

SCIENTIFIC AMERICAN ESTABLISHED 1845

MUNN \& CO.

Editors and Proprietors

Publishod Wookly a

No. 361 Broadway, New York
farles allen munn, President,
361 Broadway, New York.
FREDERICK Convense Beach, Sec'y and Treas.
361 Brond way. . New Yor. Yor.

terms to subscribers.

ne copy, one year, for the United States or Mexico
One copy, one year, for Canada
$\$ 3.00$
3.75
One copy, one year, to any foreign country, postage prepaid, 18s. 6d. $\begin{aligned} & \text {. } \\ & 4.50\end{aligned}$ the scientific american publications.
Scientific American (established 1845)
Scientific American Suppiement (established 1876)............. $\$ 3.00$ a yea

Scientific American Export Edition (established 1888)........ 3.00 " "
The combined subscriptiorr rates and rates to foreign countries, includ
The combined subscriptior rates and rates to for
ing Canada, will be furnished upon application.
money order, or by bank draft or check.
MUNN \& CO., 361 Broadway, New York.

NEW YORK, SATURDAY, JANUARY 30, 1909.

The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sharp, the articles tention. Accepted articles will be paid for at regular space rates.

the gatun dam misrepresentations.

If it is any satisfaction to the critics, who have recently tried to persuade the people of the United States that the present plan of building the Panama Canal will result in disastrous failure, to know that they have succeeded in imposing on the country the cost of a highly expert commission of engineers, appointed to accompany Mr. Taft to the Isthmus, the probability is that this is all the satisfaction they will derive; for there is but little doubt in the mind of any candid engineer who has examined into the latest data, furnished by Col. Goethals and his band of very able assistants, that the lock canal as now being constructed will be indorsed by Mr. Taft's commission. Certainly the Scientific American has no anxiety as to the permanence either of the Gatun dam, the locks, or the canal as a whole. We go even further than this, and assert our belief that, by the time the canal is finished, it will be impossible to find a similar engineering work, which has been subjected to such a searching preliminary investigation of the debatable elements of its construction, as this canal has received and is at present undergoing. Nothing has been taken for granted, and millions of dollars are being spent in preliminary investigation, meteorological, geographical, geological, and physical; with the result that by the time of the opening of the canal in the year 1915, the people of the United States may be perfectly satisfied that this, the world's greatest artificial waterway, will be as lasting as the hills which surround it and the two great oceans which it has linked together.
These being the facts, we cannot but feel that the time has come to utter a word of strong protest against the yellow-journal methods which have been adopted by certain professional men, in endeavoring to raise a doubt in the unprofessional-and that means the majority of the public-mind, as to the character of majority of the public-mind, as to the character being done at Panama. It is not a difficult the work being done at Panama. It is not a difficult
matter to arouse popular apprehension concerning matter to arouse popular apprehension concerning
hydraulic works of great magnitude. It is rendered hydraulic works of great magnitude. It is rendered
easy by the fact that the problems involved are often difficult and obscure, and the results of failure usually include large losses in life and property. Because of its great distance from the United States, and because of the fact that this stupendous engineering work is being built in a tropical country, whose physical characteristics and climatic conditions are strange to the people of the United States, the public mind is acutely sensitive to alarmists, rumors, particularly if they are uttered by men whose technical knowledge and wide experience in works of this character would seem to qualify them to speak with authority.
We regret to say that the character of the professional attacks now being made upon the canal arouses a serious doubt as to their being based upon conviction and made in good faith. It is significant that the most bitter opposition has come from men who have their own pet schemes, either for a different type of canal, or a different method of construction. In each case these critics received an impartial and extended hearing before the Isthmian Canal Commission, to say nothing of large opportunities of present ing their views to the world through the medium both of the technical and non-technical press. If these men have failed of conviction they are, of course, entitled to maintain their critical attitude; but the ethics of debate, and particularly of professional debate, demand debate, and particularly of professional debate, demand
that their criticisms be presented in a frank and fair
spirit, free from any suspicion of subterfuge; and we claim that it is subterfuge to select isolated statements from the published reports of the investigation and experiments of the engineers, separate them entirely from their context, and impart to them a meaning which they were never intended to convey.
As specific instances of this deliberate misleading of the public by the time-honored method of throwing dust into its eyes, it is sufficient to note two notorious instances. During the sinking of borings to ascertain the character of the foundations of the Gatun dam, a small quantity of water appeared in some of the holes. It was insignificant in amount, rose of the holes. It was insignificant in amount, rose
only a small distance in the holes, and was found to be restricted to a few limited areas. Yet, on the strength of this fact, the rumor was started that the whole of the dam was founded upon a "subterranean lake"! Again, in preparation for the depositing of the material of the dam by the hydraulic method, the engineers built a rock fill across the valley along the upstream and downstream edge or toe of the dam, the object of which was to retain the solid material, as it was deposited by the hydraulic dredges, and prevent it from washing away with the water as the latter drained away from the dam. During the progress of the fill across the valley, it encountered the channel of the old French canal, which during the past twenty years had become filled with silt and mud. The engineers determined that it would be cheaper to dump the rock into the mud and let it sink to a solid foundation, than to excavate the mud beforehand. Accordingly, the fill was carried across the old channel; and, as soon as the load imposed was sufficient, the material sank, as the engineers expected and desired, displacing the mud on either side, until the rock displacing the mud on either side, untimately on the firm underlying ground. rested ultimately on the firm underlying ground.
No sooner was this trivial event, which had no significance whatever as affecting the future permanence of the dam, cabled to the United States, than it was seized upon, worked up into an alarmist article which, because of its pseudo-technical flavor, was well calculated to arouse public apprehension, and was distributed broadcast to the press.
The visit of Mr. Taft and his Board of Engineers to the lsthmus will have the desired effect of allaying the public apprehension, which has been aroused by such misrepresentations as we have above referred to. But we are satisfied that, as far as the great body of civil engineers in this country is concerned, the facts which have been developed by the surveys and experimental work of the past few years, so far from shaking their faith in the practicability of the present lock-and-lake canal, have strengthened it immeasurably.

THE NINTH ANNUAL AUTOMOBILE SHOW IN MADISON SQUARE GARDEN.
The ninth annual automobile show in Madison Square Garden was held this year, as usual, by the Licensed Association of Automobile Manufacturers, two weeks after the show of the American Motor Car Manufacturers' Association in the Grand Central Palace. Although the demand for space was greater than ever, and every nook and corner was filled, the exhibition as a whole was not especially interesting, particularly as far as novelties were concerned. There has been no change from standard design by any of the leading makers. They have contented themselves with improving the details of their cars wherever possible, as is shown in the case of the ignition of the motors, which has been rendered more reliable by the general adoption of magnetos. A coil and battery system is generally fitted for reserve, and this being the case, we believe that many owners of cars will be interested in an improved ignition and lighting system, which is intended to replace the magneto. A substantial multipolar dynamo, which weighs 8 pounds less than the usual magneto, is geared direct to the engine, or driven from the flywheel by means of a friction pulley with a governor. A special current-governing device makes it possible to set the charging current at any desired figure up to 10 amperes, while an automatic switch closes or opens the charging circuit when the dynamo starts or stops. In this way the 6 -volt storage battery can always be kept charged, and used as a source of current for all the lights of the car, including 30 - or 40 -candle-power tungsten-filament headlights. An electric siren or horn may also be used.
In addition to a special high-tension ignition apparatus without vibrators, that is run from dry batteries and that produces but one spark in each cylinder in order to ignite the charge, â distinctly new device of somewhat the same character was shown. This new apparatus consists of an ordinary low-tension spark coil with but a single winding, which is used in connection with very small individual spark coils attached to the spark plugs. The first coil is provided with a condenser, and has one end of its winding grounded through the battery, and the other end connected to the center plate of a commutator, the four insulated poles of which are connected to the primaries of the four small spark coils. The condenser discharge, in
addition to the regular current, passes through thes coils, and produces an oscillatory spark in the secondary at the plugs. This spark is very rapid, and it also has the peculiar quality of not shocking one, as does the ordinary jump spark. The apparatus does away with vibrators, and while there is but one spark, it is sufficiently intense to have excellent igniting quảlities.
Shaft drive has become even more popular than magneto ignition, for all but three of the thirty firms exhibiting touring cars showed shaft-driven cars, and twenty-one of them showed this type exclusively. Only cars of the heaviest and most powerful kind were fitted with a double chain drive. In the matter of transmissions, the selective sliding gear type is most widely used. These transmissions generally give three speeds forward and one reverse; but fourteen of the twenty-nine gasoline touring car makers showed machines fitted with transmissions having four speeds forward and one reverse.
The six-cylinder engine, while it has not increased in numbers very largely, has nevertheless become a favorite with many. Nine firms exhibited cars' of this type, and one of them especially will build only six-cylinder cars during the present year, as it did last year. The only firm producing air-cooled cars that exhibited also had a six-cylinder machine while the one firm producing a two-cycle car showed a three-cylinder two-cycle engine, which is, of course, equivalent to a six-cylinder of the four-cycle type. The practice of casting the engine cylinders in pairs is followed by twenty-two makers, while eleven showed separately cast cylinders, and two exhibited engines cast in one piece. Low-tension make-and-break igni tion was found on the engines of but four makers.
There were not so many popular-priced cars exhibited as at the Grand Central Palace Sbow. But five manufacturers showed four-cylinder touring cars, ranging in price from $\$ 1,850$ down to $\$ 1,400$. The only other low-priced machines were a single-cylinder touring car at $\$ 950$, and a two-passenger buckboard at $\$ 350$. The large majority of machines ranged from $\$ 2,500$ to $\$ 3,500$ in price.
A striking feature of the show was the exhibit of motor bicycles in the basement. A score of different makes of machines were exhibited. There were two makes of four-cylinder motorcycles, and one machine equipped with a three-cylinder engine, the cylinders of which had a fan-like arrangement. The majority of the machines were fitted with single-cylinder or v type engines.
A number of commercial vehicles were shown in the basement, among them being a huge fire-hose wagon for the New York city high-pressure system. The electric vehicles were also numerous, there being no less than eight different makes on view.

THE LABOR INVOLVED IN LIQUEFYING HELIUM.

Few more telling examples of the modern physicist's dogged patience can be found than Onnes' feat in liquefying helium. The achievement is noteworthy not because any new light was shed on the physics of gases, but because of the painstaking methods employed. Dr. Onnes started at six in the morning. For seven and three-quarter hours he labored to get twenty liters of hydrogen before the real experiment could begin. Between seventy and a hundred liters of liquid air were necessary for the cooling of the helium gas. Liquid air boils at 60 deg . C. absolute; hydrogen at 23 deg . C The difficulty was to lower the helium down this heat precipice. Under the intense cold, the pressure of the helium fell from 100 atmospheres to 40 , and still there was no trace of the formation of a liquid; but as the last lot of liquid hydrogen was introduced the temperature fell to 5 deg. absolute, and then with difficulty Dr. Onnes was able to discern the layer sepa rating liquid from gas. It stood out with the sharpness and precision of the edge of a knife-about sixty cubic centimeters of liquid, which the physicist kept under observation for about two hours. He exhausted it with a pressure of between 2.3 centimeters and 7 millimeters of measure; but no solid was formed, and the liquid remained mobile, with a density of 0.15 the ratio of its volume to the volume of the gas being as one to eleven. At the temperature achieved in this experiment, hydrogen would become as solid as granite. There is great need for further investigation. As Sir James Deẅar remarked before the British Association it is fitting that the final resolution of the last recalcitrant gas should be the work of a Dutch scientist, for it was on the work of Van Dir Waals that the methods for the liquefaction of gases were largely based.

In the matter of the purchase of an automobile, the questions to be considered are the weight and the horse-power. Other things being equal, a motor car should average less than one hundred pounds to the horse-power, and it follows that the lighter the weight of the car, when materials are not sacrificed in its construction, the greater will be the economy in fuel and tires.

ENGINEERING.

The Secretary of War has recommended the removal of what is known as Middle Ground, a series of obstructions to the navigation of the East River, $11 / 2$ miles to the east of Hell Gate. A depth of 17.8 feet has been secured over this ground by work initiated in 1893. The Secretary recommends that this depth be increased to 26 feet at a cost of $\$ 1,733,080$. The blasting away of the reef will remove a serious menace to the shipping which uses the inside route by way of Long Island Sound.

