$\sqrt{(5)}$ CIENTIFIE

The Temple of Apollo as restored by Homolle.

SCIENTIFIC AMERICAN
 ESTABLISHED 1845

MUNN \& CO.
Editors and Proprietors

No. 361 Broadway, New York

barles allen Mumb Praident
361 Broadway, New York.
Converse beach, Sec'u
361 Broad was. New Yors.

TERMS TO SUBSCRIBERS.

 THE SCIENTIFIC AMERICAN PUBLICATIONS.

ed apon application.
BUoney order. bork draft or check.
MUNN \& Co.., 661 Broadway, New Yors.
NEW YORK, SATURDAY, MAY 15th, 1909.
The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sharp, the articles hort, and the facts authentic, the contributions will receive special a tention. Accepted articles will be paid for at regular space rates:

a long-delayed tribute.

On Wednesday, April 28th, a fitting tribute was paid in the city of Washington to the man to whose genius is due the present and prospective beauty and dignity of the nation's capital.' On that day the remains of Major Pierre Charles l'Enfant were transferred from an abandoned family burial ground on a Maryland farm to their present resting place in the National Cemetery at Arlington. The ceremonies were of a imple character. The body, draped with the national flag, was placed in the rotunda of the Capitol, where a service, attended by the President and Vice-President, the French Ambassador, and a large audience composed of members of both Houses and of the diplomatic corps, was held, after which the remains were carried under military escort to the Arlington burial ground and there interred. No stronger evidence could be given of the need for this national recognition than the fact that the majority of the people of the United States are probably ignorant alike of the name of Major l'Enfant and the important work which he accomplished. It is to l'Enfant that we owe the excellent plan upon which the city of Washington was originally laid out. At the suggestion of Jefferson, this French soldier, who had been identified with Lafayette in the cause of American liberty, was invited by Washington to lay out a city which would form the capital of the nation, and in its plan and scope be suited to the requirements of the republic for all time to come. History tells us that the present scheme was the outcome of a week's sojourn at Mount Vernon, where, with the plans of several cities of the old world before them, President Washington and his French engineer worked out, at least in their broad outline, the plans of the capital approximately as we now know it. It has been asserted that in constituting the Capitol and the White House the two centers for the series of radiating avenues, l'Enfant probably had in mind the plan of Versailles. Whatever the origin of the present plan, there can be no doubt about its success; for, when in connection with the celebration of the centennial of the city, in 1900, a commission of prominent American architects was sent abroad to study the plans of the most beautiful of European cities, they indorsed l'Enfant's plan, and based their recommendations upon its general outlines. Unfortunately, after the work of construction commenced, there was disagreement betikeeen the French engineer and the building committee, and he was removed. In spite of President Jefferson's recom mendation that he be paid from $\$ 2,500$ to $\$ 3,000$ for his services, it was not until 1810 that he was voted \$666.66, with interest from 1792, for the work he had done. He was invited by a Mr. Digges to his farm in Maryland, and, after spending some twenty-five years of his life there, he died and was buried in the family burial ground of the Carrolls and Digges. Here the body remained for nearly a century until its recent removal to Arlington. To make this tardy recognition of the important services of the designer of our capital city complete, it will certainly be in order for the nation to erect a suitable memorial above his present rest ing place.

OUR STUPENDOUS RAILWAY SYSTEM

In view of the fact that the welfare of the country is so intimately related to the vast system of rail ways with which it is covered, the annual statistics of our railways, and a comparison of these with the records of earlier years, are of never-failing interest. We have before us the railway statistics of this country as prepared by Mr. Slason Thompson, of the Bu reau of Railway News and Statistics, in which the
standing of our railways for the year 1908 is compared with their condition in the two previous decades. At the close of the fiscal year 1908, the total number of miles of lines in the United States was 230,000 , as compared with 136,883 in 1888 and 184,648 in 1898. The net capitalization is $\$ 13,000,007,012$, an increase of 39.8 per cent over the figures of 1898 . The gross earnings for 1908 of $\$ 2,448,835,000$ were nearly double those of 1898 . Ten years ago, the total number of passengers carried one mile was about 13.3 billions. In ten years' time this has increased over 120 per cent, reaching a total of 29.5 billions. A marked increase has taken place in freight traffic; for whereas the number of tons of freight carried one mile in 1898 was over 114 billions, last year it was over 122 billions. The passenger revenue per passenger mile, which in 1888 was 2.49 cents, in 1898 had decreased to 1.973 cents and in 1908 to 1.933 cents. In the decade from 1888 to 1898 there was a decrease in freight revenue from 1.0 cent per mile to 0.753 cent, at which latter from 1.0 cent per mile to 0
figure it also stood in 1908.

