THE AERONAUTIC 8OCIETY'S FIRST CURTISS

 AEROPLANE.The photographs reproduced on this page show the new biplane which Glenn H. Curtiss has just completed for the Aeronautic Society. This machine, as can be seen from the pictures of it on the ground and in the air, is rather light and small compared with the Wright aeroplane or with most of the numerous biplanes lately constructed abroad. In constructing it, Mr. Curtiss has taken advantage of the practical experience in the art which he had in building the Aerial Experiment Association's four machines last year, while he has also had at his disposal the knowledge of Mr. A. M. Herring, who is now associated with him. The result is a greatly simplified and improved aeroplane and motor.

As with the "June Bug" and "Silver Dart," the planes are attached to a central body portion, mounted upon three 20 -inch pneumatic-tired wheels, and carrying the motor and propeller. The two rear \dot{w} heels are set in forks suitably braced and tied together, while the front wheel is mounted in a strong fork like that used on a bicycle. A single long
struck diagonally by a wind gust. If such a gust were allowed to turn it, the gyroscopic action of the single propeller might direct it up or down. Movable balancing planes 2×6 feet in size are placed at the ends of the planes half way between them. These are operated by the swaying of the body of the aviator by means of a frame fitting around his shoulders. In fitting the rudders and tail, Mr. Curtiss has made liberal use of bamboo. This material combines strength with lightness, and it is surprising that it has not been used more in aeroplane construction. With the exception of Santos Dumont's tiny monoplane, we know of no other successful aeroplane in which bamboo rods are used to form part of the frame. The frames of the planes are of Oregon spruce, and are put together in sections. The ribs are of light laminated spruce spaced about a foot apart. They project beyond the rear members of the frames of the planes and run through pockets on top of the surfaces. A wire runs through the rear edge of each surface and is stretched over the end of each rib, thus serving to keep tight the cloth, which is also wrapped around the front edge of each plane. The

LOS ANGELES 200-MILE CONDUIT WATER SUPPLY.

 by day allen willey.The longest artificial water conduit ever planned in America is that which is to increase the water supply of the city of Los Angeles in Southern California, and which is now being completed. While the conduit is notable for its engineering features, it will not only supply water for domestic purposes and for irrigation but the head of water is so great that it will produce electrical horse-power for pumping, manufacturing, transportation, and other purposes, so that the project achieves three different objects.

The extensive arid district in Southern California has limited Los Angeles in the past to obtaining water from only one source. The rapid growth of the city in population and its industrial development necessitated another supply, but the nearest considered available was from the Owens River. This stream, which rises in the eastern Sierras of the State, is over 200 miles from Los Angeles, and separated by a country which includes not only mountains but a large area of absolute desert, presenting many difficulties in the way of constructing such a canal. When the necessary surveys were made,

FIEWS of the curtiss aeroplane making its initial flights at hammondsport, n. y.

Photographs copyrighted 1909 by Benner.

THREE-QUARTER FRONT VIEW OF THE NEW CURTIS8 BIPLANE BUILT FOR THE AERONAUTIC 8OCIETY.