That the rate of excavation of the Panama Canal is greatly dependent upon the rainfall, is shown by the increase in the amount of material removed in December over that taken out in November. During the former month, when there was a precipitation of 11.66 inches, the excavation amounted to $2,920,494$ cubic yards. In December, when the total rainfall was .93 inches, the total excavation exceeded that of November by 343,179 cubic yards and amounted in all to $3,263,673$ cubic yards. This is only 216,597 cubic yards less than the highest record, made in March last, when the total was $3,480,270$ cubic yards.
So serious is becoming the question of supplying ties for our railroads, that the Santa Fé system recently sent its manager of the timber and tie department on a tour to the Orient and Europe, to make a study of conditions. It was learned, among other things, that three hundred years agd the Japanese government began to conserve its forests; and that, as a result of its foresight, Japan is now selling ties to railroads in this country and Mexico. There is a duty of twenty per cent on each tie imported into the United States. That we should be paying a twenty per cent duty on ties is one among many constantly accumulating evidences of the thoughtless extravagance with which our magnificent timber supply has been ruthlessly swept away.
The statistics of British shipbuilding during the year 1908 show that the depression of leading industries was by no means confined to this country. The total tonnage of vessels launched in 1906 in Great Britain was $1,828,090$ gross tons; in 1907, 1,607,890 gross tons were launched; but in 1908 the total fell to 902,756 gross tons. This, as compared with 1906 , represents a falling off of 50 per cent, and about 44 per cent as compared with 1907. Well may our contemporary, the Shipping World, speak of this as "an appalling decline, and the most depressing, unprofitable and unsatisfactory year in the history of this great British industry."

In a paper read before the recent road congress in Paris, H. P. Maybury stated that refiable roads suited to modern traffic would be secured by building them as strongly as possible; reducing the camber to a uniform 1 in 30 ; coating the surface with the best obtainable hard material, gaging not less than 2 nor more than $21 / 2$ inches, and thoroughly rolled; using only clean, hard gravel and chippings as the binding agent; then cleaning the surfaces and applying a dressing of a heated tar compound; and finally covering the surfaces thus treated with hard, clean gravel or granite chippings and thoroughly rolling with a steam roller. His experience has proved that such a surface is cheap, almost dustless, and provides good traveling for traction engines and commercial motors and a good footing for horses.

The general manager of the underground system of London, formerly general manager of the Public Service Corporation of New Jersey, who is now in this country, states that during the rush hour trains are run at closer intervals, namely 90 seconds, than they are during the rush hour on the New York subway. The tubes, of which there are altogether about 100 miles in London, vary from 80 to 180 feet in depth below the surface. They are served by large elevators, which are worked in connection with the train schedule by means of a system of signaling. There are also 80 miles of subway, built, like our own Rapid Transit system in New York, just below the street surface. This system, much of which was built and in operation over fifty years ago, was originally operated by steam; but within the last few years it has been equipped for electric traction.

Gen. Allen, Major Squier, and Lieut. Lahm recently appeared before a Senate Committee and made a strong plea for the appropriation of $\$ 500,000$ for the development of the aeronautical branch of the work of the army signal corps. The astonishing strides made by both the dirigible and the aeroplane during the past year have established the practical character of these machines, considered in regard to their military possibilities. Enough has been done to make it certain that aeronautics will figure largely in future military operations. Just how largely, or in what way, it is too early to determine; but sufficient demonstration has been made to render it imperative upon our government to keep abreast of the foreign powers in developing this new arm of the service.

ELECTRICITY.

The tunnel under Washington Street, in Boston, has been equipped with a very complete telephone installation which is open to the use of the public. There are twenty-four pay stations at the eight railway stations of the tunnel. The booths are provided with the three-slot type of instrument, and are entirely automatic in their operation.
The British Meteorological Office has arranged with shipping companies to report the condition of the weather on the Atlantic by means of wireless telegraphy. The ocean is divided off into numbered areas, and the number of the section is to be given with each report. This will enable the office to make more accurate forecasts of weather conditions.
A Swedish transmission line has recently been installed in which over certain sections a cable is used in which a hemp core is imbedded. It is claimed for this cable that the strain is distributed more uniformly than with a wire core. This cable is used only at road crossings and is calculated to overcome danger due to the line breaking at such vital points.
The Health Department of Chicago has been making a series of experiments with various car-ventilating systems. Four different types of ventilators have been examined, and these have been described in their recent report, although the preferred system has not been indicated. The department has come to the conclusion that ventilation is a necessity, and should be required on Chicago's railroads.
An interesting hydro-electric plant has been installed on the Kerka River, in Dalmatia, Austria-Hungary, to generate electricity used in the manufacture of carbide. A novel feature of this plant is that in order to do away with transformers high-potential three-phase generators are used, producing electricity at 30,000 volts, which is fed directly into the transmission line. The latter is 21 miles long.
Under the new regime in the Turkish empire the restrictions on electrical apparatus, of all classes, have been removed. The government is planning to establish a telephone service similar to its telegraph service. This is a very interesting illustration of the advance of the Turkish government, which heretofore has had a particular dread of electricity owing to its connection with the word dynamo, which obviously must have something to do with dynamite.
Electrical fireboats have been put into service in Chicago. The boats are driven by two electric motors operating independently the twin screws. The current is supplied by generators direct-connected to steam turbines. Directly coupled to each generator set is a centrifugal fire pump. The particular advantage of using electricity for these boats is that the command of the vessel is entirely under the direct and immediate control of the captain. This is particularly important in the congested Chicago River.
Our consul at Nantes, France, reports the use of the telephone in fishing in Norway. A special form of microphone is used, which is inclosed in a thin watertight steel box, kept in communication with a telephone receiver on the fishing boat. By means of this apparatus, the fisherman is informed of the approach of fish by the peculiar sound produced in the instrument. A whistling sound indicates the approach of herring, while a sort of grunting sound announces the arrival of codfish in the neighborhood.
Consul-General A. W. Thackara, of Berlin, reports the following charges for wireless telegraph messages at German coast stations: Besides the regular telegraph rates of 5 pfennigs (1.19 cents) a word, minimum price 50 pfennigs (11.9 cents), there is a charge of 15 pfennigs (3.57 cents) a word, minimum 1.5 marks (35.7 cents), and if the message is sent to a steamer which can be reached from the coast station an additional toll of 35 pfennigs (8.33 cents) a word, minimum 3.5 marks (83.3 cents), is charged.
One of the problems which has arisen in connection with the construction of the House and Senate office buildings in Washington has been a method of transporting Congressmen from their offices to the capital. A subway has been built, and it was first proposed to install a small electric railway in the tube. But the plan was abandoned because of the noise of such a system. It is now proposed to provide small rubbertired electric cars, furnished with storage batteries, which are so constructed that they can be used for carrying freight when not otherwise needed.
The government telegraph lines in France have adopted a system of charging only one centime or a fifth of a cent per word for messages dispatched at night. This rate applies to messages containing at least fifty words. In this way it is hoped to keep the wires almost as busy at night as in the daytime. The value to the commercial world will be that a business man can send by telegraph a communication, comparable in length with an ordinary letter, and at but little over regular postage rates, with the assurance that the message will be delivered the very first thing on the following morning.

SCIENCE.
The eighth moon of Jupiter, discovered only within the last two years, has been photographed at the Greenwich Observatory. The satellite has been photographed but few times since its discovery and the determination of its position now accords with previous computation of its position by astronomical methods.
An apparatus has been invented for measuring the elasticity and the hardness of India rubber. The elasticity is determined by dropping a steel ball on the rubber from a measured height, H, and observing the height, h, to which the ball rebounds. The ratio is proportional to the elasticity. The hardness is determined by forcing a sharp point into the rubber. The force exerted and the depth of penetration are recorded automatically on graduated circles, and the combination of these indications gives the degree of hardness. With this apparatus the relative value of various specimens of India rubber can be determined very easily and rapidly.
So large a quantity of copper is required to color canned vegetables thoroughly that the only safe rule is to prohibit the addition of copper salts absolutely. The objection that this prohibition would favor imported canned vegetables, at the expense of the domestic product, should be met by a rigid inspection of imports. The quantity of copper may be determined by incinerating the vegetables, leaching the ash with nitric acid, evaporating to dryness, dissolving the residue in hydrochloric acid, neutralizing the solution with ammonia, acidifying it slightly with hydrochloric acid, and precipitating the copper with zinc in a vessel of platinum.
In 1907 many specimens of Seltzer water were examined by Dr. Klein, who found that most of them contained great numbers of micro-organisms. This result created some surprise, for carbonic acid under pressure was supposed to be fatal to all bacteria. Dr. Klein admits the germicidal power of carbonic acid, but finds that it acts very slowly in Seltzer water, which may contain living bacteria four months after bottling. As a rule, carbonated waters are consumed a few weeks after bottling, and it appears impracticable to demand that they be kept long enough to insure self-sterilization. Consequently, English producers of mineral waters formed an association, which prescribes the precautions required to insure the production of perfectly wholesome waters, and issues certificates to members who adopt those precautions. English bacteriologists find that the waters furnished by these manufacturers are perfectly wholesome, but they remark that the search for absolutely germ-free water is Utopian, for even distilled water becomes infected on the slightest exposure to the air. All that can be exacted is that perfectly pure water shall be employed in the manufacture and that the process shall be so conducted that the bottled water shall contain no more bacteria than the water from which it is made.
The extraordinary vogue of the pictorial postcard has resulted in the evolution of various projecting lantern devices, whereby the pictures resplendent in all their colors may be thrown like a transparent lantern slide upon a sheet. One of the latest and most successful of these has recently been perfected in England under the name of the "Fifax" refiectoroscope. It is an ingenious device, and is intended to dispense with the necessity of preparing special glass slides for lantern projection. In general appearance it resembles the popular magic lantern, but instead of the light being transmitted through the condenser, slide, and lens in a direct line, the image is projected upon the screen by reflection, as its name implies. The picture to be shown is placed at the back of the lantern, where a powerful beam of light of 3,000 candle-power is concentrated upon it by means of two reflectors, and the image is retransmitted therefrom through the lens onto the screen. The feature of this particular apparatus is the lighting system, whereby such an intense, powerful illumination is obtained. Though desigred for use with electricity, oxyhydrogen, petroleum, or other lighting mediums, gas is recommended as providing the steadiest and most penetrating beam. The burners are of a special high-pressure type, and fitted with incandescent mantles, and the projection is such that the reflection is as vivid and striking as if a high-grade glass lantern slide were used.. Not only can picture postcards be projected in this manner, but ordinary photographic prints printed by any process, as well as ordinary letterpress printing. It will be realized that the system not only appeals to those who possess no knowledge of photography, but to the amateur in the latter art represents a considerable saving in the preparation of slides. With the high-pressure incandescent gas systen the cost of operation averages about half a cent per hour. The picture transmitted can be projected for a considerable distance; but the brilliancy and definition naturally decrease with the distance.

THE BRITISH ARMY AEROPLANE.

After carrying on a series of experiments last September and October, the aeroplane designed by Capt. S. F. Cody, of the British Aeronautical Corps, was remodeled and has lately been given some further trials.
As first designed, this machine was similar to the present aeroplane. The dimensions of the planes were 40 feet long by $71 / 2$ feet wide, and they were spaced 8 feet apart. Movable wing tips were arranged at the ends of the lower planes, the horizontal rudder being placed in front and the triangular vertical rudder at the rear. There was also a small triangular vertical surface above the main planc at the center. The flights made by this machine were 304 feet on September 29, 200 feet at 10 feet elevation on October 14, and 1,200 feet at 30 feet elevation in 27 seconds on October 16. In the last flight the machine tipped to one side and was smashed when it struck the ground.
The planes of the new machine are about one-third longer than those of the old one, and the total weight of the machine is some 1,500 pounds. The same 50 -horse-power 8 -cylinder Antoinette motor is used. It is placed at the front of the lower plane in the center, and drives two peculiar propellers located each about 4 feet on either side of it at the front edge, by means of chains. The movable wing tips have been placed beside the horizontal rudder, so that they are practically extensions of it. One of these turns upward and the other downward when the steering column is swung from one side to the other, while a forward and backward motion of the steering column turns the horizontal rudder. The vertical rudder is placed at the rear as before, and is worked by turning the steering wheel. The 3 -gallon gasoline tank is placed above the motor, and the radiator is located vertically behind the aviator's seat, which is back of the motor. The motor is mounted upon a substantial chassis and strong springs are interposed between this chassis and the axles of the running gear for the purpose of absorbing the shock when the machine strikes the ground.
The most notable feature of this aeroplane is found in the two propellers. These are of a peculiar type similar to that described in the SUPPLEMENT of December 19, 1908, by Mr. Sidney H. Hollands. The peculiar feature is that the blades are broader at their base than at their ends, the width at the base being 24 inches, and the width at the outer end being but 5 inches. The length of the blades is about 3 feet. They are made of aluminium and are curved somewhat like a sugar scoop. Each one is mounted on a strong piece of steel tubing. Mr. Cody, as well as Mr. Hollands, both claim to have found that a blade of this shape gives better results than the usual form of blade, which is narrower at the base than at the tip. It is only in this respect that Mr. Hollands' propeller resembles that used by Mr. Cody on the British army aeroplane. In a letter to English "Aeronautics" Mr. Hollands describes his propeller (with which he claims to have obtained a thrust of 26 pounds per horse-power) as having two "narrow-tipped blades of a special conchoidal (or irregular crescent-shape) cross-section, set to pitch-angles of maximum efficiency. These angles, together with the other foregoing essential features, were all separately determined by a long

End view of the British army aeroplane.

