MARHG THE EYE OF SCIENCE by c. h. Clatidy.

Ask a man in the street what a lens is, he will probably answer: "A piece of glass." A lens is, indeed, usually a piece of glass, unless it is made of several pieces. So is a house several pieces of wood, a locomotive many pieces of steel, and a watch a collection of wheels and springs. But the house, the locomotive, or even the watch does not require more exquisite care than the making of a lens. The mechanical error in architectural work may be measured in fractions of a foot, in locomotives in fractions of fractions of an inch, in watches in fractions of a millimeter. In lenses it is measurable in microns, and a micron is the thousandth part of the thousandth part of a meter.
The lens for microscopes, the lens for telescopes, the lens for cameras, for spectroscopes, for 'scopes with all sorts of prefixes, each carries its own special standard, highest of all in microscopes, in cameras, and in telescopes. Telescopic lenses, with their large size and huge cost, are more or less familiar to the reading public, but comparatively little is known of the making of the eye of the magic tube which shows what the human eye cannot see, and the eye to that other equally magic tool of science, as well as plaything of us all, which limns, in a fraction of a second, a picture more perfect than the most expert artist could draw in a lifetime.
The first step in making any kind of lens is the procuring of the glass. Optical glasses of the Optical glasses of the
newer kinds cannot be newer kinds cannot be
made anywhere and everywhere. Practically all of it is made in Jena, Germany'. To the crown and flint glass of the earlier opticians, science has added a large number of new and different kinds which have in themselves, without curvature, many different properties, different refractive indices, and, extremely important, different dispersive abilities. A lens not only refracts or bends light rays in a certain degree, depending on both curvature of surface and composition of material, but
it disperses color, separates the spectrum, or refracts different colors of light differently, in a manner dependent largely on its chemical constitution.

In making a microscope objective, or a telescopic lens, or the lenses for cameras, it is the great aim of

In the picture on the left the flamed ances as the lens is revolved and is stationary in the picture to the right. Observe the untrimmed edges in one and the trimmed edges in the other picture.
How the elements of an anastigmat are centered.

Photographs of a test chart made by a good and a poor photographic lens.

Using the test glass on an element of an anastigmat lens.
understood that neither the fine photographic lens, usually termed an "anastigmat," because free (over a certain area of image) from the aberration of astigmatism and its kindred ills, or the wonderfully tiny microscopic objectives, are made of one piece of glass. The mathematician who calculates the lens puts curve against curve, glass against glass, refraction against refraction, dispersion against dispersion, until one corrected element baiances the undercorrections of another. It would be simple enough if the making of a lens were merely the simple grinding of one piece of glass on both sides. It is the grinding of many glasses to form one lens, and making them fit both conditions and each other, that taxes both the man and his methods. All lenses, both photographic and microscopic, are ground by hand. The glass is cemented to a tool called a "block," and pressed with an abrasive and water into a revolving metal shell of proper curvature. The shell revolves, and the block revolves, the grinder constantly changing the angle of the block, so that all parts of the glass are ground evenly. Necessarily, all such lenses are ground on the section of a sphere. They are ground three times - "rough," "second," and "fine" grindings they are called-before being polished with rouge and time and care until the last faint abrasive mark is taken out, and nothing but the high "black" polish of the perfect lens remains.

If the glass is to be a component of a fine photographic lens, it has now to undergo an ordeal. Two blocks of perfectly homogeneous optical glass have been formed to the shape of the lens element and curve to be tested. Every possible care has been taken in the making of these test glasses, and optical, refractive tests, far more delicate than any measuring engine test
the optician to eliminate color fringes about the images formed, because they interfere seriously with the accuracy of observations or the perfection of pictures.

The proper glass obtained and the curvatures determined, the next step is grinding. But it should be
could possibly be, have shown them to be as absolutely perfect examples of the desired curvatures as science and art can make. So that if the element tested ex actly and perfectly fits this test glass, it is, obviously, (Continued on page 431.)

Grinding photographic lenses by hand.

