramsere, M. M. Fi.e. Fich .
Metal shearing machine
Metals, welding, machine, Roosch \&oordschmidt \&rionht. (reissue).
Metallic material, apparatus for treatment
of G. M. Heskamp

Mining apparatus, M. Moidsmith
Mirror ajussting device, E. A. J. Germain.
Mold ramming apparatus, H. Henderson.
931,199 to
Motive fluid, producing, H. Maxim.
Motor brush holder, H. He
Motor controller, H. W. Cheney

Musical instrument, brass wind, ©. G. Conn.
Musical instrument, electrical,
Musical instruments, rotary valve for wis.

Polishing machine, E. Cavicchi
Post hole digger, T. Hardy.
Potato bug destroyer, A. Lindäi
Pressare regulating device O.
Potato bug destroyer, A. Lindaini ...
Pressure regulating device, O. Onsad
Prime movers, buspenslon means for

Home-Made
 Experimental Apparatus

In addition to the following articles, the Scientific American Supplement has published

 Scientific American Supplement has publishedinnumerable papers of immense practical value.
of which over 17,00) are listed in a carefully innumerable papers of immense practical value,
of which over 17,000 are listed in a carefully
prepared catalogue, which will be sent free of prepared catalogue, warge to any adress. Copies of the Scientific
American Supplement cost 10 cents each. If there is any scientific, mechanical, or en-
gineering subject on which special information is desired, some papers will be found in this
catalogue, in which it is fully discussed by catalogue, in which
competent authority.
A few of the many valuable articles on the
making of experimental apparatus at home are given in the following 1
ELECTRIC LIGHTING FOR AMATEURS. perimental installation a san be set set simple at hoxe.
Scientific American Supplement 1551. AN ELECTRIC CHIME AND HOW IT MAY
BEONSTRUCTED AT HOME, is described in THE CONSTRUCTION OF AN ELECTRIC
THERMOSTAT is
can Suplained in Scientific Ameri-
 A SIMPLE TRANSFORMER FOR AMA. TEURS USE is so plainly described in SMA.
tific American Supplement 1572 that anyone can
 THE CONSTRUCTION OF A SIMPLE PHO.
TOGRAPHIC AND MICO.PHOTOGRAPHIC APPARATUS AIS simply explained in Scientific A SIMPLE CAMERA-SHUTTER MADE OUT
OF A PASTEBOARD BOX, PIIS, AND A
RUBAER BAND is the Subject Of RFBBER BAND is the subj, Pet of an article in
Rcientific American Supplement 1578 . HOW TO MAKE AN AEROPLANE OR GLIDcan Supplement 1582, with working drawings. EXPERIMENTS WITH A LAMP CHIMNEY. Mo nis article it is shown how alamp chimney
may serve to indicate the pressure in the in-
terior of a liquid; to explain the meaning of capillary elevation, and depression; to serve as a
hydraulic tournique, an aspirator, and intermittent siphon; to demonstrate the ascent of liquids
in exhausitive tubes, to illustrate the phenomena
of the bursting bladder and of the expansive force of bassting bladder and of the expansive
1583.

HOW A TANGENT GALVANOMETER CAN
BE USED FOR MAKING ELECTMIEAL MEAS
OREMENTS is described in Scientillc American DENT INTERTRUCTER CN Clear AN INDEPENactual dimensions are published. Soientific
American Supplement 1615 . PAN EASILY MADE HIGH FREQUENCY AP. TAIN EITHER D'ARSONVAL OR OUDIN CUR
RENTS is described in Scientific American Supplement 1618. A plunge battery of six cells,
a twoinch spark induction coil, a pair of one
pint Leyden jars, and an inductance coil, and all
the apparatus required, most of which can be the apparatus required, most of which can be
made at home. SIMPLE WIRELESS TELEGRAPH SYSTEMS
are described in Scientific American
Supplements 1363 and 1381.
THE LOCATION AND ERECTION OF A 100 .
MIEE WIRELESS TEEEGRAPH STATION is
clearly in Scientific American Supplement 1622 .
THE INSTALLATION AND ADJUSTMENT
OF A 100-MILE WIRELESS TELEGRAPH OUT. FIT, fllustrated with diagrams, Scientific Ameri-
can Suplement 1623 . THE MAKING AND THE USING OF A
WIREESS TELEGRAPH TVNING
illustrated with diagrams, Scientific American Willastrated with
Supplement
1624.
HOW TO MAKE A MAGIC LANTERN, Scien-
tific American Supplement 1546 , THE CONSTRUCTION OF AN EDDY KITE.
Scientific American Supplement 1555. THE DEMAGNETIZATION OF A WATCH is thoroughly described in Scientific american Sup-
plement 1561 .
HOW a CALORIC OR HOT AIR ENGine HOW A CALORIC OR HOT AIR ENGINE
CAN BE MADE AT HOME is Well
with the help of illustrations, in THE MAKING OF A RHEOSTAT Is, outlined
in Scient:fic American Supplement 1594. Good articles on SMALL WATER MOTORS
are contained in Sc:entific American Supplement
1494, 1049, 1494, 1049, and 140.
HOW AN ELECTRIC OVEN CAN BE MADE
is THE BUILDING OF A STORAGE BATTERY ${ }^{\text {is }} 1433$. . A SEWING-MACHINE MOTOR OF SIMPLE plement 1210 .
A WHEATSTONE BRIDGE, Scientific Ameri-
can Supplement 1595. Good articles on INDUCTION coins are con-
tained in Scientific American Supplements 1514, 1522, and 152. Full detanis apre given so that
the coils can readily be made by anyone. in Sow TO MAKE A TELEPHONE is described A MODEL STEAM ENGINE is thoroughly de-
scribed in Scientific American Suplement, 1527. HOW TO MAKE A THERMOSTAT is ex-
plained in Scientific American Supplements 1561 , 1563, and 1566.
ANEROID BAROMETERS, Scientific American
Supplements 1500 and 1554, St a Water bath, Scientific American Supple-
ment 1464. A CHEAP LATHE UPON WHICH MUCH
VALUABLE WORK CAN BE DONE forms the
subject of an article contained in subject if an article con 1562.
American Supplement
Each number of the Scientific Amarican Sup-
plement costs 10 cents by plement costs 10 cents by mall.