Note the vertical rudders in the front and rear, the propellers and motor at the front edge, and the vertical gasoline tank and radiator between the planes at the center and toward the rear. The flag and streamers show the direction of the wind.

the new aeroplane of the british army aeronatic corps.

and careful series of comparative experiments. The blades have a twist, and the pitch is 0.7 of the diameter. It is most efficient at high speeds (the driving torque being relatively very small), and the essential features of the design lend themselves to strength and rigidity. It is constructed wholly of high-grade steel, and the 2 meters diameter type weighs 13 pounds, with a factor of safety of six, at 1,200 revolu tions per minute," Mr. Hollands claims that his pro-
peller is superior to those used on the army aeroplane and that it was designed some years before the propellers of Mr. Cody.

According to a cable report, the first test of the remodeled aeroplane occurred on the 20 th instant. Two short flights were made by Capt. Cody successfully, but the third one was terminated, after the machine had traveled some 300 feet at a height of about 20 feet from the ground, by the buckling of the hori-
3. Each essay must be typewritten and identified with a pseudonym. The essay must be inclosed in a plain sealed envelope, bearing only the pseudonym. With the essay should be sent a second plain sealed envelope, also labeled with the pseudonym, and containing the name and address of the competitor. Both these envelopes should be sent to "Fourth Dimension Editor, Scientific American, 361 Broadway, New York, N. Y."

Three-quarter front view of the aeroplane.
The movable tips at each end of the horizontal rudder, the motor and propellers, the three-wheeled chassis with buffer wheel in front, are all visible in this photograph.
zonal rudder, and the aeroplane fell heavily and was badly wrecked.

The Meeting of the Society of Automobile Engineers.
On Tuesday of last week the Society of Automobile Engineers held a meeting at the Automobile Club of, America in the morning, and in the building of the United Engineering 'Societies in the afternoon. The opportunity was taken to make some tests upon the dynamometer of the Automobile Club. A Fiat machine was first tested, and at a speed of 40 miles an hour, 20 -horse-power was developed at the rear wheels. The Benz racer, which obtained second place at the Grand Prix race at Savannah, was next tested, and on the second speed it attained a road speed of 65 miles an hour with the development of 100 horse-power. During this test the drawbar pull rose as high as 750 pounds. When it is remembered that the machine is fitted with four speeds, it can be seen that when traveling 90 miles an hour this machine must develop well over 100 horse-power.
At the afternoon session of the Society several papers were read upon "Autogenous Welding," "Standardizing Motor Bearings," "The Economics of Weight Reduction," and "A New Type of Indicator for Gasoline Engines."

A $\mathbf{\$ 5 0 0}$ Prize for a Simple Explanation of the Fourth Dimension.
A friend of the Scientific American, who desires to remain unknown, has paid into the hands of the publishers the sum of $\$ 500$, which is to be awarded as a
4. All essays must be in the office of the Scientific American by April 1, 1909.
5. The Editor of the Scientific American will re tain the small sealed envelope containing the address of the competitor and forward the essays to the Judges, who will select the prize-winning essay.
6. As soon as the Judges have agreed upon the winning essay, they will notify the Editor, who will open the envelope bearing the proper pseudonym and containing the competitor's true name. The competitor will be notifled by the Editor that he has won the prize, and his essay will be published in the ScIENtific American.
7. The Editor reserves the right to publish in the columns of the Scientific American or the Scientific American Supplement three or four of the more meritorious essays, which in the opinion of the judges are worthy of honorable mention.
Prof. Henry B. Manning, of Brown University, and Prof. S. A. Mitchell, of Columbia University, will be the judges.

AERONAUTICAL NOTES.

Wilbur Wright has gone to Pau, in the south of France, where he has been joined by his brother Or ville. These two famous aviators expect to spend some time at Pau making flights and conducting experiments. The French company that is selling their machines already has orders for thirty-three in hand. Glenn H. Curtiss, our only other famous aviator and the first winner of the Scientific American Trophy, has left for Dr. Bell's home near Baddeck, Nova Scotia, where he will aid the other members of the Aerial Experiment Association in conducting experiments with Dr. Bell's tetrahedral-cell aeroplane (which is to be fitted with a motor and propellers) and also in making further flights with the "Silver Dart." This fourth aeroplane of the A. E. A. has been fltted with runners so -that, like the first one, it can be started on the ice. Before starting on his trip, Mr. Curtiss has completed the drawings for a new 4 -cylinder, water-cooled aeronautic motor of about 25 horse-power and not more than 100 pounds weight. The first engine of this type will be built at once.
The sheds of the Aeronautic Society at Morris Park now contain two new aeroplanes which are being worked upon daily. These are the 450 -pound machine of Frederick Schneider and an aeroplane of nearly double this weight that is being built by W. R. Kimball. Both machines are of the Wright type and both have novel features. The former has a pivoted horizontal surface in the rear above the vertical rudder in addition to the usual front horizontal rudder. An AdamsFarwell revolving-cylinder motor of 36 rated horsepower and but 98 pounds weight drives two 68 -inch propellers in opposite directions. A third propeller can be used in the center between the other two if this is found desirable. ${ }^{-}$There are three control wheels for operating the various rudders. ذ̇. Kimball's machine has a row of eight 4 -foot propellers placed between the planes and extending nearly their entire width. These propellers are driven by a wire rope in the same manner as on this experimenter's helicopter, and the same 50 -horse-power, two-cycle motor that was used on this machine is to furnish the motive power. This is the first application of multiple pro-pellers-i. e., of more than two or three-to an aeroplane, and it will be interesting to see how this method of propulsion (which is claimed to be more efficient) works out in actual practice.

TAXIMETER FRAUDS
 by roger b. Whitman.

When the taximeter was first introduced into New York city, the cab-using portion of the population was more or less familiar with its workings through hearsay, and expected at once to receive the benefits that were being derived from its use in the European cities. This was not immediately the case, and the complaints of overcharges were more frequent than with the older system of payment. Even after an experience of two years, it is common to hear complaints made of the service; and it is very generally supposed that it is because the chauffeurs have methods by which they can handle the instrument in such a way as to defraud the public. This was undoubtedly possible when the instruments were first brought out, for it was only to be expected that unscrupulous chauffeurs should attempt to tamper with the mechanism, in order to cause it to register incorrectly. The different methods by which this was done have been learned by the taximeter manufacturers, and step by step they have provided safeguards for the mechanism, until at the present day it is difficult, if not impossible, to derange it without detection.

The claims of overcharge now being made are usually due to the ignorance of the riding public in the reading of the instrument, or in their neglecting to take simple precautions. The mechanism of the taximeter is complicated, but the results as far as the passenger is concerned are simple. In most cases, he will find on the face of the instrument the charge for the mileage covered, or for the time which the vehicle has been kept waiting. A separate dial charges the cost of carrying luggage, and the figures on this are to be added to those on the principal dial to obtain the total charge. In at least one instrument it is necessary to make only a single reading, all charges appearing as one set of figures.

Rear and front views of the Lavalette taximeter.

In order to safeguard himself from an overcharge by an unscrupulous chauffeur, the passenger must have some knowledge of the instrument itself. The mechanism consists of two whecls or disks, one of
the wheel actuated by the clock then moving more slowly, and having no effect on the counter. If the passenger halts the vehicle, it is the wheel driven by the clock that operates the counters.
which is operated by the movement of the car, and the other by a clockwork. One or the other of these two wheels actuates the counting mechanism, that

The various makes of taximeters in use in New York city differ somewhat in their action, and familiarity in the reading and possible misuse of one may

Rear and front views of the Jones taximeter.
shows the charge against the passenger on the face of the dial. If the car is moving, the wheel driven by the forward movement of the car operates the figures,

The flag of the Kosmos taximeter has four positions. There are two tariffs. The passenger should note the position of the flag and the tariff number.
nd the figures on the dial then become obscured.
The flag on the Franco-American taximeter has but two positions, the "vacant" and the "recording." The number of the tariff to be used is operated by a key or lever, as is also the "non-recording" device.
The flag shaft on the Jones instrument makes a revolution for each transaction, passing successively through the positions of "tariff 1 ," "non-recording," and "tariff 2 " to the "vacant." In these two instruments the "non-recording" position is used while the passenger is paying the fare, and also when the car is held up by a traffic block, a mechanical derangement, or other cause for which the passenger should not legitimately be charged.
The unscrupulous chauffeur can proft by the ignorance or inattention of the passenger. One passenger having been discharged, and another immediately hailing the cab, the chauffeur may not throw the flag from the "non-recording" position to the "vacant" and then to the "tariff" position, as he should do, but on some makes of taximeters can move it from "non-recording" backward to "tariff." If the passenger does not notice this, at the end of his trip he will be required to pay the sum shown on the taximeter, which includes the charge of the previous passenger as well as his own. This is particularly likely to be the case where the flrst passenger had only a short ride, the chauffeur be ing reasonably certain that the second passenger wil not quibble over a matter of 30 to 60 cents. Again, with any make, at the end of the trip the chauffeur may move the flag from the "tariff" position through the "non-recording" to the "vacant" without stopping The figures will thus disappear from the face of the instrument before the passenger has had time to read them, so he must take the chauffeur's word as to the charge.
If the passenger will assure himself of the correct position of the flag, and will insist on reading the taximeter before making his payment, he will protect himself against an overcharge.
The taximeter is actuated by means of a flexible cable driven by a star wheel that is operated by the rotation of one of the vehicle wheels. The connection between the star wheel and the vehicle wheel may be by spur gears, or by a spiral of $11 / 8$ turns attached to the spokes of the driving wheel. With taximeters operat ing by a spiral, it is possible in some cases to bend this in such a manner that it engages two teeth of the star wheel where it should engage but one, the taximeter then registering double.
An accurate operation of the taximeter cannot be secured when it is driven by one of the driving wheels of the car. The driving wheels are controlled by the engine, and if running on a slippery pavement, they may revolve more than once where the front wheels, which are actuated by the forward movement of the car, would make but one revolution. If a chauffeur runs his car with the taximeter-controlling wheel on a slippery portion of the pavement while the other driving wheel has good traction, a far greater mileage will be recorded by the instrument than should justly be the case. It is quite usual to see taxicabs operating on slippery days with a non-skid device on the wheel that is not operating the taximeter. The action of the differential, due to the difference in the traction of the two driving wheels, will then cause the taximeter to register a far greater mileage than is legitimate. The profit due to this comes only in part to the chauffeur, for he usually gets a percentage of the day's takings. It is the company operating the taxicabs that will receive the greatest benefit from an arrangement of this sort. In certain European cities it is against the law to operate taximeters by one of the driving wheels of the vehicle, and this is undoubtedly a great protection to the traveling public.
The taximeter itself is protected by lead seals, which must be broken in order that access may be gained to any part of the mechanism. Because of this, the chauffeur does not attempt to dismount any of the mechanism; and even should he disconnect the star wheel, so that the instrument will not register at all, the discrepancy between the normal mileage of his car and the reduced mileage shown by the instrument as a result of his act, would lead to his prompt detecas a
tion.

It is possible for the chauffeur to defraud the company by carrying passengers while the taximeter flag is in the "vacant" position, collecting from them what they are willing to pay, and explaining the extra mile age shown by the instrument as having been required in returning from some distant point after the discharge of a passenger. He can also run with the flag in the "non-recording", or "payment" position, when no corresponding charge will appear on the instruno corresponding charge will appear on the instrubenefit of the company the minutes during which the flag is in this position, an excess would lead to his detection.
In London, all taximeters are under the strict supervision of the police department; and not only must each make be passed upon, but every instrument must be tested and stamped before it can be put into service.

In Paris, as well as in London, the police have the authority to stop any taxicab for the purpose of inspecting the instrument and receiving assurance of its correct operation, and can also arrest any chauffeur whose flag is not in the proper position for the number of passengers he is carrying.

The large transportation companies operating taxicabs in New York city are sincere in their endeavors to protect their patrons from overcharges, and inquire into all complaints. They state that a considerable proportion of the complaints made to them are due to the carelessness of the passenger in not noticing the position of the flag or in neglecting to read the instrument, and in unfamiliarity with its operation. In going to a point exactly one mile distant from the starting point, for example, the direct run would record a charge of 50 cents; but if traffic conditions required the driver to go even slightly out of the way, the instrument would record 60 cents. The taximeter measures the distance in units of one-quarter of a mile, and makes its charge in advance. A recognition of this fact would remove one cause of discussion between passenger and chauffeur
When a knowledge of the taximeter is instinctive in the traveling public, the chauffeur will not attempt to mislead or to overcharge; but until then it is only to be expected that unscrupulous drivers will endeavor to add to their incomes by imposing on the ignorance or credulity of their passengers.

CLAY PRODUCTS OF THE UNITED STATES.