SOME NEW AMERICAN AEROPLANES. (Concluded from page 421.) plane he has made use of eight of these propellers, and has arranged them in a line between the two planes, the idea
being to give a propulsive effort throughout the entire width of the machine. It has also been proven that a number of small propellers will give a greater thrust per horse-power than one or two large ones. Mr. Kimball makes use of the same motor and wire-rope drive that
he employed in his helicopter; but he has improved upon this drive by installing a friction clutch between the driving drum of the motor and the driven drum carrying the wire ropes. The clutch consists of a cast-iron floating ring, and also of a leather lining in these two drums. It allows a certain amount of slipping to occur at the start, so that the propelers are not strained and broken as bewith a 25 per cent overload. This imwith a 25 per cent overload. This im-
provement, according to the inventor, has made a rope drive for aeroplanes entirely practicable. The wire rope used is only $1 / 3$ of an inch in diameter, and consists of six strands, each of which contains 19 wires. The rope has a tensile strength of 2,000 pounds, while the pull to which it is actually submitted is only 80 to 90 pounds. There are two endless cables, one for each set of four propelsion by a single idler for each one. The motor makes 1,900 revolutions per minute to 1,600 of the propeller, and the cable travels at the rate of 7,500 feet per minute, or about 86 miles an hour. The propellers have four blades each. They are 3 feet 10 inches in diameter, and have a pitch of 4 feet. The thrust obtained is about 175 pounds. The motor is a four-cylinder, two-cycle engine of an improved type, the cylinders being 4×4. It develops 50 horse-power at 2,000 R.P.M. The main planes of the Kimball machine are 37 feet by $61 / 2$ feet, and they are spaced 4 feet 2 inches apart. They have a very slight curve of about 1 in 26 , and their angle of incidence is about 5 deg. The rear edges project out 18 inches beyond the main plane and are rather flexible. The machine is prövided with movable wing tips, 4 by 4 feet in size, on the ends of both planes. There is a double-surface horizontal rudder in front, 12 by $21 / 2$ feet in size, the planes of which are spaced 3 feet apart. This
rudder is located $93 / 4$ feet in front of the main planes. It is operated by a lever convenient to the right hand of the aviator, while another lever worked by the left hand operates the two sets of four vertical rudders each, placéd on the rear of the movable wing tips. This lever also operates the front wheel, in order to steer when running on the ground.
The main features of the Kimball aeroplane are the use of multiple propellers and fitting of quadruple vertical rudders close to the main planes, near their extremities. If the inventor can run his propellers at a high enough speed to obtain from 300 to 400 pounds thrust, he will probably be able to get in the air; but at the present writing he has made attempt, which was unsuccess ful in this respect.

making the eye of science.

(Continued from page f25.) But, you will want to know, how does the workman know when the glass to be tested fits the test glass? It is in this "how" that the exquisite fineness of the test resides, for the beautiful phenomena of Newton's rings comes into play here. Any extremely thin and attenuated film will show diffraction colors-soap bubknows that the bigger the bubble, the more beautiful the colors, and the grownup knows that the bigger the bubble, the thinner the film. When the glass to be tested is laid in the test-glass hollow,
there is a thin film of air left between
MUNN \& CO., Publishers of Scientific American. $\begin{aligned} \text { 361 Broadway, New York }\end{aligned}$
them. If this thin film of air is of even thickness throughout, the lens will be filled with a glow of color which changes as pressure may be brought to bear on the lens, thus thinning the film of air. If this glow is but one color and with no colorless patches, it is evident that the lens fits the glass perfectly; if the color is in bands or rings, or if more than one color shows, it is equally evident that the lens does not fit over all its surface, and consequently is not accurately ground and polished. This is the most delicate test known to science for equality of surfaces, and,
done, is absolutely reliable
Microscopic objectives are tested in other ways. A $1 / 12$-inch objective possesses a front element so small as to be seen with difficulty. It is actually $1 / 7$ millimeter in diameter. This is too mi nute to admit of using the color test These tiny lenses are ground by work men of whom there are hardly ten in the world-men who have spent their
lives over the tiny lathes and shells which grind hemispheres of glass of such exceeding smallness as this. It is more by feeling and intuition than by examina tion with magnifiers that they know when such lenses are true and perfect to their shells, but it is the fine optical and visual test on a diatom of fine markings and infinitely small size, such as Amphipleura pellucida or Pleurosigma angulatum, which determines their degree of perfection.
When all the elements of a fine anastigmatic photographic lens are ground, they have then to be cemented together, if it is a cemented lens, and, most important of operations, trimmed so that the optical center and the mechanical center of the several individual elements coincide. While the clear Canada balsam cement is yet "green," the glasses are revolved on a lathe, and the workman observes in them a reflection of a light source-
in the illustration, a burning gas-jet held in the hand. When the optical centers of the lenses do not correspond with the center of revolution or mechanical center, the reflected image dances. The cement is softened with heat and, by pushing on the edges of the revolving lenses, the operator makes them move against each other until the flame is reflected perfectly, and remains absolutely stationary while the lens revolves. When this condition is obtained the cement is allowed to harden, and the edges of the lenses are trimmed away with a diamond cutter.
The several lenses which compose a fine microscopic objective are not only centered and trimmed, but mounted, on one lathe and by one man, who also makes the mounting. This departure from the modern factory practice of "one man, one job," has been found necessary because no two lathes, be they ever so accurately made, revolve in extrimmed by one lathe and mounted in brass cells made on another lathe, the mechanical and optical centers will not align perfectly.
A $1 / 12$-inch microscpoic objective is a collection of lens elements, the magnifying power of which is equivalent to a single lens of $1 / 12$-inch focus or about 120 diameters. Its working distance, i. e., the distance the front element has to be from the object viewed, may re slightly greater or less than $1 / 12$ inch. With an eyepiece of $1 / 2$-inch focus, such a lens will give a magnification in the microscope of 2,400 diameters, or 5,760 , 000 times. In other words, if a diatom could be enlarged in wax as much bigger than the original as the image of it is greater than it is itself, by such an equipment as is described above, would hold on its surface $5,760,000 \mathrm{di}$ atoms.
It is obvious that any error in the making of such a lens is magnified equally with the object. If the lenses are in the least degree decentered, the amount of error is magnified according (Concluded on page 4ss).