A double horizontal rudder in front is balanced by a single horizontal tail. The 4-cylinder 25 horse-power motor, with radiator in front and propeller at the rear, is shown behind Mr. Curtiss, who is in the aviator's seat. Note the split vertical rudder behind and the fixed triangular vertical surface in front; also the balancing rudders between the planes at each end.
wood rod extends back from the front wheel to the axle connecting the rear wheels, which are spaced far apart.
The rubber-coated silk used for the surfaces is laced to the frame in panels, there being four 5 -foot panels (two on each side of the 6 -foot center one) to each plane. There are aiso 18 -inch extensions on the ends of both planes, so that the total spread of the planes is 29 feet, while their width from front to back and their spacing is $41 / 2$ feet. On account of notches cut out of the planes to accommodate the propeller, the total supporting surface furnished by them is only about 250 square feet. A double-surface 2×6-foot horizontal rudder having 24 square feet of surface is placed 10 feet in front of the planes, while a single adjustable horizontal surface of the same size located 10 feet behind them, serves as a steadying tail. The vertical rudder is placed at the middle of this surface; it is $21 / 2 \times 21 / 2$ feet in size. There is also a large vertical triangular-shaped steadying surface at the center of the horizontal rudder. This surface and the vertical rudder serve to keep the machine from twisting about its center vertical axis when
surfaces have a slight parabolic curve from front to back, the curvature used being about 1 in 9 . The angle of the planes with the horizontal is also slight, being only about 6 degrees as the machine stands on the ground. When in flight, this angle diminishes several degrees.
The motor used is a special 4-cylinder, $33 / 4 \times 4$, water-cooled Curtiss aeronautic engine. It develops 26 horse-power at 1,200 R. P. M., which is 1 horsepower per $15 / / 8$ square inches of piston area, or rather more than is usually obtained. High compression is used, though this is by no means abnormal. The cylinders of the engine are of cast iron with a wall thickness of about $5 / 32$ inch. They are surrounded by cast copper water jackets welded to them. The heads of the cylinders are hemispherical, with inlet and exhaust valves set at an angle upon each side of the water outlet, which is in the center. Both valves are operated by a single rocker arm pivoted on top of the water pipe. The inlet pipe extends across all four cylinders with the carbureter placed at one end of it. A gear-driven Bosh high-tension magneto (Concluded on page 468.)
it was found that it would be necessary to build a waterway no less than 215 miles in length. Incidentally, it may be said that the total cost of the project represents about $\$ 20,000,000$, not counting the purchase of property for reservoir sites and other purposes, which, if included, bring the total cost to nearly $\$ 22,000,000$. This sum has been provided by the sale of municipal bonds, and such has been the public interest manifested, that all of the money has been raised in the city of Los Angeles, its residents taking its securities.
The canal begins at a dam which has been con structed across the Owens River about 40 miles from a lake into which it has hitherto discharged its water. The dam is of the diversion type, and from it extends the main canal for a distance of 60 miles to the Haiwee, the first reservoir in the series planned. On this section is some very difficult- work. In a distance of 22 miles the waterway includes no less than 8 miles of tunnel. Three and one-half miles of conduit are composed of heavy steel pipe faced on the outside with concrete. Ten miles of the canal in the same section have walls molded entirely in concrete. The Jawbone (Concluded on page 468.)

IMPROVEMENTS IN THE DE FOREST SYSTEM OF WIRELESS TELEPHONY.

Concluded from page 45%. Dr. De Forest has made an ingenious ap plication of the principle of directive propagation, a refinement of which has also been developed with great success in Europe by Bellini and Tosi.* It was found that if slanting wires were run from a mast to a boom, the intensity of the waves emitted would be much greater in the direction of the plane of the antenna and practically zero at right angles to it. Accordingly, this af forded them an excellent method of directing the waves; and if the whole ar rangement were revolved, any desired direction could be given to the wave fronts emitted from the antenna. Dr De Forest conceived the idea of using this device for sending out danger sig nals from a lighthouse or other point revolving the projecting apparatus so that any boat which received the sig nals could immediately ascertain its di rection from a danger spot equipped with the "aerophore," as the device has been termed, since the apparatus was designed to transmit intelligible signals which dif fered automatically with the constantly changing direction of the waves as pro jected. A simple example will illustrate this. When the apparatus is arranged to transmit waves in a northerly direction a certain telegraphic or telephonic signa would be sent out in that direction, and only in that direction. If that message were received on some ship, it would fol low at once that the lighthouse was bear ing due south of the vessel. For othe points of the compass the signals would be different, while a prearranged code would be employed where the aerophore was installed upon a vessel. Thus with the apparatus in operation on both of two vessels, it would be possible as soon as they came within range of each other to determine their bearing, particularly as the signal is first received by an auto matic and audible device, such as buzzer, which would sound in the pilot house and make evident the necessity of picking up the telephone receiver and learning the exact direction of the signals. Dr. De Forest has recently been working on a type of aerophore where an arc light is revolved behind a parabolic mirror, with the movement interrupted successively at the points of the com pass where the signal automatically is sent out by wireless, indicating the direction in which the wave is projected In addition to these signals a micro phonic transmitter is connected with a set of bells tuned to the quarters of the octave which are constantly striking, one after the other, several times a minute. These bells have a varying range of penetration, so that when the observer on a boat can hear four bells he knows he is within a certain range of distance of the source of sound. When only three are heard, the distance, of course, must be less, and so on, so that a fair estimate of the distance from the danger point is obtainable.
An improvement that makes possible the satisfactory working of the system is the adjusting of the sending mechanism of all instruments to a "common tune," which differs widely from that of the receiving part of the apparatus, so that when using a single antenna, it is possible to receive the sound whether the transmission apparatus is working or not. When a signal is received, a small lamp is lighted by induction or a buzzer is caused to sound, so that the operator immediately puts on his head telephone in order to find the whereabouts and name of the transmitting station. Aerophore signals will be erected at all the points of danger on the Great Lakes, and will be used on all the signal towers of the Radio-Telephone Company. The device has been tried on the steamship "Wisconsin," and has worked successfully over a limited range.
 "Star" 돌․․ Lathes me, accurate work Send for Catsogue .
SENECA FALLS MFG. CO. SENE Whater Street,
Soneca Falls, N. Y., U. S.
Engine and Foot Lathes MACHINE SHOP OUTFITS. TOOLS AND
SUPPLESS. BEST MATERIALS. BEST
WORKMANSHP. CATALOGUE FREE SEBASTIAN LATHE CO.. 120 Culvert St., Cincinnati. 0.