Bricks have been found as old as 4000 B. C., so that their use is coeval with the birth of history. In the Middle Ages, with the rise of Gothic architecture the use of brick greatly declined. It was not until the reign of Queen Elizabeth that the manufacture again flourished in England, and it was not until 1625 that bricks began to be made of uniform size.
In this country brick were probably first burned in the colony of Virginia as early as 1612 , says Charles E. Hall in an interesting Bulletin of the Bureau of the Census. In New England brick and tile making seems to have been followed as an independent calling about the year 1647. Though the product was of good quality the industry did not thrive, as money was scarce and timber plentiful, and it was not until after the revolutionary war that home-made bricks came into general use. With increasing prosperity the desire and necessity for more substantial structures arose. The growth of the industry from year to year naturally provided a stimulus for the invention of machinery that would produce better brick, new shapes, and different sizes; and in turn these new inventions contributed to further the growth of the industry. The earliest record of a patent issued by the United States Patent Office for brickmaking is dated May 15, 1800, and was for a brick and tile machine invented by G. Hadfield, residence not recorded. Other patents issued about that time were one to E. Miller, July 17, 1802, for a brick machine; one to N. and P. W. Miller, January 5, 1804, for a brick and tile machine; one to W. Hodgson, Richmond, Va., May 22, 1805, for an apparatus for making tile, brick, etc.; and one to J. F. Gould, Newburyport, Mass., March 1, 1806, for a brick machine. The first patent granted for a brick-kiln was issued to H. Read, of Kensington, Pa., June 17, 1840; and the first for a brick dryer, to S. M. Parish, of Baldwinsville, N. Y., August 16, 1864.
Although much the same process for making brick and tile has been used for ages, the evolution of the industry through the use of improved methods and machinery has brought about a great change in the character of the product. It is a long stride from the use of hand pick and shovel to steam shovel in uncovering the clay bed; from the old-fashioned, ring pit to the machine that grinds, tempers, and molds; from the use of a hand mold to the machine with a capacity of 100,000 bricks per day; from the open air system, or a weather beaten drying shed, to the utilization of artificial heat for drying; from the temporary to the patented continuous kilns; and from the poorly made product of years ago to the firm, straight-edged, and otherwise well finished product of to-day. Of the $\$ 119,956$,959 capital invested in this industry, the machinery, tools, and implements represent $\$ 33,295,324$, or 27.8 per cent, an increase in five years of $\$ 16,045,486$, or 93 per cent.

Common Brick.-Enormous quantities of common brick are manufactured in all sections of the country. Surface clays are generally used, and more attention is given to the volume than to the color and general qualities of the product, as the price is low and the brick used mostly in ordinary wall construction and foundation work
Sand-lime Brick.-The sand-lime brick industry has passed the experimental stage, and though still in its infancy there is every reason to believe that it will eventually rank among the foremost of the country. The successful manufacture of sand-lime brick in foreign countries appears to antedate that in this country by several years. According to United States Con-sul-General Mason, at Berlin, the discovery that freshly
pressed bricks of sand and lime could be hardened in a few hours by heat and pressure of steam was made in Potsdam, Germany, about 1880. Plants on a large scale were subsequently constructed, and the industry extended throughout Germany and Great Britain. In the United States the industry has grown from one plant, established in Michigan City, Ind., in 1901, to fifty establishments in 1905. In some instances these brick were made in establishments having clay products as their chief output, while in others they were products of plants exclusively confined to the manufacture of sand-lime brick.
Red Front Brick.-In the production of red front brick great care is exercised in the selection of raw materials and in the process of manufacture. The clay must be well tempered; the brick molded free from flaws or sand cracks; the method of drying be more complete than for common brick; and the re pressing and subsequent drying, setting in kiln, and burning, skillfully and systematically managed. This additional attention necessarily increases the cost o production. Every State reported the manufacture of red front brick except Florida, Nevada, South Dakota Vermont, Wyoming, and the Territory of Arizona. The State of Pennsylvania ranks first in value of product New Jersey second
Fancy and Ornamental Brick.-Fancy colored and ornamental brick are primarily pressed brick. The different shades of color in the former are produced by the addition of artificial materials or by the manip ulation of the kiln fires, while the distinguishing fea ture of ornamental bricks are the designs in relief or in intaglio upon the surface to be exposed.
Fire Brick.-As the name implies, flre brick are used where intense heat must be withstood, as in cupolas, blast and glass furnaces, coke ovens, loco motive fire boxes, etc. The utility of the appliances just mentioned depends largely, it not altogether, on construction out of materials which will stand intense heat without fusing, cracking, or yielding in any way A new fire brick made from ashes has been produced by a Michigan firm. The ashes are united by a power ful binder, molded, and the product conveyed straight to the drying room. It is claimed that the brick are ready for laying five days after manufacture; that they have been tested in flre and water with satisfac tory results; and, further, that the product is two fifths lighter than terra cotta, and yet stands consider able crushing force
Enameled Brick.-These bricks are ornamental, and in addition to being used for external decoration in the construction of buildings, are extensively used for sanitary purposes, their glazed and vitreous surfaces rendering them waterproof and easy to clean. As the surface of the brick to be enameled must be smooth and free from sand, pressed and fire brick are most often used.

Hollow Building Tile and Blocks, and Fireproof Brick.-On December 9, 1856, a patent was issued to M. and J. H. Buck and F. A. Cushman, of Lebanon, N. H., for a machine for pressing hollow building brick or building tile. This industry, though yet in its infancy, is rapidly growing in importance, as the product is essential to the construction of modern fireproof buildings.
Possibly nothing has contributed more to the demand for burnt clay products, and brought more clearly to the attention of the public their value as a flre retardant, than the recent great fires in Baltimore, Rochester, and San Francisco. Without considering, however, these occasional catastrophes, it is estimated that the United States yearly sustains a fire loss of $\$ 250,000,000$, a sum almost double the com bined value of all clay products manufactured in this country during the same time and nearly three times the total value of all the brick, fireproofing, terra cotta, lumber, hollow building blocks or tile, and roofing, floor, and encaustic tile. With such an enormous an nual property loss, and with the thinning out of the forests of the country, it is reasonable to believe that a change in building methods is imminent, and that the new era of construction will be of immeasurable benefit to those engaged in the manufacture of burn clay building materials.

It is claimed that the annual fre loss in this country during the past five years amounted to about $\$ 2.50$ per capita, as against only 33 cents̄ per capita, in the larger European countries. This unsatisfactory show ing for the United States has resulted in a growing demand for a fireproof brick that can be used in the construction of moderate-priced dwellings, and several large plants are now making a specialty of such an article.
Drain Tile.-The manufacture of drain tile also dates back to early ages, and many instances of its genera use by the ancients have been found. That it was used, probably in a crude form, by the early settlers of this country can not be doubted, as patents were issued for its improved manufacture in the year 1800
Pottery.-It is recorded that a white ware was produced at a pottery erected in Burlington, N. J., in 1685 by the American agents of Dr. Daniel Coxe, of

London. However, it is not likely that the ware made at this pottery was white, general opinion being that it was yellow and cream colored, as at that time no other ware was known except the porcelain which came from China, and was known as "China ware." Ordinary household pottery and ornamental vases for flowers were made in West Whiteland, Chester County, Pa., as early as 1753; a pottery and glass works was in operation in Germantown, New Quincy, Mass., in 1760; and a pottery in South Carolina in 1765. Cream colored ware, both plain and decorated in blue, was made in Philadelphia in 1770.

It appears, however, that the potteries established before the revolutionary war did not meet with marked success, and that this industry, like the manufacture of brick, did not assume commercial importance until after that war, when a period of new economic and industrial life began. About this time many enterprises were launched, including a number of potteries.

Our first page engraving shows a graphical comparison of the magnitude of clay products for one year. The pyramid would be 4,294 feet high and looms well up toward the summit of Mount Washington.

The total value of the products of clay in the United States in 1907 was $\$ 158,942,369$. It was divided up as follows:

	Quantity.	Value.
Common brick	9,795,698,000	\$58,785,461
Vitrified paving brick.................. ...	876,245,000	
Front briek.	585,943,000	7,329,360
Enameled brick		${ }_{918,173}$
Fire brick.		14,946,045
Stove lining.		627,647
Drain tile.		.6,864,162
Suwer pipe.		11,482,845
Architectural terra cotta		
Fireproofing ${ }_{\text {Hollow }}$ buiding ${ }^{\text {dile }}$ or		$3,162,458$ $1,088,165$
Tile, not drain........		4,551,881
Miscellaneous.		3,000,201
Pottery		30,143,474

poe as a scientific writer.

To the Editor of the Scientific American
At this writing the University of Virginia is celebrating the one-hundredth anniversary of the birth of America's great poet and author, Edgar Allan Poe. It may not be generally known to those interested in composer of the "Raven", originator of the short story and the first great exponent of the science of deduc tion and unraveler of intricate ciphers and crypto grams, cherished an ambition, according to his biog rapher, to shine as a scientific writer. Among his miscellaneous writings there is a descriptive article on the flying machines of Henson and Stringfellow, the originators of the single and superposed fixed sur faces, or aeroplane, as it is known, and whose labors at that time (1845) were the. sensation of Europe Her of model aeroplanes constructed and tested a num what they conceived to be the best one was fitted with the marvelously light steam engine constructed by Stringfellow (now at the Smithsonian Institution, Washington) and forms the subject of Poe's article, written in the flawless style peculiar to him, employ ing terms in the description of the model that are new, and doubtless were the invention of his own
fertile brain.
J. C. PRESS.
South Norwalk, Conn., January 20, 1909.

aUtomatic block signals.

To the Editor of the Scientific American
I do not agree with Mr. Fagan, who says automatic signals are in any way responsible for railroad acci
dents. The Boston Elevated Railroad is thoroughly dents. The Boston Elevated Railroad is thoroughly in such a manner that an accident from a rear-en collision is impossible. A train disregardng one of these signals, at danger, is brought to an immediate stop by an air tripping device. This is much better than any system of rigid discipline of employees. A signal system has come under my notice, which wil eventually, I believe, be universally used on all rail-
roads in the United States. It is a system of elecroads in the United States. It is a system of elec a button from the central office, it will set the signal at danger at any desired point on the road. This signal, equipped with a telephone in a box, is located at the base of the pole. As each conductor carries a receiver in his por'rat, the train crew is in a position to communicate with the central, or dispatcher's office, and find out why any particular signal was at danger These signals would be so arranged (as all auto matic signals are at the present time) as to show train crew would communicate with the dispatcher before proceeding. With this system a dispatcher before proceeding. With this system a dispatcher
could block trains for a whole division. Of course, he would nave to receive prompt "O. S." from stations along the line. The advantages of this system would be a saving in interlocking apparatus and the doing away with a great many block towers (but not switch towers). It is also superior to the automatic block system, in my opinion, for this reason: That trains are under central control, and in case of a train dis regarding a signal, an indicator located in the dis patcher's office would show what signal had been dis regarded. This is the case in the Boston Elevate
Railway's dispatcher's office.
F. H. Sidney.

Signal Dept., B. \& M. R'ailroad Terminal Division,
Wakefield, Mass., January 12, 1909.

THE MEAT INDUSTRY OF AMERICA.-II.
The reader of this article will be surprised to learn that from fifty-six to fifty-eight per cent only of the animal, as purchased on the hoof, is available for the table. In the early days of the meat industry; the other forty-two to forty-four per cent was regarded as useless and allowed to go to waste. To-day, however, there is practically no part of the animal that is not turned to some useful account. It is claimed, indeed, that the proflt of the packing houses is now almost exclusively made out of the by-products.

The hides are carefully stripped by a workman, especially trained to the task, who is careful not to spoil the hide by the slightest slip of his knife. After they have been inspected, they are graded, according to their quality, salted, and stored, and finally sold to the tanneries. The various fats from the animals are worked up into tallow, and the finer qualities, known as butter fats, are used in the manufacture of oleomargarine or butterine, for which by-product Swift \& Co.'s plant has a capacity of fifteen tons a day. From the beef suet is made the by-product known as stearine, which is used in large quantities by the tanners and the candle manufacturers. From the seven thousand skins of the sheep, which are killed in this establishment every day, there is gathered daily about ten tons of wool. The lean meat trimmings are passed through a process of preparation, from which they emerge as a good quality of sausages. Horns and hoofs, which at one time were thrown away, now find a ready market. Packing-house refuse is used extensively, also, in the great fertilizer industry. The viscera, immediately upon their separation, are passed down a chute into a lower room, where, after going through certain processes of cleansing and chemical treatment, they are made to render their tribute of useful product, the fibrous matter being dried and ground up for fertilizing material. The bones are worked up into glue and phosphate, the latter being ultimately made into fertilizing-material by mixing it with the nitrogenous matter of the fibrous residue, above mentioned, and of the blood.

A most important part of the work of the government inspector consists in looking after the sanitary conditions of the various floors or rooms throughout the building, and the personal cleanliness of the large army of employees. The workmen are required to keep their working clothes clean, or as clean as the conditions of work of this character will admit. Those that handle the meat must wash their hands at stated intervals, lavatories with running water and the necessary appliances being provided for this purpose. If an inspector sees a workman with clothing that is unnecessarily soiled, he orders him to at once change to another suit. For the disinfection and cleansing of the cleavers, scrapers, knives, saws, and other tools, vats of boiling water are provided in close contiguity to the rail and the working benches; and, in cases where defective animals have been detected, the inspector orders the butchers, before they proceed to another department, to at once cleanse their hands in a disinfectant solution of bichloride of mercury; he sees, also, that all tools and implements are similarly cleansed and disinfected. Sheet-iron clothes lockers are provided for the clothes of the workmen, with sheet-iron partitions between the compartments, and perforated sheet-iron doors in front to insure a free circulation of air.