I. H. C. $\begin{gathered}\text { asginine } \\ \text { nnines }\end{gathered}$

GTYLEA AND SIZES FOR ALL USEG
 Air-Cooled in 1 and 2 H.P. Call on our local agents
for further information or write us for catalog. international harvester co. of america 15 Harvester BIdg... Chicago, U. s. A.

its favor. It is the most
durable underwear made.

 Spring Needle fabric is flawless, and in addition each
garment is stayed at points of strain, rendering it
strong, sightly and serviceable.
siment is stayed at points
strong, sighty and servicable.
Try Cooper's.
.fywime
Made in Union suits and two-piece suits
in all si s. es. weiigh hand colors. Ask to
see our new silk lisles. Get the genuine.
COOPER MFG. CO., Bennington,

BUILD YOUR OWN BOATSAVE TWO-THIRDS

Anyone can put together our knock-
boat from our full-sized paper pattems. end for Boat Catalog No. 22 Today. It Shows 100 New Models
 You Take No Risk-Yonr Money Back If Yon Are Not Satisfied
BROOKS MANUFACTURING CO. 406 Shir Street, Saginaw, Mich., U. S. A. Est. 1901 ELECTRO MOTOR. SIMPLE, H()W TO

A Box Full of Fat Sparks

Make a Motor Boat of any Boat in 5 Minutes

SE NSITIVE LABOR ATORY BALANCE

Concrete, Reinforced Concrete

Concrete Building Blocks

Scientific American Supplement 1543 contains an

 article on Concrete, by Brysson Cunningham.The article clearly describes the proper composition and misture of
results of elaborate tests.
Scientific American Supplement 1538 gives the
nroportion of gravel and sand to be used in
 cussion by
various systems of reinforcing concrete, con-
crete construt ond
and their These srticles constitute a splendid text book
on the subject of reinforced concrete. Nothing better has heen pubished.
Scientiflo American Supplement
contains an article by spencer Newberry in which prac-
tical notes on the proper preparation of con-
crete are given. Scientific American Supplements 1568 and 1569
present a helppul account of the making of
concrete blocks by Scoucer conerete blocks by SDencer Newherry.

cientific American Supplements 1547 and 1548 Scientific American Supplements 1 iario and 1548
give a resume in which the parious systems
of reinforce. concrete construction are dis-
cussed and illustrated. Scientific American Supplement 1564 contains an
article hy Lewis A. Hicks in
Which the merits and defects of reinforced concrete are
analyzed.
Scientific American Supplement 1551 contains

Scientific American Supplement 1573 containg
an article by Louis H. Gibson on the prinan article by Lousis H. Ginson on the prin-
cinles of sucess in concrete hlock manufac-
ture, illustrated. Scientifio American Supplement
steel for reinforced concrete.
1574 discusses

 malks. details.
concrete posts.
Ea.ch number
Eat number of the Supplement costs 10
A set of papers contaning all the articles
ahove mentioned will he malled for $\$ 1.80$.
Order from your newsdealer or from
MUNN \& CO.
361 Broadway, New York City