Very significant of the growth of our railroads is the great increase in the number and weight of locomotives and cars. Ten years ago, the total number of locomotives was 36,234 . During the last decade there has been an increase of 57.7 per cent to a total of 57,156 locomotives. Even more remarkable has been the increase of 115.3 per cent in the total weight of the locomotives. The number of passenger cars has increased from 33,595 to 44,623 . The number of freight cars has risen from $1,248,826$ to $2,130,110$, an increase of over 70 per cent, but their capacity has increased over 120 per cent, from over $32,000,000$ tons to over $71,000,000$ tons. In 1898 the total number of employees was 874,558 . Last year the total was 1,451 ,000 , an increase in the ten years of over 67 per cent. During the year there was paid, out in compensation to employees over $\$ 1,000,000,000$, which is an increase of 110 per cent over the amount so paid out in 1898.

Figures such as these tell most eloquently the story of the phenomenal development of the country during the past decade. That the prosperity of the railroads is intimately associated with that of the whole coun. try is proved by the fact that in the twelve months that followed the panic, the railways suffered a loss of over $\$ 330,000,000$ in gross earnings.

OMPARATIVE TESTS OF THE SCOUT CRUISERS

We have delayed making reference to the endurance tests of the scout cruisers "Chester," "Salem," and "Birmingham," in the hope that the official figures would be made public. Recent developments, however, make it unlikely that these results will be available for some time to come. The unofficial reports of the trials show that the comparative efficiency of the turbine and reciprocating engine is about what would be expected. The "Birmingham" with her reciprocating engines showed superior coal economy at the lower speeds. At the higher speeds the "Chester," equipped with Parsons turbines, gave the best results. Altogether, the honors of the trials lie with the "Chester," the "Salem" with her Curtis turbines proving to be, for reasons which did not develop until after the trial, a great disappointment. In the 24 -hour sea speed test at full power, the "Chester" steamed 601.92 nautical miles at an average of 25.08 knots, while the "Salem" covered 588.96 knots at an average speed of 24.54 knots. The coal consumption of the "Chester" was 415 tons and of the "Salem" 420 tons. The "Birmingham" broke down under the severe strain, and her failure illustrates once more the unreliability of the reciprocating naval engine when driven continually under maximum power at the highest speed. It is mainly the mechanical simplicity of the turbine, and its well-proved reliability when pushed to the limit of its power, that have made this type of engine so popular with naval men.
Some months prior to these tests, the government carried out another series of tests under similar conditions, in which account was taken, not of the fuel but of the water consumption. Water consumption tests are the true criterion of an engine's economy, since they eliminate the question of boiler room efficiency, which may easily vary from 10 or 15 to 20 per cent because of the more intelligent firing on one ship than on the other. In these water tests at all speeds from ten knots to twenty-five, the two types of turbine, Parsons and Curtis, are reported to have shown about the same efficiency. On the recent endurance tests, however, the "Salem" exhibited at the lower speeds a far higher coal consumption, and a greater consumption, as stated above, at the highest speeds, though here the difference was much less. In explanation of her comparative failure, it is stated by the engineers of the "Salem" that the method of measuring coal by painting white stripes around the bunker walls, and estimating the amount of coal consumed by the height of the coal in the bunkers with reference to these stripes, is a very rough-and-ready method, and may give inaccurate results; the amount of coal, as thus measured, depending upon the solidity or otherwise with which it is packed a.t the time it is taken
aboard. Although this does not by any means prove that the "Chester" was favored, it certainly viti ates the value of the results. It is also urged that the skill of the firemen might easily make a big difference in the coal consumption, favoring one vessel or the other, as the case might be. There is another explana tion of the high coal consumption of the "Salem," which appears to us to be of much more weight. On the high-speed, all-day run it was found that the starboard turbine was running about fifteen revolutions slower than the port turbine; and the conviction of the engineers of the "Salem" that something must be wrong was verified when the casing was opened up and it was found that a bolt, which had somehow found its way among the blading, had badly disarranged the latter.