STYLES AND SIZES FOR ALL USEG
 INTERNATIONAL HARVESTER CO. OF AMERICA

NOW READY

The Design and Construction of Induction Coils

By A. FREDERICK COLLINS

8vo. 295 Pages and 160 Illustrations, made from original drawings made especially for this book

PRICE \$3.00

It is the most complete and authoritative work as yet published on this subject.

Following is a list of the chapters:

THE AERONAUTIC SOCIETY'S FIRST CORTISS AEROPLANE.
(Concluded from page 460.)
weighing $121 / 2$ pounds, as well as a geardriven oil pump, is placed at the same end as the carbureter, while the gear water pump is at the other, or rear, end. One of the gears of this pump is on the camshaft. The motor is very light and compact, its weight complete with pumps, magneto, and carbureter being $971 / 2$ pounds. As it is claimed to be capable of developing as much as 30 horse-power, its weight without water and radiator is about $31 / 4$ pounds per horse-power. The radiator weighs 40 pounds, and less than 10 pounds of water is carried, so that the total weight of the power plant is under 150 pounds. It was tested by a 10 -hour run driving the propeller
A $61 / 2$-foot diameter, 5 -foot pitch wood propeller is mounted upon the engine crankshaft. This propeller develops a thrust of 225 pounds when the aeroplane is held stationary, although 150 pounds is all that is needed to fly it. The blades are but five inches wide. The motor is mounted upon the rear part of the main planes, half way between them, the propeller being at the rear. The aviator sits on a seat at the front edge of the lower plane and about a foot above it, this seat and a foot rest being located upon a pair of inclined braces extending upward from the front wheel to the two special uprights at the rear, which support the motor bed in conjunction with the inclined braces. Two other pairs of braces extend upward respectively from this wheel to the front edge of the upper plane and to the parallel downwardly inclined poles extending forward from the front edge of this plane to support the horizontal rudder. The tail is carried by two pairs of parallel rods extending downward and upward from the rear edges of the upper and lower planes and meeting some 12 feet behind them. A square automobile-type radiator is placed in front of the motor; the cylin drical gasoline tank is located above it just under the upper plane, and the oil reservoir below.
The control of the new aeroplane is practically as simple as that of an automobile. All the aviator has to do is to pull or push on the steering wheel, which is placed vertically in front of him, in order to steer up or down, while turning the wheel and inclining the body slightly steers the machine to the right or left. The vertical rudder is in reality unneces sary for steering, as this can be accomplished simply by inclining the body and thus setting the balancing planes. These are connected by wires with a frame of
steel tubing shaped like a bicycle handle bar and fitting around the shoulders of the aviator, so that when he sways slightly to one side or the other one wing tip is inclined upward and the other downward slightly. The aeroplane, in a run of 75 feet, will attain sufficient speed-about 25 miles an hour-to rise. It flies at more than 40 miles an hour. A plunger bralke is fitted to the front wheel tire, to aid in quickly stopping it when it alights.
Several successful trial flights were made at Hammondsport, N. Y., by Mr. Curtiss on June 4th, 5th, and 6th. The longest of these was about 3 miles in the shape of a figure 8. He has shipped the machine to the grounds of the Aeronall tic Society at Morris Park race track, New York, and after making some fur ther practice flights, he will attempt to set up a record for the Scientific Aaifrican trophy at the society's first 1909 flight exhibition, which will be held either the 19 th or 26 th instant. A new monoplane and several new gliders will also be tried upon this occasion. There will be a wind wagon race, and contests for models, kites, and gliders. The so ciety's new dirigible balloon will also be flown.