 922,452
923.105
92.607
\qquad
 combustion, Sheibley \& Moller
Engines, electric

Fabrics. forming woven pile, J. K. Daik-
 ${ }_{922,868}^{923.026}$

\qquad
\qquad 923,113

to the magnification of the object seen. It is essential, therefore, that the mounting be absolutely accurate, a condition satisfied by using the same lathe for both making the mount and trimming the lenses of the objective.
A photographic lens of high quality must pass tests of great difficulty and searching power. It is put in a camera and tried out on an accurate chart, and must "cover" a certain area of this chart
at a certain distance, while rendering the image perfectly flat and without distortion. Uncorrected photographic lenses have a great many aberrations-curvature of the field, spherical aberration, coma, flare, astigmatism, curvilinear dis tortion, chromatic aberration; and a
good photographic lens must be without these, or it fails to pass its tests. In the optical factory in which the illustrations for this article were made, every photographic lens is provided with a ticket, and on this chart the expert lens examiners put down a check mark
against every fault or aberration of the lens under examination. A perfect lens, such as is marketed, shows on its chait nothing more damaging than the presence of a few minute air bubbles, im possible to avoid in the special optical glass which is used in the production of "anastigmats." These air bubbles, often giving great concern to purchasers who
do not understand their harmlessness, do nothing more damaging than to decrease the light-passing capacity of the lens by a percentage equal to the percentage their area is to the area of the lens-a smal
fraction of one per cent.
In addition to testing out for optical aberrations, the tester hunts for striæ streaks in the glass, for strains, for improper centering, for imperfections of cementing, for poor mounting, for defects in the glass not classified, as scratches and marred places, so that,
when a lens has finally passed the inspector, it is a perfect specimen so far as human ingenuity can make it. any one of which may depend not only the success of scientific experiments and hundred branches, but even human lives, are the subject of the most minute care in testing. An unskilfed observer may
find it difficult to distinguish between the image made by a poor and a good one-twelfth, but the scientist who uses it, and equally with him the trained man who examines it before its being put in stock, has no difficulty in finding out
from the severe test objects whether it will properly "resolve" the fine markings on a diatom, whether it has "color fringes" or not, whether its field is flat
Lens calculated, glass selected, shells and blocks carefully machined, glass ground once, twice, and again, lens ele ments tested, repolished or ground if necessary, centered, mounted, again tested, charted, and reinspected, the glass eyes of the microscope and the camera, twin cyes of science and the two most important tools in the laboratory,
go from the factory all over the world to the laboratories where are made large per cent of all the discoveries in science of all kinds, but particularly in the natural sciences and in all those de partments of human knowledge which have to do with the body and with health and the cure of disease. And all the work done in these laboratories depends in the first instance on a little bit of precision with which the glass can be made to fit the $x^{2} n^{2}$ of the master opti cian.

Testing Ancient Bronzes.
Old objects of bronze and copper are usually covered with thick layers of oxide which make it impossible to recognize the true character of the metal or alloy The removal of this highly valued patina is not generally allowable, and the metal lic surface that may be exposed at shar (Concluded on page 435.)

 Fictoivi phicts YOU WILL BE ASTOUSISHED

PARIS GARTERS

You need them es pecially with K'neeThe only garters that fit so perfectly you A. Stein d co. form so perfe
wear then unconsciously.

25 and 50 cents at dealers, or direct if you don't find them.
A. Stein \& Co., 182 Center Ave., Chicago

ICE YACHT BUILDING.-COMPLEET

WAITED-A RIDER AGENT:

ROBERTS MOTORS

STEAM TURBINES. - THEIR CON-

points and edges is too small to afford the desired indications. Two German inves tigators, having found that pure copper and bronzes containing various proportions of tin give characteristic streaks when rubbed on a touchstone, have devised a method of determining approximately the composition of any bronze object by comparing its streak with those made by a series of bronze bars of known composition. In practice, four such bars are found sufficient. The four bars are rubbed on the touchstone (Lydian slate or polished biscuit ware) and by the side of the four marks a fifth is made with a point or edge of the object under investigation. Pure copper gives a pure red streak, but a tinge of yellow is added by as little as 1 per cent of tin.
Chemical analyses of prehistoric bronze show percentages of tin ranging from 1.5 to 30 , but very few specimens contain less than 6 or more than 12 per cent of tin. Silver, lead, antimony, arsenic, bismuth, nickel, and cobalt occur only in traces, and the proportion of iron is also very small in most cases. It is a remarkable fact that nearly all prehistoric bronzes are very nearly or quite free from zinc, of which many modern bronzes contain as much as 10 per cent.-Umschau.