In view of these facts, we think that, when the injury to the "Salem's" engines has been repaired, these competitive trials should be run over again, but this time on a more thorough and scientific basis. The boiler and engine-room staff of every ship should be thoroughly trained, until it is perfectly familiar with the plant. The coal should be carefully weighed as it goes into the bunkers; care should be taken that it is similarly stowed in each ship; and both the fuel and the water consumption should be recorded. We are well aware that to carry out another series of trials along these lines would be costly; but in view of the enormous importance of the issues at stake, the money would be spent to good advantage. In spite of the good showing of the reciprocating engine at cruising speeds, it is certain that our future warships must be engined with the turbine. Hence the importance of making a wise choice between the Parsons and the Curtis type. Standardization is of prime importance in naval construction, and there should be but one type of turbine in all the ships of the future. The Parsons turbine may well stand upon its splendid record-a record which has been enhanced by the ex cellent results achieved by the "Chester" in the recent trials. Its younger rival, the Curtis turbine, however, has advantages of a military character, which commend it strongly to naval men. Moreover, in the latest turbines of this type tested in Germany, water consumption economy has been obtained which ex ceeds anything yet achieved by any marine turbine. For these reasons we consider that it is incumbent upon the Navy Department to use the opportunity pre sented by the scout cruisers for another and more satis factory series of tests.

RETURN OF THE WRIGHT BROTHERS.
The sudden rise of the Wright brothers from the obscurity of the struggling inventor to international fame and no small measure of wealth has in it a strong dash of the romantic. The exploits of these two Americans during the past eight months have placed our country far in the van of other nations; in the art of fiight with heavier-than-air machines. Start ing with the first public exhibitions in France and America, which were made simultaneously by Wilbur and Orville Wright, respectively, last September, the career of the former of the two brothers especially has been practically a continuous ovation. First at Le Mans, where on December 31st he made an unparal leled flight of nearly 100 miles in 2 hours and 20 minutes; later at Pau and Rome, where he taught several pupils how to operate the aeroplane in a dozen 15-minute lessons each, Wilbur Wright has been lauded in the highest terms, and has been the recipi ent of distinguished attentions from the most promin ent rulers of European countries. Orville Wright, since his accident at Fort Myer, has not made any flights; but he is, we understand, to resume the carry ing out of the very difficult government contract next month. This involves a 10 -mile cross-country flight across a deep valley, which is something the like of which has never been accomplished even by Wilbur Wright during all the 3,000 miles he has fiown abroad, although he has at times risen more than 350 feet in height tests over smooth ground. In cross-country flying, however, both Farman and Bleriot so far hold the records.
The idea of selling aeroplanes to governments, which these two inventors had in mind when they wen abroad, seems to have succeeded almost beyond expec tations. Italy, Germany, Russia, and England have either purchased or negotiated for aeroplanes, while in France the selling of the patent rights to a syndicate has made possible the rapid introduction of the machine.

After completing the contract with our own government, which will be done next month at Fort Myer, the inventors intend to make further experiments looking toward the perfecting of an automatically stable aeroplane.

Members of the Signal Corps at Fort Myer, Va., have been making experiments with wireless telephony. They have succeeeded so far in communicating over a distance of five miles. The government has appropriated $\$ 30,000$ for experimental work of this sort.

Engineering

The number of persons killed in train accidents during the months of October, November, and December, 1908, as reported to the Inter-State Commerce Commission, was 184 , and the number injured 2924. Accidents of other kinds, including those sustained by employees while at work, and by passengers in getting on or off cars, etc., bring the total number of casualties up to 17,644 (798 killed and 16,846 injured).
It is announced by Secretary of the Navy Meyer, that the voyage of the sixteen battleships around the world involved an outlay of only $\$ 1,500,000$ more than would have been necessary had the fleet spent the time occupied on the voyage in home waters, either at anchor, or cruising, or engaged in the customary maneuvers. We quite agree with the Secretary that the investment of this sum by the government was one of the most fortunate and successful that could have been made.
The record for canal excavation at Panama for a single month was again exceeded during March last, when $3,880,337$ cubic yards were removed. This amount exceeded that of March, 1908 , by 393,050 cubic yards. Of the grand total, $2,352,903$ cubic yards were removed by steam shovels, and $1,527,434$ cubic yards by dredges. The average daily excavation was 143 , 716 cubic yards, which was nearly 7,000 yards more than the highest previous record, made in February last.