Having now described in detail the various processes in the preparation of refrigerated meat for the market, we will proceed to describe the other great system of meat preservation known as curing, as carried out in the cutting up, pickling, salting, and smoking of ham and bacon. The hogs are driven from the stockyard pens, where they have already undergone a government inspection, to the dressing floor, which has a capacity of 1,000 hogs an hour, or 10,000 per day. They are driven, a few at a time, into a pen, on one side of which revolves a large hoisting wheel with short lengths of chain attached by means of hooks to its outer rim. In the pen are two boys, who quickly loop the chain around the hind legs of the hog. As the wheel revolves, it lifts the animals, one by one, to the top of the wheel, at which point the chains are automatically transferred to an inclined rail. Here the porker passes an operator, who swiftly dispatches it with a deft knife thrust; and after a short interval it is automatically released into a huge vat of scalding water of a temperature of 150 deg. F., where it remains for five minutes. The effect of the hot water is to loosen the hair and scurf and clean the hide. It is then taken from the tank and drawn up through a vertical cylindrical scraping machine, which is full of downwardly-projecting steel scrapers, which are pressed by springs against the body of the animal as it passes through, and take off in a few seconds time nearly all of the hair. It then passes to the scraping bench, where such portions of the hair as have not been removed by the machine are taken off by hand. The bench is arranged as a traveling table, and the hogs, laid across it side by side, travel slowly past the line of operators. When the animal reaches
the end of the bench, the operation of dressing is begun. Here the first government inspector examines the glands of the throat, feeling some and cutting into others in order to be sure that the animals are perfectly healthy. The animal is then held in front of what is known as the polishing machine, which consists of a rotating shaft provided with a number of flexible arms made of heavy belt leather, each arm being shod at its end with a steel strap. As the shaft revolves, the animal is pressed against the rotating arm and is strongly beaten and scraped. It is then subjected to a steam jet blast, after which it is hung on the shaving rail, where the last of the hair is removed by hand. This finishes the cleaning; and at this point government inspector No. 2 looks for and identifies the pass mark of inspector No. 1, and places a tag upon the animal
The animal is now ready for cutting up, and this work is done by an army of skilled workers, each one of whom, as the animals, traveling at the-rate of about thirty feet a minute in a continual procession, pass before him down the overhead rail, performs his particular part of the operation with really marvelous speed and dexterity. The viscera are placed in a trough, whence, after they have been carefully examined by a government inspector, they pass to a room where they are separated and sorted, and subsequently manufactured into various by-products. The stomach, after the grease has been extracted, is made into fertilizers; the liver and heart are sold as food products, and the intestines are cleaned and made into sausage casings. The leaf lard (the fat which grows on the inside of the body) is taken out, and subsequently worked into kettle-rendered lard or neutral lard, the kettle-rendered lard being the ordinary lard of household use, and neutral lard being used in the manufacture of butterine. The animal, after being split in two along the vertebræ, finally reaches the end of the rail, where it passes before the fourth government inspector, who examines the inside of the pleural region as a final assurance of perfect health and also examines the glands near the base of the backbone. The next journey is to the hanging floor where the sides are sorted according to weight and quality, and are partially cooled by being allowed to hang in a draft of air for a period of a few hours. From the hanging floor the sides are carried into the chill room, a huge refrigerator capable of accommo dating many thousand sides. Here they are kept for forty-eight hours at a temperature of 32 deg .
From the chill room the sides are taken to the cut ting room, where the shoulders are chopped off, the hams removed, and the feet are cut from the hams by band saws. The bacon pieces are put through rolls to flatten them out into a suitable shape for salting and packing. All the portions of the meat, as thus cut up, are carefully trimmed, and the trimmings are sent down a chute to a room below, where they are re trimmed, the lean portions being subsequently made up into sausage meat, and the fat portions into lard In the cutting room the "fresh-meat portions" are wrapped in paraffine paper, and packed in boxes and barrels for immediate shipment to the retail butchers After the meat has been trimmed and cut up, it is sent down a chute into the grading room, where each ham shoulder, or side is weighed and sorted according to its weight and quality
It is probable that there is no feature of the meat industry, at least as carried on under modern conditions in the largest establishments, regarding which there has been more popular misconception than that of the curing of meat. While it is undoubtedly a fact that some meat, prepared by obscure and small deal ers, occasionally may be subjected to treatment that renders it undesirable, we believe that the system of curing, as carried out by the large establishments under the regulation of federal laws, is perfectly whole some, and absolutely insures the use of only such in gredients as are healthful
As a matter of fact, the Constituents of the solution or pickle used in curing meat, viz., salt, saltpeter, and sugar, are the same that have been used by the far mer, the butcher, and the housewife from time immemorial; and it is certainly remarkable that, in spite of the fact that the problem of meat preservation has been made the subject of thorough laboratory investigation for a long period of years, the chemists have been able to find nothing which gives more satisfactory results than the time-honored preservatives of our forefathers.

The supervision of the federal government of the curing of meats is carried on with the same thoroughness to which we have drawn attention in our descrip tion of the preservation of meats by the method of refrigeration. Salt, saltpeter, sugar, vinegar, and wood smoke are specified by law as the only preserva tives that may be used. Borax, of which so much has been heard lately, is expressly prohibited except in the case of meats put up for export in accordance with the directions of a foreign purchaser. In this case borax may be used, provided it is not prohibited by the country to which the meat is to be sent. England
makes no objection to the use of borax, and meats sent to England may be preserved in this substance; but they must be prepared in separate rooms, and marked with special labels showing that they are for export only. The greatest care also is taken by the large packing houses in the preparation of the pickle. Swift \& Co. maintain an extensive chemical laboratory, which gives steady employment to a corps of ten chemists and bacteriologists, a considerable portion of whose time is taken up with the analysis of the ingredients used in the curing department, and the investigation of the meats at the various stages of the curing.
The size and completeness of this laboratory, and the high technical qualifications of its staff, it may be remarked in passing, bear testimony to the universal sway which chemistry holds over the modern industrial arts. In the investigation of meats, such, for instance, as cured hams, a section several inches square is cut right through the body of the ham, divided into four equal portions, and separate analysis made of each portion to determine the amount of pickle in the different sections, and ascertain if the ham is ascertain if the ham is
uniformly cured. The sect uniformly cured. The section of meat is hashed, and the ingredients extracted by boiling, the dry residue being dissolved with water and further treated with chemicals.
Samples of the various fertilizers produced in the plants are taken regularly to the laboratory, where an analysis is made to determine the amount of nitrogen, phosphoric acid, and potash which they contain. Tests are also made of the fat, oils, and soap to determine their value. Samples are taken of the materials during the progress of manufacture, in order to insure correct processes and suggest improved methods of treatment. The investigation of frozen meat is carried on along four lines, chemical, bacteriological, histological (concerned with the tissues), and

One of the electric generators in the central power station

frozen meat were placed in the same box with plates of gelatine, and kept there for a lengthy period, without any cultures developing upon the gelatine.
The "pickle" is prepared in a plant which the company has devised with a view to insuring absolute cleanliness and adherence to formula. After the solution has been made in the proper proportion, it is thoroughly boiled with a view to its sterilization, then chilled to the desired temperature, and piped to a series of closed tanks. The object of the piokling is to put the meat in such a condition that it will remain sound and sweet. The hams, shoulders, and sides are loaded into vats, which are then entirely filled with the pickle. They are left here for a period of from forty to seventy-five days, during which time,
for smoking. It is next washed and thoroughly scrubbed in hot water, and then hung on racks mounted on trucks and wheeled into the smoke houses. These are large, square shafts, several stories in height, provided with gridiron floors to permit of the free circulation of the smoke. At the base of the houses slow wood fires of hickory or maple are kept steadily burning for a period of thirty-six hours. The smoking of the meat serves the double purpose of improving the flavor and acting upon it with a strongly antiseptic or preservative effect, the creosote of the smoke being one of the most powerful bactericidal agents in existence. The smoke not only penetrates the substance of the meat, but it forms an outer envelope, which in itself is an effective factor in the preservation of the meat. It should be mentioned

The solution of salt, sugar, and saltpeter is injected to the bone to insure that the impregnation of the meat shall be
very thorough.

These inspectors, who are qualified veterinary surgeons, are stationed at various points in the process of cutting up the meat, which undergoes a most rigid inspection.
here, that in order to make sure of the thorough im. pregnation of the ham by the curing pickle, a certain amount is forced into the meat at the bone by means of a hollow needle, through which the liquid is driven by a hand pump. The importance of this treatment is pointed out in an article in the Lancet of June 27 of the year 1908, by Dr. E. Klein, of London, who showed that, in hams so treated, it rarely happens that the pickling fluid fails to reach right through the bone from the outside. This process is shown in one of the accompanying engravings.

The smoked hams are now taken to the packing room, where, after being tested by an expert, who thrusts a steel "trier." into the body of the meat, they are wrapped in oiled paper and wrapping paper, and placed in muslin bags. After these have been sewed up, the company's label and also the United States inspection label are pasted on, and the hams are ready for packing. The company's labels for this and every other kind of meat must be submitted to the Agricultural Department of the government, in order that it may be determined that they accurately describe the

The switchboard in the central power station.
treatment of the by-products. We will now give a brief description of the methods by which the fortytwo per cent of the animal which formerly was considered as useless refuse is manufactured into valuable commodities. The various scraps of meat, etc., consisting of odds and ends of the cutting room, are collected and placed in large digesters. There they are treated under steam at forty pounds pressure for from eight to ten hours. The fat which is separated by this process is drawn off and utilized as tallow and grease, and in various arts, such as the manufacture of soap, candles, lubricants, etc. The remaining contents are placed in a hydraulic press, where the liquids are squeezed out; and the solids, thus obtained, are dried and ground ready to be made into fertilizers, for which they are valuable because of their content of nitrogen and phosphoric acid. The liquid which drains from the press is evaporated to dryness, and the solid residue, which is rich in nitrogen, is used in the manufacture of fertilizers.
The hides are cleaned, sorted, and shipped to the tannery. The bones are

Trimming and wrapping fresh pork-hams.
Branding hams.

first boiled to remove the meat from the fat; then dried and sorted as to size and shape, and sold to the manufacturers of buttons, combs, and similar articles. The hoofs and horns are washed, dried, and sold to comb factories.
The hair of the animal is treated according to its length. Short hair, obtained in the summer, is placed in the digester, dried, and ground into nitrogenous fertilizer material. The long winter hair is cooked in a vat with an alkali, to dissolve the roots and gelatinous matter, and is then washed, dried, and baled for shipment to the hair spinner. It is chiefly used in the manufacture of mattresses. The sinews and hide trimmings are manufactured into glue. The material is placed in a solution of lime, where the fatty matter is saponified, and then washed to free it of lime and render it clean. It is next treated with a weak solution of sulphurous acid to neutralize it; after which it is cooked at a low temperature in large wooden tubs and formed into a glue solution, which is finally reduced in a multiple-effect vacuum machine to the sheet glue of commerce.
It would be difficult to find another of the industries of America in which the application of modern science has wrought better results than in the great meat industry. The adoption of strictly scientific methods has not only improved the quality of the meats, but it has made it possible to transmute the enormous wastes of an arlier day into a wid variety of profitable and useful articles of industry and commerce, and there by reduce the cost of the entire output.

Silk-Faced Cotton
The success of artificia silk has caused silk-faced cotton to be somewhat neglected, but "brilliant ed" cotton closely resem bles fine natural or arti ficial silk. The following are some of the processes:
Thomas and Prevost (1907). A hard silky coat ing is produced by treat ing the cotton with strong chlorinated bleaching agents and then mercerizing in the usual way, with caustic alkalies. Cross and Bevan recommend the formation of a coating of viscose by mercerizing with caustic soda mixed with carbon disulphide. Cross and Briggs (1907) employ a complex aceti bath, the action of which is confined to the outer layers of the fiber. The bath contains 92 parts of anhydrous acetic acid 11.5 parts of acetyl chloride, and 6.5 parts of zinc oxide. Prudhomme (1904) mercerizes with causti soda mixed with ammoni acal solution of copper.
In all of these processes the silky coating is made from the cotton itself. In others, the cotton threads are dipped in collodion, gela tine, solution of natural silk in zinc chloride, solutions of cellulose or artificial silk, etc. Many patents for the production of artificial silk mention the possible employment of the solutions in giving gloss to cotton threads and fabrics. A coating of viscose increases the strength, in addition to improving the appearance of cotton, but produces uneven results and necessitates subsequent bleaching.

