neath the car, thereby enabling him to us
both hands to drive the bit, or else use one drive the bit and one to produce lever pres sure. It has removable handles and removable pressure-sustaining devices so that one
side may be free from any lateral projections. CRANE.-J. A. Suess, Shreveport, La. This crane will operate to raise a load to a con siderable height, and includes an auxiliary lifting device which can be released as and
ently of the main lifting device so as to enently of the main lifting device so andance. In this way the convenience of the crane in
raising and depositing objects in a shop or raising and depositing objects in a shop or
factory is greatly enhanced. It is especially useful in ice plants for raising the cans and
for moving them to the dump, and then to the vaults.
LOADER.-V. Landholm, Westpoint, Neb. The purpose of this inventor is to provide means which may be adjusted to the
wheel of a loader of the normal type, by which a drum may be shifted to be rotated by the fiy wheel to lift the load or which
may be moved against a stationary member which serves as a brake either to hold the load suspended or to permit it to descend lowly
EXPANSION CUTTER-HEAD FOR BOR-ING-BARS.-C. M. Buck, Huntington, W. Va. The cutter head is similar devices for performing boring opand similar devices for performing boring opin boring the hubs of car wheels, though it is in boring the hubs of car for other purposes. The object of the invention is to produce a head having simple means for
justing the cutters therein.
POLISHLNG and CLEANING maCHine. M. Forsberg, New York, N. Y. The machine is for use in hotels, restaurants, shops and other establishments, designed for grinding or cleaning and polishing. various articles and the like and arranged to permit minute adthe like and arranged to permit minute ad-
justment of the polishing and cleaning wheels according to the nature and form of the ar according to the natur
ticles under treatment.

Musical Devices.

Leaf-TURNER.-J. F. Young, Morristown, N. J. An object of the inventor is to provide inexpensive to manufacture, and in which the leaf turning arm is provided with a magnet adapted to engage metal clips carried by the leaves, whereby the danger of tearing
ing the leaves in turning is obviated.
PICKER FOR STRINGED MUSICAL IN-STRUMENTS.-E. J. Scarlett, Chickasha, Okla. Mr. Scarlett's invention relates to at whereby the playing of such instruments is facilitated, without detracting in any manner from the quality of the musical sounds pro enable an unskilled person to produce results expected by ordinary methods after consider able practice.
STRINGED MUSICAL INSTRUMENT.-S. W. Buercklin, Prague, Okla. The device com-
prises a hollow resonant body, a sound body at the smaller end of the resonant body, a bridge supported by the sound box and provided with an extending portion engaging the side of the
box, means for adjusting the extended portion with respect to the box, a tail piece and a neck supported by the body on opposite side of the bridge and strings connecting the nec
and tail piece and resting upon the bridge.

Prime Movers and Their Accessories. Valve-Gear.-H. Lentz, 123 Kurfiirstendamm, Halensee, Germany, and C. Bellens, 43
Rue de Chézy, Newilly, Seine, France. The valve is operated by a cam shaft, and it is
characterized particularly by the fact that the haft is located in a fixed casing, formed with sockets having an external diameter equal to
or slightly greater than the largest diamete or slightly greater than the largest diameter ducing the shaft into a tubular sleeve it rendered oil, steam, and dust tight, withou
assistance of stufing boxes or like devices.
VALVE-GEAR-E. L. Bowen, McComb Miss. The invention pertains to locomotive
engines and other double reversing engines and its object is to provide a gear arranged
to utilize the motion of the cross head of one engine to positively actuate the valve of the other, to provide a constant lead independ ent of the main traveling movements of the
valves, to reduce the effects of angularity to valves, to reduce the effects of angularity to
a minimum and to allow of conveniently applying the gear to double reversing engines
of different styles.

Pertaining to Vehicles.