LOS ANGELES 200-MILE CONDOIT WATER SUPPLY.
(Concluded from page 1,60 .) division, as it is called, is uninhabited, and it was necessary to transport much
HIS work gives in minute detais
full practical directions for making eisht different sizes of coils, vary-
eving ing from a small one siving a 16 -inch sparks. The dimensions of each and
every part down to the smallest screw are siven and the descriptions are written
in languase easily comprehended in lansuase easily comprehended.
Much of the matter in this book Much of the matter in this book has
never before been published, as, for
instance, the vacuum dryins and iminstance, the vacuum dryins and im-
presnating processes, the making of
adjustable mica condensers, the con$\begin{aligned} & \text { adjustable mica condensers, the con- } \\ & \text { struction of interlockins. }\end{aligned}$ reversing struction of interlocking, reversin
switches, the set of complete wirin
diasrams, the cost and purchase of ma
terials, etc. It also contains a large num terials. etc. It also contains a larse num-
ber of valuable tables. many of which
have never before been published t .
of the machinery and all of the food supplies as well as the building material from the desert and mountains in wag. ons, necessitating the construction of an extensive mileage of roadway.
The tunnels which have been required on the route are notable for their extent. The Coast Range of mountains is pierced by a tunnel, nearly 11 feet in diameter, which is nearly 27,000 feet in length-one of the longest in America. In this tunnel and its approaches, covering a distance of 11 miles, there is a fall from 2,922 feet altitude to 1,520 feet. The head of water thus obtained will be utilized in an electric power plant of 93.000 horsepower at what is known as Elizabeth Lake. This will be by far the largest power plant in connection with the project. Another tunnel is 7,800 feet in length. The conduit does not extend into the city of Los Angeles; but its water is distributed to a series of reservoirs in San Fernando Valley. These reservoirs have a capacity of about 35,000 acre feet,
a supply sufficient to serve the needs of the city for a period of several months even in the dry season.
The development of the water power and its use are notable features of the project which is being carried out. As already stated, several stations are being constructed upon the route at suitable sites. Machinery in some of them has been installed for operating the machinery of the cement mill which has been erected for supplying this material to the project; for the operation of several tramroads for carrying material; and also for dredging a lake which is located on the line, the dredge being constructed especially for this purpose, and operated entirely by electric power. The current is also to be utilized in serving a series of large electric pumps, as the supply of water is ample not only for the city, but for irrigation on an extensive scale. It is calculated that at least 20,000 acres of what is at present unproductive land in
this section of California will be reclaimed for the planting of fruit, vegetables, and grain. It might be added that the transmission system from the generating stations to the points of distribution will be about 120 miles in length. In fact,
the line is one of the longest in the world, and the current of 75,000 volts is the highest ever attempted over such a length of main which leads the water to the main power house-a gradually tapering pipe, so as to accelerate the torce of the wate at the turbines-is the first of the kind ever put in use. Furthermore, the con-
duit which carries the water to this pres duit which carries the water to this pres
sure main is the longest tunnel system in use for this purpose.
Construction was commenced on the eastern section, as it was realized that the tunneling and closed conduits would require so much more time than the open
canal. The section in the Jawbone discanal. The section in the Jawbone dis-
trict has been by far the most difficult to complete. for the rock work here comprised nearly nine miles and included no less than twenty tunnels. These tunnels are connected 1 sy short redwood flumes but to all intents and purposes they constitute one continuous underground con duit.
A reference to the headworks and the scheme system makes clear the entire yon at the intake, backs the water up for over a mile, forming a large reser voir, from which the water flows into the tunnels in sufficient quantity to fill them to their required depth of 6 feet 6 inches. From this point the river, in the 12 miles to the power house, drops by a successior of falls and steep grades almost a thou sand feet; but the tunnel grade has a fall of only 8 feet to the mile, the total fall to the forebay being only 68 feet. Thus, instead of the waters following their nat ural course far down in the gorge to the floor level of the power house, they are run through the gravity conduit high above the bed of the river, emerging from
(Continued on page 1/71).

NULIFE BOOK

Breathe Yourself Back to Health

TSAVES ${ }^{\text {THE }}$ DOL LAR

 Collars 25c. Cuffs 50c.