It is found that in an ordinary room, from which sunlight is excluded, the brightness of the daylight commonly runs as low as $1 / 10$, or even $1 / 100$ candlepower per square inch. The intrinsic brightness of nearly all artificial lights is much greater than this, which accounts for the injurious effects they produce on the eyes if situated within the range of vision. In a paper read before the Illuminating Engineering So ciety of Philadelphia, J. E. Woodwell discussed this subject, arriving at the conclusion that the best illumination is a diffused light of from $2 / 10$ to $1 / 10$ candlepower per inch. Although ultra-violet light has here tofore been held accountable for strain and other in iury of the eye, he points out that there is less ultra violet light in the rays of various incandescent illuminants than in direct or even reflected sunlight.

the heavens in february

by henry norris russell, ped.

F all the aspects that the heavens present to us, none is more impressive than a clear winter night. It is not only that the air is at its clearest, and that the leafless trees hide but little of the sky; the stars themselves at which we are looking are brighter than those which we see in summer.
Let us go out into the frosty air, turn our back upon the Pole Star, and glance at the southern sky. The first thing that we see may well be Orion, whose outline we traced among the stars last month; but as we let our eyes fall toward the horizon, we are arrested by a star of surpassing brightness, so much the superior of all the others that no one could fail to pick it out at once. This is Sirius, the principal star in the constellation Canis Major, and the brightest in all the heavens.
Our map, and the outline figure above, show us how the other stars of this constellation are situated. The conspicuous group resembling an irregular cross about fifteen degrees southeast of Sirius is the Great Dog's

NIGHT SKY: JANUARY AṄD FEBRUARY: fifty years.
as found by observation for successive years, were mapped, they will lie on a wavy curve, deviating, now to the right and again to the left, from the direct line. The "waves" occurred regularly, at intervals of about

Now, according to the basal principles of mechanics, no moving body deviates from a straight line unless some force acts on it. In the case of Sirius, there was evidently a periodic force at work, pulling it alternate y to the right and left-and also setting it forward or behind-and repeating itself after fifty years. The only available explanation was that Sirius was attend ed by a companion star, too faint for us to see, but ufficiently massive to affect its motion by its attraction, which pulled it now one way, now the other, as the companion star moved round Sirius in its orbitthe period of revolution being of course fifty years.
This explanation was given by the German astrono mer Bessel about 1850. Fully twelve years later-in 1862-Alvan Clark, the maker of all the greatest American telescopes, having completed a new instru ment of great power, turned it on Sirius. At once a faint companion star appeared-too faint to be seen with the smaller telescopes previously in existenceand this was just in the direction in which Bessel had predicted. Since then it has almost completed a revolution about its prim ary, moving exactly as was predicted, before it had ever been seen.
Above Orion, on the op posite side from Sirius, is Taurus, with the clusters of the Pleiades and Hyades, of which we spoke last month. Right overhead is Auriga. Gemini is close on the southeast, and Canis Minor, with th bright star Procyon, lies below.
In the southeast is par of Hydra, and due east is Leo, in the lower part of which is the brilliant planet Jupiter. Ursa Major is high in the northeast Draco and Ursa Minor are due north, below the pole, and Cassiopeia and Ceph eus are in the northwest with Alpha Cygni (Deneb) on the horizon below them Pegasus is setting, north of west. Above him is Andromeda, and higher still, almost overhead, is Perseus. The remarkable variable star Algol, in this constellation (which is eclipsed by a dark companion at regular intervals of 2 d .20 h .49 m .), will be faint (i. e., eclipsed) about midnight on the 6th, 9 P . M. on the 9 th, 6 P. M. on the 12 th .
Due west we find Aries and Pisces. Saturn, which is in the latter, is just set ting. Cetus and Eridanus fill up the large dull space in the southwestern sky.

THE PLANETS.
Mercury is evening star
hind quarters; and two isolated ones farther to the right, mark his fore and hind paws. It takes a good deal of imagination, when only the stars are before one, to see any resemblance to a dog; but the constellation, however it might be named, is a natural group, and stands well separated from all others.
Sirius deserves further mention. It is notable not only for its brightness, but for its large proper motion, which carries it in a southwesterly directionalmost in the opposite direction to that in which Procyon lies-at the rate of about one degree in 3,000 years. This seems slow, but when magnified by the elescope, the motion in even a single year can be etected with certainty by suitable measurements, and it is much greater than that of most stars. All this makes it seem likely that Sirius is really near usas the stars. go-and the determinations of its parallax show that this is really the case. In fact, so far as the latest researches show, it is nearer to us than any ther star that is visible in our latitude, its distance being about $81 / 2$ light years. That is, its light takes $81 / 2$ years to reach us, and we see it now as it wasand where it was-in the middle of the year 1900.
Sirius has of course been very frequently observed, and it was discovered long ago that unlike most stars, it was not moving in a straight line. If its positions,
until the 11th, when he
passes through inferior conjunction and becomes morning star. At the beginning of the month, when he sets at about 6:40 P. M., he may be seen shortly after sunset.
Venus is morning star, but is steadily getting neare the sun, and becoming harder to see. All through the month she rises at about 6 A . M., but as sunrise comes earlier and earlier, she will be harder to see. On the 19 th she is in conjunction with Mercury, who is then four degrees south of her. Mars is morning star in Scorpio and Sagittarius, rising about $3: 20$ A. M. on the 15th.

Jupiter is in opposition on the 28 th, when he rises at sunset, and is visible all night long, and a fine object in the smallest telescope. Saturn is evening star in Pisces, setting about $9 \mathrm{P} . \mathrm{M}$. in the middle of the month. Uranus is morning star in Sagittarius, ob servable before sunrise. Neptune is in Gemini, invis ible without a telescope. On the 16 th he is in R. A 7 h .3 m .25 s . and declination 21 deg .53 min . north, and is moving 5 s . westward and 9 min . northward per day. the moon.
Full moon occurs at 3 A . M. on the 5 th, last quarter at 8 A . M. on the 13 th, new moon at 6 A . M. on the 20th, and first quarter at $10 \mathrm{P} . \mathrm{M}$. on the 26 th. The moon is nearest us on the 20th, and farthest away on
the 8th. She is in conjunction with Neptune on the 2d, Jupiter on the morning of the 7th, Mars on the 15 th , Uranus on the 17th, Venus and Mercury on the 18th, and Saturn on the 22d.
Princeton University Observatory.

SOME BREADS OF OTHER LANDS.
 by L. Lodian.

One of the brothers Reclus, professor of geography at the Brussels University, has left a posthumous work (as yet unpublished) entitled "L'Histoire du Pain." When this History of Bread is issued in due course, it may be taken for certain that it will beconsidering its source-a most important contribution to sociologic literature. For the subject has never been "done" before. A like remark applies to the present paper on some of the curious breads of other nations. The writer, before beginning work on it, looked up every source of reference.
the kasava bread of latin-america.
This is the naturally whitest of all breads-without any of the so-styled "electrical" bleaching of modern roller-mill processing. The name is derived from the Caribbean-Indian word of the plant $k a s a b i$, and is variously spelled kasava, casava, and half a dozen other ways. However, as the tendency of the times is to ward the restoration of indigenous spelling, kasava is perhaps the best rendering of kasabi.
When the Genoese Colon first reached the Isles of the Antilles, he found the aboriginals using for bread the pulped root of this kasabi plant. Later, the tor tilla (maize bread) was found in use on the mainland.
Kasava bread is a most important article of diet to this day among ine natives of tropical America, especially in interior Brazil and Paraguay.
For convenience in baking, it is always made in thin wafer-like cakes, as noted by the earliest travel ers. Taken with coffee, it is a quite "satisfying" diet -far more than it looks-due to its rapid absorption of moisture and swelling to produce that feeling of distension which is called "filling."
Blackest of all breads is the palt brod of Lapland, northern Scandinavia, Russia, and the far north of Siberia. It is a kind of rye bread, and is regarded as highly nourishing-as it must be when reindeer sledge parties subsist on it and unsweetened brick tea for weeks together, with an occasional diet of fish. It has a slight albuminous taste; and is sometimes soaked in hot reindeer fat to augment, not its nutritiveness, but its heat-imparting capacity
The Norsemen also have a peculiar hardtack bread of unmilled rye. The rye grains are soaked, mashed by pounding, then lightly baked in circular plate-like disks about twelve inches diameter, and one-tenth to one-seventh of an inch thick. In its center is a hole, and it is stored by racking away on thin poles after baking; or suspending by batches on strings below decks on fishing smacks (for it is the chief bread of the fisher folk). It is eaten with and by dipping in the soups, or by stirring in the coffee, or even alone, like biscuit.
The Italians have a nearly similar disklike hole-centered bread for their coastworking population. It is known as macaroni pane duro (macaroni hard-tack), and is eaten by momentary soaking in their cheap light wines; it may be used in the soup, but is always inferior to the real strip or perforated macaroni. Like this last, it is of a light yellow color, brittle, and has nearly the same glutinous taste.
So diverse is the population of New York, that most breads of different nationalities can be obtained in their respective bakeries. Thus, the characteristic three-cornered oat bread, in cake-like form, can be obtained at several Scotch bakeshops. It lacks, though, the homemade simplicity and purity of the native bannock-being "Americanized" to suit the Scottish-American acquired taste
It is little known that of all the for eign languages prevailing in New York, the Russian language has the greatest number of speakers. There are about three-quarters of a million familiar with it. True, the vast majority of these are provincial, and mainly converse in their own jargon, but they are as familiar with Russian as the Irishman is with British
Bread for the hordes of Jew folks, mostly of Rus sian origin, is quite an industry in the Hebrew quar ter of Gotham. There are bakeries for the production exclusively of the matzoths, or unleavened bread. This is both square and round shaped, very friable, and to the Gentile about as uninteresting and insipid a bread as could be conceived. At the same time, it is one of the simplest and purest of breads.
The Italian breads present the greatest variety and solidity and purity of any. Some of their family loaves are big as cartwheels, and retain their table accepta-

SOME CURIOUS FORMS OF BREAD.
water. There is a rather strong odor of toasting bread, but that is tolerated in preference to smoke. While sojourning with the engineers in Siberia, 1 have also seen them using the larger sizes of ringed bread as makeshift quoits for Sunday afternoon sport in their tents, and the bread would stand the knocking about pretty well, and would eventually appear in the soup at the evening meal.
Small Siberian storekeepers also use the ringed bread as an abacus, or primitive counting apparatus for calculating small sums in rubles and kopeks, and simple figuring. Three strings are suspended above the counter; ten breads are strung on each; the top line represents the rubles (their money transactions rarely going above ten) and the two lower strings
bility, without becoming too dry or hard, for a week to ten days. They have also about a dozen varieties of hardtack breads, for dipping in and taking with wine or coffee, or for soup use. But these dried breads, while satisfactory to the Italian, would be pronounced a poor standby by an American. Like meat which has been baked to a crisp, they seem to have had most of the virtue baked out of them by excessive

A LOAF OF ITALIAN BREAD.

heat. The Italian chestnut bread (kastagnacio) and bean bread are also obtainable in Manhattan.

Of all the hardtack breads of the universe, I have found (by actual experience during many years of almost every known variety) the small ringed bread of Siberia the most substantial. When the Russian engineering parties were constructing the trans-Siberian railroad, this white ring bread (with the coarse rye bread) was their main "staff of life."

It is made without salt or yeast, and is first steamed, then lightly baked to expel the moisture. Some curious uses were made of these breads by the engineers. When soaked in hot pure tallow for a few moments till they sank, they were used in soups or soaked in and eaten with tea, during the severe winter months. This tallow bread was considered the most heat-producing article in the dietary. It is a product which should be utilized by our Arctic explorers. Another curious use to which it is put is as an extempore candle, or coffee-pot boiler. A nail is used to make about eight holes in the tallow ring bread; wax vestas are placed in these and ignited. It will burn slowly for about an hour, emitting a strong heat sufficient to warm and light a small tent, and boil the tea or coffee
ar and Trade Notes and Formulæ are given as usual.

Much success has been attained in repairing automo

 bile crank or gear cases. The sides may be knocked out completely; but to the surprise of many who are not only well posted, but scientific in the art, welding of the damaged parts has been accomplished so as to make the case one solid piece. This new method to make the case one solid piece. This new methodof repairing gear cases saves the owner of a car not only considerable expense, but much time and delay. In engines of foreign make, for example, it takes from three to four months to get new aluminium cases, and then the cost is very much higher than what it would cost to weld them.
stand for the kopeks. Of course, the strings of bread can be increased to mount into the thousands and up, if desired. Even this singular multi-usable bread can be obtained in Manhattan at various bakeries of erst while Russian citizens, but its use is here confined to the table.
Bread has various applications besides table use We are all familiar with its therapeutic uses as poultices et al.; for erasing stains and marks; for (toasted to a crisp) the infusion known as toast water, and a dozen other uses.
Perhaps its most singular application is-in the form of dough-its use for cleaning parts of timepieces in one of the Waltham watch factories. A recently printed statement gave out that one of these New England horological factories used up some eighty pounds of bread dough per diem for this purpose. The refuse was not wasted, but used on a chicken farm in the region.