Lap-robe.-H. T. Von Frankenberg, New York, N. Y. The invention relates to lap robes or lap coverings, and more particularly to a about the body upper portion be tightly folde about the booy, the lower portion will permit
certain amount of freedom of movement of the feet to facilitate the operation of the brake feet to facilitate the operation of th
clutch, or the like, of a motor vehicle.
Notr.-Copies of any of these patents will be furnished by Munn \& Co, for ten cents each. Please state the name of the p
and date of this paper.

Kindly write querjes on separate sheets when writing about other matters, such as patents, subscriptions, books, etc. This will facilitate answering your ques-
tions. Be sure and give full name and address on every
Full hints to correspondents were printed at the head of this column in the issue of March 13th or will be t mall on request
(12086) J. C. says: If two equal cur ents fiow in the opposite direction in the same
ircuit will there be any work done? By this ircuit will there be any work done? By this
mean, for instance, if I have two cells conmean, for instance, if I have two cells con
nected in a circuit with an electric bell, and the wires connecting these cells are from zinc
to zinc and from one carbo through the bell to zinc and from one carbon through the bell to the other carbon, will the bell ring? A.
If two equal currents flow in opposite direc tions in the same circuit, no external work will be done. The resultant current will be zero. If two cells are connected oppositely to
the same circuit there will usually be a slight current in the external circuit because the two cells do not exactly balance each other, that is, force than the other and also a different resistance from the other. Very rarely two cells are exactly alike. The difference may not be
enough to ring a bell, but it would be indi-
(12087) B. C. H. asks: Please advise me in your opinion two cogwheels can be made each, the smaller to drive the larger. Say the smaller wheel is $12 \frac{1}{2}$ inches in diameter and
the larger one 13 inches in diameter, with 36 cogs in each. Can the $121 / 2$-inch wheel b made to drive the 13 -inch wheel? Could it be done with pinion between them, as in-
dicated by the sketch herewith inclosed? It dicated by the sketch herewith inclosed? It
is intended to run very light machinery. A. is intended to run very light machinery. A.
We should say that it would be quite im of different diameters with the same number teeth on each, for the reason that the teeth must necessarily be of different sizes, so that the tooth on one wheel could not fit the
space between the teeth on the other. Even space between the teeth on the other. Even
with a small pinion between them, as shown in your sketch, the same applies. If the teeth of the pinion meshed satisfactorily with of the other. It is difficult to imagine any mechanical effect which could be obtained by such an arrangement, supposing it were pos-
sible, which could not be better obtained otherwise.
(12088) C. C. S. says: Will you kindly help me out of the following difficulty? wish to electrically operate a. set of twenty
small bells, using an electro-magnet to each bell, and the number of bells to be sounded at one time varying with the style of music electric current from one source of supply, or must I use a separate battery for each bell?
Even if the current would equalize through, Even if the current would equalize through,
say, four coils, say, four coils, the E. M. F. necessary for their proper operation would to my mind then be
too strong in case of one coil. In case one battery would be sufficient, is it possible t introduce a resistance coil in some way int A. The best arrangement for your bells is to use one current for all with an E. M. F. sufwound alike or nearly so, or at least each magwound alize or nearly so, or at least each mag-
net should be wound to take current enough to ring its bell. Connect all the bells in multiple as lights are connected to a multiple or parallel circuit. The keys or switches to bring a bell into action should be in the circuit from the line to the bell. There will be as many circuits
as there are bells. One battery will be sufficient, but it must be strong enough to ring as many bells as will be called for at one time. a keyboard like that of an organ would be very simple and enable one to play any music which does
bells.
(12089) I. W. H. says: 1. How far will the electrolytic wireless receiver described in ceive messages? A. Any wireless receiver will receive signals from any distance, if they are strong enough to be heard upon it. The elec-
trolytic receiver is very sensitive. 2. How does n operator at the sending station call the operator at the receiving station, with a re-
ceiving instrument like this, or any other where ceiving instrument like this, or any other where
a telephone receiver takes the place of a telegraph sounder? A. Every wireless station in egular business has its own call letter which
is used when it is wanted. Any one who has the list of stations can tell what station is of page I notice a "switch" mounted on the base. What is this for? (b) Are the binding posts on the base for connecting the telephone
receiver? A. A switch is used with the receiver so that the aerial can be cut out and connected to the transmitter for purposes of send-