 \$554.00 per day he Reord CAMERA-SCOPE

Every desirable feature is Crescent Wood Working Machine
Band saws
swing saws

 It's fre
The crescent machine co. THE CRESCENT MACHINE CO.
230 Main St, Iefionia, Ohio, U. S.
Two Good Books for Steel Workers
Hardening, Tempering, Annealing and Forging of Steel

By JOSEPH V. WOODWORTH
Size $61 / 4 \times 91 / 2$ inches: 288 pages. 201 illustra-
tions. Price $\$ 2.50$ post paid
HIS is a practical work, treating clearly and
concisely modern processes for the heating.
annealing forging annealing, forging, welling, hardening and
tempering of steel, making it a book of great value to toolmakers and metal-working mechanics
in general. Special directions are quen for the
successful hardening and tempering of steel tools of accessiul hardening and tempering of steel toots of
all descriptions, including milling cutters. taps.
thread dies reames, hollow mils, punches and
dies and various metal horking thread dies, reamers, hollow mills, punches and
dies and various metal-working tools, shear blades,
saws, fine cutlery and orher implements of steel,
both lare and small. both large and small.
ing brands of steel m
and their
and their treatmentrt for working under different conditions explained; also special methods for theng and tempering of special brands.
hardening
chaptet on case hardening is also

The American Steel Worker

By E. r. MARKHAM

TMardening and wirnerinaliting hardening and tempering all grades of steel,
by an acknowledged authority. The author
has had twenty-five years' practical experience in steel-working, during which time he has
collected much of the material for this book. Careul instructions are given for every detail of every
tool. Among the subjects treated are, the selection of steel to meet various requirements: how to tell
steel when you see it ; reasons for different steels; reamers, drills, milling cutters; hardening and tempering dies; pack-hardening; case-hardening: an-
nealing: heating apparatus; mixtures and baths nealing: heating apparatus; mixtures and baths,
the best kind, and why and in fact everything that
a steel-worker would want to know is contained in

OUR SPECIAL OFFER : The price of these ach, but when the two volumes are ordered from is aione time, we send them prepaid to any addr
in world on receipt of $\$ 4.00$.
MUNN \& COMPANY, Publishers

THE HOPKINS \& ALLEN TRIPLEACTION ${ }^{2}$ sifili Revolver

THE HOPKINS \& ALLEN ARMS $\mathbf{C O}$.

Automobile Trouble

Dunn's Allright Spark Plug GUARANTEED FOREVER
DUNN MACHINERY CO., Atlanta, Ga.

How to Construct

 An Independent Interrupter the help of good drawings howah independent multiple
interrupter may be constructed for a large induction
coil. This article should be resd in connection with Ment, 1605 , "How to Constract a $100-\mathrm{Mile}$
Wireless Telegraph Ontfit." Wireless Telegraph Ontit.
Each Supplement cuets 10 .

MUNN \& CO., 361 Broadway, New York
FISMERMEN The FREEPORT HOOK will CATCH FISH It is hand made, from the best materlale procurable-
positively wedleen and suage.prot-a pertecto ratural
lure

 WELL $\underset{\text { machill }}{\substack{\text { Raling }}}$

WILLIAMS BROS.. Ithaca, N. Y.
the tunnels in the forebay, 87 feet above the power house, to which they pass
through the immense pressure main to the impulse wheels of the generators. Carrying their full load, the tunnels have a capacity of 410 second feet, or 20,500 miner's inches. The conduits leading from the forebay to the power house are
steel tubes, which taper from a maximum interior diameter of 90 inches to a minimum interior diameter of 28 inches. The thickness of the shell of the piping is 3/16 of an inch where it has a solid rock backing; but where it leaves this formation, and has only the steel to depend upon for withstanding the pressure of the water, the interior diameter is deof the pipe is increased to thickness Over one million pounds of steel were used in its construction.
The pressure main was built in 10 -foot sections, which were hoisted over an aerial tramway to the top of the hill, and from there conveyed to an inclined shaft, where they were lowered into place. As each length was riveted, the work taking from ten to twelve hours, the iron workers left and their places were taken by the concrete molders, who formed the concrete casing around the pipe.
The head of water of 877 feet gives a pressure at the impulse wheel of 380 pounds to the square inch. The power is ated by two overhanging impulse wheels carrying eighteen brass buckets. Each impulse wheel is set in a separate masonry compartment which opens directly into the tailrace, where the water is measured before it is returned to its natural channel.