America's Heavy Fire Loss. At the forty-third annual meeting of the National Board of Fire Underwriters, held in New York city May 13th, President J. Montgomery Hare made an address, in which he stated that a comparison with statistics of losses in foreign countries shows that the loss per capita in the United States is from 10 to 30 times greater than in the principal European cities. For the last five years, he said, the annual fire loss in this country has averaged $\$ 269,200,412$, the total for the period being $\$ 1,346,022,059$, or about threequarters of a million for each day of the five years. In this period the figures were largely increased by the San Francisco conflagration, but even taking the two years since then the losses have kept well above the $\$ 200,000,000$ mark.
Without counting losses from forest fires, the destruction of property in 1907 by fire totaled $\$ 250,084,709$, and in 1908 , $\$ 217,885,850$. The figures for this year give no promise of improvement, President Hare said, having reached a total of nearly $\$ 53,000,000$ for the first three months.

According to dispatches from Atlanta, nothing which has been suggested for the benefit of the South since the war has aroused such unanimous enthusiasm as the proposed highway from New York to Atlanta. Whereas the suggestion originated with automobile users, it is obvious that any scheme for the promotion of good roads through country districts remote from railroads must directly benefit agricultural and other large communities largely dependent upon highways for transportation. Three alternative routes have been suggested, all of which follow the same course from New York to Philadelphia. Two routes thence to Washington are identical, whence one lies through Rapidan, Charlottesville, Lynchburg, Danville, Greensboro, and Salisbury, where it joins the third route and reaches Atlanta via Charlotte, Blackburg, Spartansburg, Hartwell, and Winder; while the other goes through Richmond, Petersburg, Raleigh, Columbia, S. C., and Royton to Winder. The third route leaves Philadelphia westward to Harrisburg, thence down the Cumberland and Shenandoah valleys to Harper's Ferry and Lexington, crossing the mountains to Martinsburg and Salisbury and continuing as above. The New York Herald and Atlanta Journal have offered prizes for the best sec tions of road in the various districts, and an endurance test for automobiles is projected, with the object of comparing the results on different routes, the ultimate decision as to the highway route being dependent upon the local road corditions achieved by local authorities.

ICEI
,

RUBBER Expert Kanfatatures

MODELS \& EXPERIMENTAL WORK Chas. L. DRESSLEE \& C0.1 $141-143$ East 23 s Street, New Yorkcity

WHAT WE DO-HOW WE DO IT
км

BASKETS, Caiendar and Paper Citter Free

Build a $\$ 5000$ Business
for life. 33centse das dape salaried dradgery
foit. I will send

Print Your Own

"CASTELL"

Drawing, Copying and Ink Pencils

are the finest production of a house that has been manufacturing the highest grade lead pencils for 148 years; and has earned a reputation for excellence that has

Samples worth double the money will be sent you on receipt of 10c.
A. W. FABER 49 Dickerson Street, Newark, New Jersey

Just Published-A BOOK OF INTEREST TO RIFLEMEN

The Bullet's Flight from Powder to Target

The Internal and External Ballistics of Small Arms. A Study of Rifle Shooting with the Personal Element Excluded, Disclosing the Cause of the Error at the Target.
Illustrated with one hundred and eighty-eight plates, showing the results of over three hundred rifle experiments performed and chronologically arranged

By F. W. MANN, B.S., M.D.

Size $71 / 2 \times 933 / 4$ inches. 384 Pages. Price $\$ 4.00$ postpaid

 sistently and laboriously worked out with an earnest desire to assist his fellow marksmen. In view of the fact that conjecturing
and theorizing have been so prevalent in rife literature, the work has been kept free from speculation, except where they have and theorizing have been so prevalent in rifte literature, the worth has been kept free from speculation, except where they have
either been proved to be false or have been fully substantiated by recorded experiments. Most of the illustrations are photo either been proved to be false or have been fully substantiated by record ed experiments. Most of the illustrations are photo-
graphic reproductions of the results of actual tests. Eveny page is full of interest for the nifo enthusiast. There is a foll
discusion of braplission of various kinds of rifles, of the effect of difflerence of length, of variations of riffing, etc., as well as of instructive
disure
experiments such as that of venting the barrel near the muzze. experiments such as that of venting the barrel near the muzzke. An idea of the contents may be gathered from a few of the
subjects treated, such as the Personal Element vs. Mechanical Rife Shooting; Utilty of Vented Barrels; High.Pressure subjects treated, such as the Personal Element vs. Mechanical Rife Shooting; Utillty of Vented Barrels; High.Pressure
Sharphoting Powder; Telescope Mounts; Ruined Rife Bores us. Smokeless Powder vs. Primers; Accurate Ammuniton Siffalties ; Flight of Bullets; Gyration and Oscillation: Motions Executed by Normal Flyine Bullets; Determining Riffe Twists; Kinetics of Spin, etc. In many respects this work is unique in the literature that has been published on this subject. of the riffe with a view of improving the all-around efficiency of that ueapon.

MUNN \& COMPANY, Publishers, 361 Broadway, New York City