MUNN \& CO., Inc.. 361 Broedway, New Ẏork
erage speed, not affected except by decided slowing up or acceleration of the engine.
A tachometer has recently been nerfected by Mr. Mellor Reece Hutchison, in which these defects are avoided by very simple and dependable means.
The accompanying illustration shows a merchant marine generating set of this electrical tachometer, installed in the shaft alley of a steamer.
The large split sprocket wheel B, of proper diameter to conform to the shaft A, is firmly clamped thereto. A Morse silent chain C, engaged by the sprocket wheel B, drives a similar sprocket wheel D mounted on a countershaft E, which forms part of the tachometer generating set. The rotation of this small sprocket is trarsmitted to the flywheel F, keyed to the countershaft E, through the intermediary of two opposite coiled spiral springs G, H. Inside the rim of the flywheel F, and on the end opposite to the spiral springs G, H, gear teeth are cut which engage two pinions. Tbese pinions respectively actuate magnetos $X Y$. It is seen that any momentary fluctuation in the rotation of sprocket D, occasioned by variations in the angular velocity of the main shaft A, are smoothed out by the springs G, H, imparting to the flywheel F and countershaft E a steady average speed. To protect the springs G, H, against rupture from sudden reversal of rotation of main shaft A, stop pin K is mounted on the flywheel, and engages radial arm L, mounted on the sprocket wheel D, thereby preventing more than one-half an independent revolution of the countershaft. This onehalf revolution is sufficient to take care of practical conditions on marine equipments.
ments.
The magnetos $X Y$ are of the inductor type. The armatures and the pole pieces are stationary. 1 is a permanent magnet of finest steel, properly aged to insure absolute permanence. 22 are the pole pieces of soft iron attached thereto. 3 is a stationary shuttle armature, on which is winding 4 . Rotating between the pole pieces and the armatures is the soft iron inductor 5. As the inductor is rotated, an alternating electromotive force is generated in the armature, two cycles per revolution.

- The magneto is so designed that the voltage is directly proportional to the speed of rotation of the inductor, over a wide range. Therefore, the faster the propeller shaft turns, the higher the voltage directly proportional thereto.
It will be noted there are no commutators or brushes, the armature being stationary and the leading-out wires soldered to the main-line wires. Therefore, no error can creep in from increase of resistance of contacts.
The indicators are alternating-current voltmeters of the dynamometer type, i. e., having a moving coil and stationary coils.
In present prattice, however, alternat-ing-current voltmeters read but one way, with the zero on the left of the scale. A tachometer, specially for marine use, must show direction of rotation of main shaft as well as the speed. In the design of this, therefore, the zero is at the center, deflections of the pointer to the left indicating speed of rotation of the propeller shaft astern, and to the right ahead.
The pointer of the indicator is deadbeat at its reading, and is not influenced by the rolling or pitching of the ship. Provision is also made to protect the instrument against concussion or atmospheric disturbance from heavy gunfire.
In the naval type each indicator is entirely independent of all the rest, being connected to its own pair of magnetos; hence, should one indicator be shot away or otherwise damaged, it will not affect the reading of any of the other indicators.
In the merchant marine type, however, this is not deemed necessary, one pair (Concluded on page 169.)