An idea of the immense quantity of material needed for the project is given, when it is stated that the cement alone required amcunted to $1,300,000$ barrels. Fortunately, large deposits of sand and limestone were found in the Owens River district, and the builders were enabled to manufacture concrete along the route, the largest cement mill having a capacity of 1,000 barrels daily. The volume of water carried by this route will average a flow of over 400 cubic feet a second. The source of the supply, however, the Owens River, is one of the principal water courses in eastern California, and measurements by instrument, which were taken for a considerable period before the work on the conduit commenced, proved that the volume of water it carries is sufficient for the purpose even in the dry season of each year.
The chief engineers of this notable project, and the man to whom the bold scheme for directing the Owens River across the State is due, is Mr. William Mulholland of Los Angeles, who spent several years in looking over the propo-
sition and preparing plans. He is assisted in the construction by Mr. J. B. Lippincott, formerly in the United States Irrigation Service.

It is interesting to remark that the motion of the solar system plays an important part in the shifting panorama of the heavens. Not only do the stars move onward, but the sun, moving also, carries us continually northward, so that our point of view is ceaselessly changing, and looking out from the flying earth, we
are like people on a ship which is passing by a squadron of other ships. Their evolutions cause them to appear in constantly changing relations to one another, and at the same time our own motion, shifting the line of sight, produces other changes of view, which increase the com plexity of the apparent movements. In short, we are reminded of the remarkable resemblance of the universe to the modern conception of an atom, in which the restless corpuscles are speeding in all directions, so that an infinitesimal being, inhabiting one of those corpuscles, would see the other corpuscles shaping themselves into constellations that would be as unenduring as are the figures that the poetic imagination traces among the stars.

 G. Freeman...

The New Express Electric Blue Printer OPERATING ON AN ENTIRELY NEW PRINCIPLE
 Makes Blue Prints at 2 to 16 Running Feet Per Minute.
 Handles two separate sets of Tracings, making two sets of Blue Prints or one set Blue Prints and one set Sepia Prints or Negatives at the same time. Four timest the production of any other machine with greatest economy of Current. Lowest price continuous machine
 Automatic Blue Print Washing and Drying Machines and Blue Print Coating and Measuring Machinery.
 WILLIAMS, BROWN \& EARLE, Dept. 6, 918 Chestnut St., Philadelphia, Pa.

SEALED PROPOSALS.	
dont let your patent lie inde. We'llmake -dies and toots and manufacture your article ready for maret. Write now dont delay. Bouthern stampink	
CHINES Corliss Engines, Brewers'	

HOEFT \& COMPANY Die Makerb, Model Makers, Maehinery Builders. Paneh Prevees Light and Iieary Stampinys. $1=0$	THE BEST EQUIPPED SHOP Special Machinery, Jigs, Tools, Repairs, ExperimentalDevices THI ROWLANLI TELEGRAPHIC COMPANY,Balfimore, Md.
15 MODSLS	
RK TOOLS	

NOELS \& EXPERIMENTAL WORK
ANYTHING ELECTRICAL
 J. J. DUCK, Arcade Building, Toledo, Uhio

LEARN WATCHMAKING
 BT. LOCIB WATCIMAEING SCHOOL. st. Loule, Yo.
\qquad
Print Your Own

The Ball Transmission
 NEN YORK GEAR WORKS.

A. W.FABER on a pencil is a synonym for unequaled quality. The finest pencils yet produced by this house, with 148 years' experience in Pencil Making, are the

暴 "CASTELL"
 Fer
 Drawing, Copying and Ink Pencils

Sold by all stationers and dealers in artists' and drawing materials.
Samples worth double the money will be sent you on receipt of 10 cts.
A. W. FABER 49 Dickerson Street, Newark, New Jersey

View of Sierra Nevada range, showing part of the watershed of the Owens River.

A mile of completed aqueduct through the level desert.

One of the great excavators at work. This machine excavates to the exact shape of the aqueduct and does 150 feet or better per day.

Dredges at work on the canal near the intake in Owens Valley.

Kilns and other machinery of the aqueduct. Cement plant at Tehatchapi, Cal.

Building roads in the Jawbone section.

The completed aqueduct with its concrete cover. A typical piece of work along the line of the conduit.