The arrival of the 17,000 -ton ocean liner "Lapland" marks the completion of the first trip of a new Red Star liner, and the addition of one more to the already large fleet of ships of great size plying between New York and Europe. The vessel is 620 feet long, 70 feet broad and 50 feet in depth. In addition to a double bottom and eleven water-tight compartments, she is provided with a center line bulkhead for additional safety. She will accommodate 450 flrst-class, 350 second-class, and 1,500 third-class passengers, and carries also a crew of 450 men
A refinement in yacht construction, introduced last year by Fife in the construction of "Shamrock," con sists in the substitution of a thin slip of wood, known as a "slip feather," for putty, in stopping the seams after they have been calked. The "feather" is covered with a very tenacious glue, driven hard home into the seams, and left to dry. After the sides are planed off, a remarkably smooth surface is obtained, the skin of the vessel being to all intents and purposes in one piece. This method has the further advantage that there is no calking to work out when the vessel is be ing heavily strained.
The maiden voyage of the new White Star liner "Lorentic" from Liverpool to Montreal was watched with the greatest interest by the maritime world, because of the fact that she is the first ocean steamship of great size to contain in her engine room a combination of reciprocating and turbine engines. The equipment consists of two reciprocating engines, driving the wing propellers, and a turbine driving the central propeller. The ship is 565 feet in length. A sister vessel, the "Megantic," will make her first voyage early in June. The "Megantic," however, is driven by twin screw, reciprocating engines. On the comparative results obtained by these two vessels will largely depend the character of the motive power employed in the two new White Star steamers now building, the "Olym pic" and "Titanic."
Since July of last year, there has been in service on Long Island Sound a motor boat driven by a 25 -horse power marine gas producer. The plant is very com pact, the special design of scrubber being only onequarter the size of the generator, whereas, according to International Marine Engineering, from which the following facts are taken, the scrubber is usually about twice as large as the generator. The boat has given good satisfaction in all kinds of weather. The con sumption is from one to one and a quarter pounds of coal per horse-power. In a ten-hour run, the cost of fuel at $\$ 6$ per ton is 94 cents. The same size motor, operating on gasoline, would consume for the same work $\$ 3.50$ worth of fuel. The gas producer occupies space of four feet by six feet; its height over all is five feet; and the total weight is twelve hundred pounds.
The action of the Public Service Commission in ordering the construction and operation of subway cars provided with two doors at each end of the car has stirred up the officials of the Interborough Company to construct and put in operation a train of cars of their own design having single end doors and a wide center door. The Public Service officials claim that better results are obtained with the double-end door type, while the company believes that the center door gives speedier service. It seems to us that in both types sufficient effort is not being made to secure a circulation of passengers by reserving one set of doors for entrance and the other for exit. At present, the public are allowed to use all doors for entrance and exit, as they please.

ELECTRICITY.
A novel device has been invented for use in hotels to enable the patrons to determine the exact time at any hour of the day. A small telephone receiver is connected to the head of the bed in each room, and may be placed under the pillow, if desired. The device is connected to a master clock. When the sleeper wishes to know what time it is, he places the 'phone to his ear and presses a button. A set of gongs will then strike the hour, the quarter, and the number of minutes past the quarter.

In the textile industry it is customary to remove the small fibers of a thread by passing it through a gas flame: The main objection to this method is that most of the heat is wasted, and the products of combustion are injurious to the workmen. To overcome these disadvantages, an electrical singeing apparatus has recently been devised. It consists of a tube of platinum, which is slotted at one side to permit of introducing the thread. The tube is heated by heavy current of low. voltage. The products of the combustion are drawn off by an aspirator.

It is somewhat difficult to control the temperature of an electrically-heated flatiron, owing to the fact that when in use it is chilled by contact with damp goods, while at other times it is apt to be overheated. This difficulty is overcome by a recent invention, which provides a thermo-electric control When the flatiron is in use, a large amount of current is permitted to pass through the heating coils, but whenever the heat rises unduly, a switch automatically introduces the resistance necessary to cut down the current.

The North-Eastern Railway of England has just introduced an electric baggage car, designed to carry both parcels and fish. There are four compartments in the car, one at each end for the motorman, while the body of the car is divided at the center to form the separate luggage and fish compartments. A novel feature of the car is the arrangement of the couplers, there being three at each end. The center one is used for coupling to electrically-driven trains, while the two couplers at each side are required for coupling to a steam-driven train. The car is provided with four 125-horse-power motors
According to a recent consular report, the telegraph offices in Japan numbered at the beginning of this year 3,308 , and the lines were 5,387 miles long, with a total length of wire 92,227 miles. Nearly $8,000,000$ telegrams were handled during the year. All the naval vessels are equipped with wireless telegraphy, and some successful experiments have been made with the wireless telephone. The system of wireless telegraphy used is known as the Teishinsho, which is said to differ from the Marconi and De Forest systems. Most of the Japanese steamships on foreign lines are equipped with wireless telegraph apparatus.