ing messages. 4. Are there any parts of this receiver that need renewing after being used
awhile? A. The wire used in the electrolytic detector is slowly worn away and will need
renewing as well as the zinc and the acid.
5. How is the zinc amalgamated? A. Zinc is 5. How is the zinc amalgamated? A. Zuinc is
amalgamated by dipping it into dilute sulphuric acid and then into mercury. 6. Is Wollaston
wire cheaper than platinum wire? A. Wollaswire cheaper than platinum wire? A. Wollas-
on wire is extremely fine platinum wire covred with silver. It costs more than plain platinum wire, but is far better for an elec-
rolytic detector. Coarse wire cannot be used or this purpose. 7. What size wire is used in making the connections for this receiver? Any convenient size of copper wire can be used for the connections for this detector. No. 14
will do. 8. How is a "pony" telephone re ceiver made? A. A pony receiver is one in
which the magnet is bent so that both poles which the magnet is bent so that both poles
are used and have coil of wire upon them. It are used and have coil of wire upon them,
is more compact and can be attached t spring and worn on the head. Its resistance
may be very high, and it may be very sensiive. This quality is produced by the large wound into its coils.
(12090) R. A. B. says: Please to ex plain how the velocity of light (186,300 miles per second) was determined, and how this ap$499 \times 186,300$ miles with a possible the sun 25 seconds). How is the distance of the moon measured? How far? Is it always the same and if not, is it known for each day of the velocity of light is found by measuring the time required for light to pass over a measured distance. The first determination was made by Romer, who found that light required 499 sec nds to come from the sun to the earth. This moons of Jupiter. This work is described in Astronom which is sent for $\$ 1.75$ postpaid The best determinations of the speed of ligh were made in America by Prof. Michelson, and by Prof. Newcomb, independently. They found results differing by only five miles a second.
A distance of some six or more miles was used, A distance of some six or more miles was used,
and the light passed over this distance twice, out and back. There is little doubt that the velocity of light is known to a much greater
certainty than 25 miles a second. The elocity of light multiplied the earth. The velocity of light may be taken as 186,330 miles per second, which, multiplied by 499, gives the
mean or average distance of the earth from the sun. For the experimental determination of the velocity of light see our Supplement No 557 , price ten cents. The average distance of miles. Its distance varies from 221,600 miles to 252,970 miles. The distance of the moon from vations taken at two observatories as far apar north and south as possible. The Cape o Gocd Hope and Greenwich are observatories thus situated. The method employed may be calculation involves the knowledge of the radiu of the earth. Since the shape of the moon's
orbit is now known, the distance of the moon rom the earth at any hour can be calculated any time in the future
(12091) G. S. O'B. says: About four years ago I read the description in the Scien-
tific American, or its Supplement, of a contraption (the name I have forgotten), which would so magnify sound, so it stated, that a
fly walking over it sounded like a horse walk fly walking over it sounded like a horse walk-
ing on a board fioor. My recollection is that it was constructed out of a dry-goods box. may be that George M. Hopkins was the this sound magnifier. Have you it in Supple MENT form? A. The device about which you inquire is the microphone. It is found in every
telephone transmitter and has for many years been used for transmitting speech. It depend or its action upon the fact that the resistance of carbon varies with the pressure upon it. If
two pieces of carbon are pressed together the esistance is reduced and more electric current upon lis The sound waves in the current fiuctuates in the transmitter and to cause the receive to reproduce the sounds at the other end of
the line. We have published many articles upon the microphone, and can send you any number up to ten for 10 cents each.
(12092) C. A. H. asks: On two occa sions I have come across brief references to
device in the form of a tube fitted with polarizer of tourmaline, whereby the glare of reflected light from water may be eliminated or at least considerably reduced, so that hidden rocks or other obstructions may be seen
when traveling toward the source of light, when the sun is nearing the horizon. It appears to me that such a device would be very
valuable to those who, like myself, run a valuable to those who, like myself, run a
motor boat in waters obstructed by reefs and shoals. you to kindly let me know the address ask you to kindly let me know the address
of some firm who could supply the article, and the approximate price of each? A. We do not know any apparatus employing tourmaline for cutting off the glare of sunlight shining from izing the light could help in that way. Light from the sky at an angle of 90 deg. from the sun is polarized, and tourmaline would disclose that fact and cut down the seeing power, but
this is not the case near the sun. It seems to us that smoked glasses would be quite as
efficient as polarizing apparatus.