The ${ }^{6}$ Bishop Ring, is Seen Again for the First Time Since Its Discovery.
For several months after the eruption of Krakato in 1883, there was a haziness in the atmosphere, and remarkably gorgeous sunsets were observed in various parts of the world. The great eruption of Mont Pelée in Martinique was followed by similar phenomena. The generally accepted theory among scientific men as to the cause of these phenomena was propounded by Dr. Sereno Bishop of Honolulu, and is known as the Bishop theory. At the same time Dr. Bishop observed a ring round the sun, to which the name of the "Bishop ring" was given. On the first of January Dr. Bishop, for the first time since the eruption of Krakatoa, observed the sun ring, and attributes its appearance to the recent disturbances in Sicily and southern Italy. The Bishop theory is that a volcano in very active eruption throws out immense volumes of impalpable dust into the higher strata of atmosphere, and that this dust spreads through the rarefied air until it surrounds the globe.
Dr. Bishop is the oldest living white person born in the Hawaiian Islands, and has devoted much study to volcanoes and their phenomena. He is now eightytwo years of age.
The residents of Geneva in Switzerland say that for two days about three weeks before the earthquake at Messina in Sicily, the waters of Lake Geneva rose and fell in a strange manner, as though sucked in by a siphon and then permitted to flow out again. It is said that the same phenomenon was observed before the earthquake on April 18, 1906, in San Francisco.

The Current Supplement.

Never has an earthquake exacted so terrible a toll of human life as that which has just devastated Calabria. A scientific examination of this calamity is presented in the current Supplement, No. 1726. Some twenty pictures are used to illustrate the article Gas producers for use on, shipboard have been pretty well discussed, but all the arguments have presupposed that the present type of slow-speed high initial pressure explosive engine would be used. E. W. Percy in an essay entitled "A Large Gas En. gine for Ships" inquires whether a more suitable type of engine cannot be constructed, and argues that the 2 -cycle, 3 cylinder fuel injection engine is the coming type. About ten years ago were discovered the first remarkable exceptions to the general rule that crystals are solid and rigid bodies. Prof. Ernst Sommèrfeldt reviews the history of that discovery, and gives a brief and succinct ac count of the present state of our knowledge. Lombroso gives his views on the happiness of lunacy and genius. R. E. L. Maunsell writes on modern workshop practice, in which he discusses high-speed tool steel. Dr. Gradenwitz describes a method for wirelessly transmitting handwriting, drawings, and photographs. Our aeronautical readers will be interested in W. R. Turnbull's account of his new researches on the form and stability of only considerable expense, but much time and delay.

MILK-BOTTLE HOLDER.

It is sometimes rather difficult to fix the blame when the morning's milk is not to be found at its usual place on the doorstep. Either the milk has been stolen, or the milkman is dishonest and has failed to deliver the order. The honest milkman, as well as the housewife, will welcome some sort of a milk-bottle receptacle which will securely lock the bottle until such time as the authorized person is ready to take it in. Such a device is shown in the accompanying engraving. The line drawing shows a section through one of the bottle receptacles. It will be observed that

MILE-BOTTLE HOLDER.
it consists of a cylinder A, open at each end and a metal cap B, which fits into the top of the cylinder. The cap is secured thereto by means of a padlock fastened on a bracket member E, which passes through the handle C of the cap, and a bail D hinged to the cylinder. Within the cap is a wire retainer F, of such form that when the bottle is inserted in the cylinder from the bottom, the neck of the bottle is seized by the retainer, and held so that the bottle cannot be withdrawn. The only way in which the bottle can now be removed is to unlock the padlock, so that the cap may be removed from the cylindrical part of the receptacle. The bottle will be lifted out with the cap, and can be disengaged from the wire retainer. A separate receptacle is required for each bottle, but these can all be secured to a single bracket and fastened by a single padlock. It is impossible to steal the bottle from a receptacle of this sort without tampering with the lock, or otherwise damaging the receptacle in such a way that the work will be recog. nized as that of a thief. The inventor of this milkbottle holder is Mr. Frank Weisenberg, of 148 Prospect Avenue, Brooklyn, N. Y.

DEVICE FOR TESTING EGGS.

A well-known test for eggs consists in placing the eggs in water, when the bad ones will float, but of the eggs that.sink there is no way of determining which are the fresher ones and how much less stale one may be than another. A very ingenious device has recently been invented which enables one to note the slightest variations in the eggs. The device consists of an aluminium air chamber comprising a main body portion and a stem. The latter is graduated, while at the bottom of the body portion are two springwire loops shaped to engage and hold an egg. The device with the egg attached thereto is placed in water and will sink to a depth depending upon the specific gravity of the egg. The freshest and

device for testing egas.
best eggs sink the stem down until the water is on a level with the $X X$ mark. Even if the egg registers 0 it shows that the egg is quite fresh and still has sufficient food strength to hatch a live chick. Mark 4 registers the limit of fair eating. At 8 the egg is fit for cooking only, while 12 shows that decomposition has set in. Not only is the tester valuable in the kitchen but to the chicken raisers as well, as it tells how much nutriment there is in the egg for the support of life in the chick, and during incubation it shows the progress of evaporation in the incubator as compared to normal hygrometric conditions as found in the eggs under the hen.
The inventor of this egg tester is Dr. E. C. Waldorf, of 496 Porter Avenue, Buffalo, N. Y.

FLOWING OIL WELLS BY COMPRESSED AIR.

Compressed air is being used very successfully in the flowing of oil wells on the farm of Mr. John W. Waitz near Oil City, Pa. One hundred wells are thus equipped and they yield a daily average of 200 bar rels. The average depth of the wells is 800 feet, and the air pres

FLOWING OIL WELLS BY COMPRESSED AIR. sure required is somewhat more than 400 pounds per square inch. The equipment of the wells will be readily understood by a reference to the accompanying engraving.

An oil receiver 1 is located in close proximity to the bottom of the well, presumably in the "shot hole," in the oil-producing stratum; into this receiver oil flows by gravity through the inlet pipe 2, which is provided with a check valve 3. The receiver is attached at its upper end to the bypass 4, which in turn is attached to the tubing 5. An oil-delivery pipe 6 extends from the by-pass down into close proximity to the bottom of the oil receiver. An air-inlet 7, which is provided upon its lower end with a suitable packer, seats firmly in the upper end of the by-pass. The receiver 1 is composed preferably of $41 / 4$-inch casing, and varies in length from 60 to 200 feet, depending upon the capacity or production of the well.
When the well is to be fiowed, air is admitted to the upper portion of the receiver and, acting upon the surface of the oil, forces it downward into and through the delivery pipe 6 , into the tubing 5 , thence to the surface into a receiving tank or any suitable receptacle. Pipe 6 is provided at its lower end with an automatic valve. To the stem of disk 8 of this valve is attached a float 9 , the weight of which is nearly balanced by a spring; when the float is submerged in fluid it is buoyed up and the valve-disk is held up from its seat. When the oil is forced from the receiver, the float lowers and causes the disk to seat, thus preventing the entry of air into pipe 6. A check valve 10 prevents the return of oil from the pipe 6 , or tubing 5 , into the receiver, so that said pipe and tubing always stand full of oil. The number of times that wells are flowed daily, depends upon the amount of oil they produce.
One of the valuable features is the "compounding" of the air. This operation consists in utilizing the air more than once. The air is turned into well No. 1, and when this well ceases to flow, a pressure gage upon the air pipe leading to it will show a pressure of say 400 pounds. Communication is now closed between the air pipe of well No. 1 and the air compres-
sor or air receiver, and the air pipe leading to well No. 2 is placed in communication with the air pipe leading to well No. 1; the air now flows from well No. 1 to well No. 2 until the air pressure in the two wells equalizes, and when the pressure gages show such equalization of pressure, communication between the air-pipes of the two wells is closed, and the remaining air in well No. 1-which is at 200 pounds pressure-is taken back into the air compressor. Receiver or full pressure is then turned into well No. 2 and it is flowed in the same manner as No. 1.

FINGER-DEVELOPING DEVICE

A recent invention provides a device which may be applied to the hands of a piano player to develop the muscles of the fingers individually, so that the fingers may be able to strike the notes with a uniform blow. The device consists of a wrist band which supports a series of rods, provided at their opposite ends with pads adapted to rest on the knuckles.

finger-developing device

Hinged to each one of these rods is a short arm connected at its outer end to a stem projecting from a ring slipped over the finger. A series of weights in the form of washers are adapted to be slipped over the stem, thereby permitting the operator to adjust the weight on each particular finger. Thus if one of his fingers is weaker than the rest, it is fitted with a heavier weight, so that in time the muscles will be developed to such an extent as to make it as strong as the rest of the fingers. The inventor of this finger developer is Mr. Fernando Loyola, 5 de Mayo No. 4, Queretaro, Mexico

VEHICLE WHEEL SLED RUNNER.

The usual method of mounting a wagon on runners is to remove the wheels and support the axles on the runners. This involves considerable labor; and in order to lessen the inconvenience of the operation the type of runner illustrated in the accompanying engraving has been invented. The runner is secured to the wheel instead of the axle of the vehicle, and may readily be attached or removed. The illustration shows a portion of a wheel A, while the sled run ner is indicated at B. The sled runner is provided with a channeled part C, to receive the rim of the wheel, and is formed with a cam-shaped groove, into which the pin B is adapted to be fitted. This pin is secured to one of the spokes of the wheel by means of a strap. The forward end of the runner is pro vided with an upwardly-extending portion E, to re ceive the wheel rim, which is channeled. A cam groove is also formed in this channeled part to receive a pin F, secured by means of a strap to the wheel. The rear end of the runner is also provided with a grooved part H, adapted to fit over the rim of the wheel, and provided with a pair of eyes through which a bolt G may bc passed. The bolt head is formed with a pin, which engages a recess in one side of portion H. In this way the bolt is kept from turning while the nut is applied. When making the runner fast to the wheel, the rim of the wheel is sup ported in the channel part C, and the bolt G is made fast. The wheel is then turned to bring the pins G and F into their respective cam grooves. It will be observed that the wheel is gripped laterally by the channeled portions of the runner, while the bolt and pins provide three widely separated points of attach ment, which securely hold the runner to the wheel. Mr. John Karssen, of Holland, Mich., has recently secured a patent on this sled-runner

vehicle wheel sled runner.

RECENTLY PATENTED INVENTIONS.

Of General Interest

envelop.-P. mac A. Mackaskie, Central, Nev. The invention provides an envelop with non-adhesive, auxiliary detachable flaps, adapted to be removed when the envelop is actually used for mailing purposes but which when in position on the envelop will prevent its sealing flaps from becoming accidentang the climate and no matter what per cent of moisture in the atmosphere, and which will also prevent the accidental sealing of the envelop even should it be dipped or dropped in water

COMPOSITION FOR COPYING-PADS.R. O. E. Davis, Chapel Hill, N. C. In the present patent the invention has reference to compositions for copying pads, the more particular object being to produce a composition tablet having certain desirable properties and used for the purpose of making repeate
SEAL-W. W. Tobey, Iola, Kan. The in vention is an improvement in seals or sealing devices to secure the contents of freight, reparcels, mail-bags, etc., from being tampered with while in transit. Means provide for preventing the introduction of any instrument whereby to release the spring from engagement with the key or bolt.
FIREARM.-F. D. Ely, Plainfield, N. J. In this case the object is to limit the vertical
dispersion of rifle fire. The invention eliminates all shots badly aimed as to elevation, thereby preventing the present immense waste of ammunition in battle, with its consequent disastrous wear on the bore of the rifie; lessens
the difficulties of ammunition supply; insures concentration of fire, renders night firing effective, and vastly improves the morale and efficiency of any army.
Hammock.-J. J. Maxifell, Washington, D. C. An object of the invention is to proide a frame for a hammock which ost convenient position for the user and at the same time will permit the hammock to adjust itself automatically to persons of different weights who occupy the hammock without any danger of breaking or straining of the frame struc ure.
WINDOW.-E. A. Lewis, Mount Vernon, N. Y. The invention relates to improvements construction involving the usual sliding sash the latter being adapted to be also swung from the window opening preferably to the inide of the room, whereby the passage of the air through the window opening is altogether inobstructed.
hORSESHOE.-G. Loeffler, Tampa, Fla. The invention provides a shoe and a remova-
ble calk held thereto by a fastening rod which can be moved longitudinally to secure and re lease the calk, and the shoe is so constructed as to afford a socket receiving the calk, and when adjusted to hold the calk to the shoe. COLLAPSIBLE SHIPPING-CASE.-G. The invention relates more particularly to an improved construction whereby the case when mpty may be folded to occupy the minimum amount of space and rigidly locked in position o that the parts going to make up the case may be held rigid in respect to each other position.
PIPE.-H. Leidel, New York, N. Y. Mr. Leidel provides a cleaner of a strip of meta or other relatively stiff material having its ends helically formed or twisted, with the pitch of the helix decreasing as the ends of trip is strip is witharawn from the stem the nicotin and thus effect its escape, but will pass out with the strip.
block-mold.-H. Bresser, Toledo, Ohio This ornamental block-mold is intended espe ployed ine used in forming indicating the di vision of the lots, the position of walks, etc While the invention is particularly adapted for this purpose, it is capable of general use where blocks are to be molded, having
ions or characters in the faces thereof

Hardware.