The congestion of traffic around the new Union Station in Washington has made it necessary to provide special signaling systems for the trolley cars running to this point. The problem, which was quite a serious one, has now been solved by the use of switch and signal towers at the important switching points. These towers are ornate structures, consisting of small cabins mounted on posts and raised about 8 feet above the sidewalk so that the switchman has a clear view of the car lines. The signals consist of colored lights placed under grated openings in the car tracks. An interlocking switch and signal system is employed to prevent mistakes on the part of the switch operator. The signal will not show clear until the switch has been properly thrown, and thereafter the switch lever cannot be operated until the car crosses over the signal.

A recent number of the Electrical World contains an interesting suggestion, by which the distance and direction of a wireless sending station may be determined. It will be remembered that at the time of the collision between the "Florida" and the "Republic," the "Baltic," although but 65 miles away when first it received the signals of distress, was unable to find the "Republic" for twelve hours, during which time it had steamed over a course of 200 miles. Had there been some method of determining the position of the "Republic," the distance could have been covered in four hours. The method suggested by the writer in the Electrical World is based on Duddell's rule that the distance between the transmitter and receiver multiplied by the strength of the incoming current is a constant. If the "Baltic" had noted the increase or decrease of cưrrent while proceeding in one direction as compared with the variation when proceeding on another course, she could theoretically have figured out the exact location of the sinking vessel. While in practice it would be much more difficult to locate the exact position of the sending station by this means, owing to the variations due to other conditions, an approximate position might be calculated, which would undoubtedly be better than none at all.

SCIENCE.

It is reported that a syndicate prospecting 150 miles south of Suez, on the Red Sea coast, has struck oil, the gusher giving increasing quantities daily, and indicating large reserves. The possibility of a cheap supply of fuel is a discovery of the greatest importance to Egypt.
An attempt is to be made to acclimate the Korean wild fig in California. The fig, growing on a hardy vine, on trees, trellises, and hedgerows to a height of 30 feet, bears a delicious fruit. Some of the seed has been sent to the Department of Agriculture, Califor nia State University. The fig grows wild in Korea, and has proven of great value there.
Walter Wellman announces that he will renew his efforts to reach the North Pole by means of his dirigible airship this summer. Capital has been supplied by Americans. The general plan of the expedition remains as it was. In other words, the airship will be assembled and inflated at the headquarters station, Danes Island, Spitzbergen, and -will proceed northward some time in August.
Dr. H. O. Beeson states that a. very common and entirely avoìdable cause of indigestion is the use of common salt in excess. Salt, if used in the proportion of 4 parts or less to 1,000 , is beneficial to digestion, but beyond 6 parts to 1,000 it is positively harmful. Our daily áverage consumption is approximately 22.5 parts to 1,000 , whereas sea water contains only about 27 to 1,000 . Our daily army ration contains 307 grains of salt. of which only 15 are assimilated.
On May 1st the Delaware, Lackawanna \& Western Railroad installed on its through trains a system of supplying water to passengers which must commend itself to those who have the public health at heart. In every car a slot machine is installed, which supplies paraffine drinking cups for 1 cent apiece. The passen ger uses this paraffine vessel, and throws it away after use. The principle of the scheme is so good, and its advantages so obvious, that they need not be dilated upon.
In order to test whether or not his apparatus for the prevention of mountain sickness is a success, Prof David P. Todd will conduct experiments in balloon ing. It is Prof. Todd's idea to establish on some lofty peak an astronomical observatory, in the clear atmosphere of which it will be possible to make better astronomical observations than are now obtained. To carry out that idea, he intends first to ascertain whether or not mountain sickness can be prevented at elevations exceeding 6,000 feet. He has devised a special apparatus for supplying compressed air which he hopes may attain the object.
Misuse or excessive use of the X-ray is made the subject of a scathing criticism by Dr. Gordon G. Burdick of Chicago. The average X-ray operator in his opinion is thoughtless and careless to a degree, and one who will bear the marks of his blind enthusiasm to the grave. To see many of the electricians who have lived in the atmosphere of the X-ray laboratory is to see a living death personified. The tissues become corroded, and life is bearable only under the influence of opiates. It is sad to think that these men cannot plead ignorance, and that they have sadly and wantonly abused the supreme diagnostic agent of modern medicine.
The effect of earth shine upon the moon is a familiar one to many people, though probably few of them know the cause of the effect. When the moon is in its first quarter the dark portion of it is often faintly visible. The bright quarter is, of course, illuminated by direct sunlight, but the remainder is only seen by virtue of the faint light reflected from the earth. This faintly illuminated portion has been successfully photographed by M. Quènisset at the Kuvisy Observatory, and it appears likely that the results will present many points of interest to astronomers. The light received from the earth naturally falls at a different angle from that at which light is received from the sun, therefore it is reasonable to expect a slightly dif ferent effect of light and shade on the irregularities of the moon's surface.
Prof. H. E. Turner, F. R. S., of Oxford, England, in a recent paper refers to the number of earthquake observatories which have been constructed and equipped with delicate instruments that can detect and record the tremors of the earth's crust very exactly in regard to time and extent: From these re cords it appears that there are every thirty years some thirty thousand minor shakes of the earth in different localities. Of all these only sixty are world shaking and observable at a great distance. The Italian earthquake some months ago was one of this class. In speaking on the distribution of earthquakes, their periodicity and of their prediction, Prof. Turner states that "a shifting of the earth's axis, even to the slightest degree, would impose a great strain on some parts of the earth's crust, and this might explain earthquakes and in turn lead to appreciable results in foretelling them."