NEW BOORS, ETC.

The Way of the Woods. By Edward Breck. New York: G. P. Putnam's \$1.75. Dr. Breck's book is a practical field manual camper, fisherman, and hunter. It contain concise yet thorough and authoritative mation on every subject connected with life in the North Woods, such as outfitting, fishing shooting, canoeing, tenting, trapping, photog raphy, hygiene, the protection of nature, etc. A unique feature of the volume is that the
author tells his readers not only what they should have, but where to find it and what it costs.
Short Cuts to Carpentry. By Albert Fair. New York: \quad Industrial Pub-
lishing \quad Company,
1908. lishing Company, $1908 . \quad 90$ pp.;
12 mo .; ill. with sketches and work ing drawings. Price, 50 cents
Much of the matter of this book has apits popularity led to its reproduction in book the plaining the principle of each of the shor cuts explained, generally mathematical but most simply explained, so that the young carpenter may learn the reason for the method little different from the illustrations. The est methods of performing practically ever and fittin required in the carpentry of bullaing the book should be found very useful either r amateur
Phrenology, or the Doctrine of the Mental Phenomena. By J. G. Spurzheim, M.D., of the Universities of
Vienna and Paris, and Licentiate of the Royal College of Physicians of London. With an introduction by
Cyrus Elder. Revised Edition from the Second American Edition, in Two Volumes, published in Boston in 1833. Philadelphia and London: J.
B. Lippincott Company. 8vo.; pp. B.
459.

Whether or not we agree with Dr. Alfred is place among the recognized sciences," thereby elevating it to the dignity of a science, we must admit that whatever there may be of science in the study of the conformation of the human head was certainly brought out by Dr. Kaspar Spurzheim. Whether or not we take phrenology seriously, the new edition of this uthoritative book seemed more or less necesary, inasmuch as it had been out of print in ngland for sixty years. Mr. Cyrus Elder has dices against phrenology in an anatical inroduction in which he replies to criticisms made long ago by Spencer. To us it seems that the physiological psychologists, whatikely to add to the science of the human mind than a serious study of Spurzheim's ook, inasmuch as whatever is really scientific phrenology has been incorporated in physi-

Handruct für Heer und Flotte. Enzylopadie der Kriegswissenschaften nd verwandter Gebiete. Unter Mitirkung von Zahireichen Ofizieren, Sanitatsoffizieren, Beamten, Gelehr-
ten, Generalleutnant Z. D. Mit zahl, Al eichen schwarzen und farbigen, Taeln, Tabellen, Karten, Planen, und Textillustrationen. Berlin, Leipzig, haus, Bong \& Co.
This is the third installment of the Handbook ously had occasion to mention. The present olume starts with Adlerfuigel, and ends with biography of Eugen Albori
Design and Construction of Induction
$\begin{array}{llll}\text { Cons. By A. Frederick Collins. } \\ \text { New York: Munn \& Co., } & 1909 .\end{array}$
8vo.; pp. $295 ; 160$ illustrations.
Price, $\$ 3$ net.
Price, \$3 net.
Collins's "Design and Construction of Induction Coils" is a timely work. Until the dis
covery of the Roentgen ray in 1896 the coil covery of the Roentgen ray in 1896, the coil
was chiefly employed for the exhibition of highvoltage effects-beautiful, but of no practical value. Many colleges did not possess one of closely followed by the invention of wireless telegraphy, and thus other new demands were
made upon the induction coil. It was also made upon the induction coil. It was also
found that these new duties required new forms and proportions. The induction coil is the result of experiment. The new demands
required new experiments to develop a coil which new experiments to develop a coil which is the result of several years of work in such experiments. No one can turn the pages without being impressed with its prac
tical character. The paper is firm and sof so that it takes the ink perfectly. The type paced and distinct, the print open and welltive. Closer examination only confirms the irst impression. The book commends itself It does not proceed by the deduction of mathe matical formulas for the calculation of the