Clamp.-0. B. Perkins, Gloucester, Mass The clamp consists of an arm having one end offset at substantially right angles thereto, and arm in ournaled on the opposite end of the adapted to clamp the timber placed thereof the arm is both laterally and longitudinally inclined to give a good bearing surface to the wedge and tend to cause it to move in drawn in place

Heating and Lighting

Boiler-FURNACE.-P. H. McGiehan, Gar nersville, N. Y. In this instance the aim is to provide a boiler furnace, which is simple and complete combustion of the fuel, especially
fuel to the fullest advantage and preventin
smoke from passing into the chimney.

Household Utilities.

GATE FOR BEDS, ETC.-H. Thurm and . Thurm, New Haven, Conn. The gate windows, etc., to prevent children from falling out. The aim is to produce a gate embodying strength and simplicity, which may be readily applied to and detached from the side of any ordinary form of bed and which is adapted to be folded up to the head or foot board and thus occupy a removed position hen it is not in use.
Cheese-Cutter.-W. A. McElney, Meriden, Conn. The aim of the invention is to provide a cheese cutter, for use in stores, ranged to permit of conveniently and accura ar y cutting the cheese into pieces of desire ly cutting the cheese into pieces of desired
sizes, and to normally keep the cheese covered.
NOISE-PREVENTER FOR COVERS OF receptacles.-T. B. Garris, Hart, Mich. The invention in this improvement is to procommode vessel, which will obviate noise when the cover is placed on the receptacle, and also effectually seal the joint therebetween, so as to prevent an escape of odor from the con-路

Note.-Copies of any of these patents win furnished by Munn \& Co. for ten cents each. the invention, and date of this paper.

Legal Notices

PATENTS

INVENTORS are invited to communicate with Munn \& Co., 361 Broadway, New York. or

625 F Street, Washington, D. C., in regard to securing valid patent protection for tbeir in-
ventions. Trade-Marks and ventions,
registered. Trade-Marks and Copyrights ${ }_{\text {Design }}$ registered. Desi.
Patents secured.
We undertake all Patent, Trade-Mark and Copyright Practice, both before the Patent Office and the Courts, and we have special facili-
tes for handling Infringement and other suits in tes for handling Infringeme
Federal and State jurisdictions.
A Free Opinion as to the probable patenta bility of an invention will be readily given to any inventor furnishing us with a model or sketch and a brief description of the device in question. Al commumications are strictly conidential.
Hand-Book on Patents will be sent free on request.
Every patent secured through us receives Ours is the in the Scientific American.
thblished over sixty years ago.
MUNN \& CO., 361 Broadway, New York
Branch Office, 625 F St., Washington, D. C,

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending January 19, 1909,

AND EACH BEARING THAT DATE Acid, naphthylpyrazolone sulfonic, P. Volk-

Amusement device, J. Se Mart
Anchoring device, A. Scheible

Arch supporter, adjustable,
Arehetypes, making, M. B.
Assembling clip, G. Lidsee
Atomizer,

Be

Boat pusher head., o. . . schiling
Bobbin, w. W. Burke. .

$\underset{\substack{\text { Brak } \\ \text { Brat } \\ \text { ran } \\ \text { rat }}}{ }$
$\substack{\text { Bras } \\ \text { Brus } \\ \text { Buck }}$

Bru
Bu
Bu
Bu

$\substack{\text { Buac } \\ \text { Bur } \\ \text { Bur }}$

Classified Advertisements

 Advertising in this column is 75 cents a line. No lessthan four nor more than ten lines aceepted. Count
seven words to the line. All orders must be accom-
panied by a remittance. Further information sent on request. READ THIS COLUMN CAREFLLLY.- You will find inquiries for certain classes of articles numbered in
consecutive order. If you manufacture these goods rite us at once and we will send you the name and is no charge for this service. In every case it is necessary to give the number of the inquiry.
Where manufacturers do not respond promptly the inquiry may be repeated. MUNN \& CO.

BUSINESS OPPORTUNITIES.
 buttons.

MISCELLANEOUS
UNITARIAN LITERATURE, including sermons and
weekly publication, sent free, on application to Miss
Peck, 10 George Street, Providence, " Lnquiry No. 88997
ing trains. Por receiviving and delivering mail from mov complicated. Impossibibe to toet out operation. Autoomati-
in operation. Joseph C. Anderson. Bercail, Montana. lnquiry No. 8902. - For t
Inquiry No. 8903.
lnquiry No. 8904.- Wanted to buy new or second
hand uachinery for making bow type,
rat trap springs and wire parts, single machine or and fuil
1nquiry No. 8907.-For address of New England lnquiry No. 8908.-For a dealer in tapes and cords
for venetian blinds.
1nquiry No. 8909.-For a machine to paint shade nquiry No. 8909.- For a machine to paint shad
or blind rollers.
loonquir $\mathbf{N o}$. 8911. - Wanted to buy steamitter' Inquiry No. 8915.- For parties who sell plans and
specifications forbuilding ice boats. Inquiry No. S918.
Electro-Catalytic Sparking Pang.
novelties.
Inquiry
No. 8920.Inquiry No. 8920 . - For a still for extracting alco-
hol from saw dust.
lnquiry No. 8921 .-For the manufacturers of gilt Inquiry No. 8922.-Wanted the address of Worth laquiry No. 8923.-For a process, chemical or me-
chanical, bv Which black pearls may be bleached into
white ones, their natural gloss not being affected. Inquiry No. S9\&4.- For parti.
paratus for bluing small wire nails.
Inquiry No. 8925. - For an explosive turbine or
rotary gasoine engine 6 or 8 H . ${ }^{\text {P }}$, m must have a vertical Inquiry No. R926.
of steel piates which are forced down beside the tree dige Inquiry No. 8992\%- Wanted to buy an apparatu
 Inquiry No. 89\%9.- For makers of automatic
gates that can be opened without the driver of a vehi-
cle getting out.

Schopper \ldots.

Sprid
Stan
Stan
stan
stan
Stan

$$
\begin{array}{c|c}
33 & \begin{array}{c}
\mathrm{Tu} \\
\mathrm{Tu}
\end{array} \\
\hline
\end{array}
$$

\qquad
 910,292 909,294 909,979

 Shad
apor burner, hydrocarbon, w. J. F......
Vegetable cutting machine, F. Wind...
venicle brake, AGdrey
Vehicle brake shoe and hold

Vehicle tire, J. F. Wilmot.
Vehicle tire,
Vehicle tire filing cwles.
Hicle wrd \ldots wheel, N.............. Meredit
ehicle whel, C.

Engine and Foot Lathes

A Home=Made 100=Mile Wireless Telegraph Set
 the construction of a 100 -mile wireless telegraph outft.
Numerous, adequate diagrams accompany the tett.
Priom 10 centsby mail. Order frum your newsdealer or
 Have You Seen The Perfection Wrench?

JAGER Marine-Cycle Engines
under most trying conditions
Sizes 3 to 60 h.
CHAS. S.end for cotalog
. JAGER CO.CHAS. J. JAGER CO.
281 Franklin, cor. Batterymarch St.
Boston, Mass.WELL , matueson wheelso or on sills. With engines or horse powered.
Strong simple and durable. Any mechanic canWILLIAMS BROS., Ithaca, $\mathbf{N .}$. Y.

international harvester co. of america 15 Harvester Bidgo., Chicago, U. S. A.

MODELS $\underset{\text { Inventiong developed. special Machinery. }}{\text { E }}$

RUBBER

PARKER, STEARNS\& C0... 228.229 South Street, New York

MODELS E\&EXPERIMENTAL WORK MODTH: WORK Modits sitcil NATIONAL STAMPING AND ELiCiCRICTC WORKS

METAL POLISHES.-FORMULAS FOR

Print Your Own

 SENSITIVE LABORATORY BALANCE By N. Monroe Hopkins. This "built-up" laboratory

SEESAWTO

C
C
C
C
E
E
E
E
E
F
F

DESIGNS.

pound of, Pond's Bitters Co...........
ors and lanterns, fatt wick burners for
 Liniment, ointment, and healing oil, ${ }^{72,366}$ com-
bined
0
 Medidicinal
Medicinnal

Paints and lemons, Randolph Fruit ${ }_{72,0,38}$

Powder, baking, Importer Branch..........

Watches and parts thereof, Ancienne manu
facture d'horlogerie, Patek, Philippe et
Cie

A printed copy of the specification and drawing
of any patent in the foregoing list, or any patent

AGRICUITURE.-The New Agriculture. By T. Byard Collins. 12mo.; 374 pages; 106 illustrations..................... A popular outline of the many changes which are revolutionizing the methods of farming, and the habits of farm life. It it one of the most prac- tical treatises on the subjest which has ever been

MAGIC.-Magic, Stage Ilusiong, and SciPhotography. Compiled and edited by
Albert A Hopkins. 8 vo .; 568 pages
420 illustrations. This very interesting volume is acknowledged to
be the standard work on magic. It appeals to the
It professional and amateur allke. The illusions are
all explained in detail, showing exactly how the
tricks are performed. MECHANICAL MOVEMENTS.-Mechanical
Movements, Powers, and Devices. By
 This is a collection of different mechanical mo-
tions and appliances, accompanied by appropriate
text, making it a book of great value to the inventor, the draftsman, and to all readers with
mechanical tastes.

 This book, while complete in itselif, is in Pact a
continuation oo the author,'s "Mechanical Move
ments, Powers, and Devices." The author presents ments, Powers, and Devices." The author presents
to the reader information regarding nearly all con-
ceivable devices for proucing motion or accom-
plishing mechanical ceivable devices for produc
plishing mechanical results.
SPECLAL OFFER: These two volumes sell for ${ }^{\text {s. }}$
each, but when they are ordered at one time from world, on receipt of prepaid to any address in the
PATEITTS. - Practical Pointers for Paten-
 Containing raluable information and advice on
the sane of patents and elucidation of of the bert
methods employed by the most successful inven-
 would achieve success.
PHYSICS.-Experimental Science. Ele-
mentary, Practical, and Experimeñtal
Physics.

 and in detaill the apparatus used, and explains the
experiments in full, so that teachers, students and others interested in physics may readily make
the aparatus without great expense and perform
the experiments without difticulty. PIUMBING.-Modern Plumbing Mustrat-
ed. By R. M. Starbuck. ${ }_{392}$ pages; A comprehensive and up-to-date work illustrating
and describing the drainage and ventilationo of dwell-
ings, apartments, and public buildings. ett. The
very latest a and most approved method in all
all branches of sanitarv installation are given.
PUNCGESS.-Punches, Dies, and Tools for

 other, work entitled ines, Their Construction and
Use., it might wel be termed an ency lopedia
on die making, punch making, die sinking, and sheet meta working.
RECFITRSM. The Scientific American Cycio-
pedia of Receipts, Notes and Queries.

 consult. It has been used with equal success by
chemists, technologists, and those unfamiliar with
the arts, and is a book which is useful in the then REFEREATCE BOOK. Scientific American
 This book deals with matters of interest to
everybody. It contains 50,000 facts, and is much
more complete and more exhaustive than anything more complete and more exhaustive than anything
of the kind which has ever been attempted. It is
indispensable to every fame and business man
It is than an book for every-dapedia, becauserenence-more wou will find what
 Gardner
405 D. Hiscox. 8vo.; 487 pages
illustrations............... $\$ 3.00$ This is a complete and practical. work issued for
stationary engineers and fremen, dealing with the
care and menagement of boilers,
engines, pumps, superheated steam, refrigerating, machnery, dyna-
mos, motors, elevator, are comprens, and all
other branches with which the modern engineer must be familiar.
TELEPEHOME.-Telephone Construction, In
stallation, Wiring, Maintenance. Wiryg, $\begin{aligned} & \text { Operation, } \\ & \text { H. Radiffe and } \\ & \text { H. C. Cushing, Jr. } \\ & 16 \mathrm{mo} \text {.; } 171 \text { pages }\end{aligned}$ illustrations. A pratical book insended for ele.e.ticians, \$1.00 interested in the installation of telephone ex
changes in accordance with standard practice. In
tricate mat tricate mathematics are avoided, and all apparatus
circuits, and systems are throroughly described
Selected wring tables, which are very helpful; ar
also included. TOOLS.-American Tool Making and Inter-
chang eable Manufaturing. By. Joseph
V A complete practical treatise containing a valu-
able collection of drawing and descriptions of de-
vices, the results of the uuthor's own experience TOOLS.-Modern Machine Shop Tools. By 673 iliustrations..................... $\$ 4.0$
A new and fully illustated work decribing in
and
 WHRDNG. Electric Wiring, Diagrams and Switchboards.
12 mo .; 272 pages; 105 illustrations.
$\$ 1.50$ Ths work is a thoroughly practical treatise on
electric wiring in all its branceses, beginning with
the simple circuit and working up to the practical the simple circuit and working upe to the practical
every day problems, all being presented in a simple
and intelligent manner it is every
 volume on wiring for
tractor, or electrictan.