some new american aeroplanes.
(Concluded from page 421.)
plane he has made use of eight of these propellers, and has arranged them in a line between the two planes, the idea
being to give a propulsive effort throughout the entire width of the machine. It has also been proven that a number of small propellers will give a greater thrust per horse-power than one or two arge ones. Mr. Kimball makes use of the same motor and wire-rope drive that
he employed in his helicopter; but he has improved upon this drive by installing a friction clutch between the driving drum of the motor and the driven drum carrying the wire ropes. The clutch consists of a cast-iron floating ring, and also of a leather lining in these two drums. It allows a certain amount of slipping to occur at the start, so that the propelers are not strained and broken as be fore. It is also set so that it will slip
with a 25 per cent overload. This imwith a 25 per cent overload. This im-
provement, according to the inventor, has made a rope drive for aeroplanes entirely practicable. The wire rope used is only $1 / 3$ of an inch in diameter, and consists of six strands, each of which contains 19 wires. The rope has a tensile strength of 2,000 pounds, while the pull to which it is actually submitted is only 80 to 90 pounds. There are two endless
cables, one for each set of four propelcables, one for each set of four propellers. They are held under proper ten motor makes 1,900 revolutions per minute to 1,600 of the propeller, and the cable travels at the rate of 7,500 feet per minute, or about 86 miles an hour. The propellers have four blades each. They are 3 feet 10 inches in diameter, and have a pitch of 4 feet. The thrust obtained is about 175 pounds. The motor is a four-cylinder, two-cycle engine of an improved type, the cylinders being 4×4. t develops 50 horse-power at 2,000 R.P.M. The main planes of the Kimball machine are 37 feet by $61 / 2$ feet, and they are spaced 4 feet 2 inches apart. They have a very slight curve of about 1 in 26 , and their angle of incidence is about 5 deg. The rear edges project out 18 inches beyond the main plane and are rather flexible. The machine is prövided with movable wing tips, 4 by 4 feet in size, on the ends of both planes. There is a double-surface horizontal rudder in front, 12 by $2 \frac{1}{2}$: feet in size, the planes of which are spaced 3 feet apart. This
rudder is located $93 / /$ feet in front of the main planes. It is operated by a lever convenient to the right hand of the aviator, while another lever worked by the left hand operates the two sets of four vertical rudders each, placéd on the rear of the movable wing tips. This lever also operates the front wheel, in order to steer when running on the ground.
The main features of the Kimball aeroplane are the use of multiple propellers and fitting of quadruple vertical rudders close to the main planes, near their extremities. If the inventor can run his propellers at a high enough speed to obtain from 300 to 400 pounds thrust, he will probably be able to get in the air; but at the present writing he has made attempt, which was ansuccess ul in this respect.

making the eye of science.

(Continued from page 425.) But, you will want to know, how does the workman know when the glass to be tested fits the test glass? It is in this "how" that the exquisite fineness of the test resides, for the beautiful phenomena of Newton's rings comes into play here. Any extremely thin and attenuated film will show diffraction colors-soap bubbles are common examples. Every child knows that the bigger the bubble, the
more beautiful the colors, and the grownup knows that the bigger the bubble, the thinner the film. When the glass to be tested is laid in the test-glass hollow,
there is a thin film of air left between

| MUNN \& CO., Publishers of Scientific American | there is a thin film of air |
| ---: | ---: | :--- |
| 361 Broadway, New York | | (Continued on page kss.)