CORK-LINED FABRIC-A TEXTILE NOVELTY.
y the paris correg in soientific ane
A new fabric has been brought out in France, known as Tissu-Liege, or cork tissue, and it is now manufactured on a commercial scale. Cork, cut in very thin layers and treated so as to be quite flexible, is applied to almost any kind of woven fabric for this purpose. In this way a fabric is obtained which is quite water-

A COAT MADE OF CORK-BACKED FABRIC.

proof, and very light, odorless and comfortable in general. It is designed specially to take the place of rubber cloth and to overcome the numerous disadvan tages of the latter.
The cloth fabric is faced with the thinly-cut cork upon one side only, leaving the outer side of the usual appearance. If desired in certain cases, the cork layer is placed between two layers of cloth. In the process of manufacture the cork is given a preliminary treat ment by which it is freed of its resinous matter. It becomes quite flexible and is cut into very thin sheets A sheet is placed upon the fabric and is tightly pressed upon it. Any of the usual fabrics can be used with the cork layer, cotton, rool, silk, ramie, jute, and others. The operation does not change any of the properties of these fabrics nor their external appear ance. Felt as well as leather can be employed in this way.
The fabric thus cork-lined does not deteriorate in the course of time, which is the case with rubber cloth. - It is well known that rubber, especially in thin layers, quickly deteriorates and after a time be comes brittle and cracks, thus losing its waterproof character. Because of the lightness of the cork, a garment made of Tissu-Liege is scarcely over half a pound heavier than the same when untreated. Those who feel the weight of rubber cloth garments will see this advantage at once. It might be thought that the cork could not be supple when thus applied, but in reality it is made as supple as cloth; for the cork is treated so as to be quite freed from the resinous bodies

ter camera with its three lenses and socket in front for a common condenser.
which make it brittle, and is cut in very thin layers of $1 / 10$ millimeter ($1 / 250 \mathrm{inch}$). It is somewhat surprising to see that such a cork fabric can be bent and folded down without the slightest sign of breaking, and in fact the cork is now as flexible as cloth, owing to the extraction of the resinous parts.

A NEW COLOR-PHOTOGRAPHY PROCESS

description of a new camera for taking and project ing phorographs in natural colors
Amateurs would no doubt use much oftener the three-color process for obtaining views in natural colors were it not that there is a considerable complication in carrying out the method as it is employed at present, at least when we compare it with ordinary photography. When well handled, the use of the three screens for color photography will give very pleasing results, and these are well worth the pains which are spent in this way. However, there is not only the difficulty in taking the three exposures with the color screens, but after the plates are obtained they must be matched exactly in order to secure the proper comhined effect. On the other hand, owing to the introduction of the new autochrome and similar plates for taking photographs in colors upon a single plate, it is to be feared that the three-color process will be abandoned unless there is some more simple means found for carrying it out. This seems to be the case, however, with the apparatus devised by M. André Chéron, of Paris.
What is characteristic of M. Chéron's apparatus is that it not only takes the three views upon a single plate and in one operation, but that it also serves, after the plate has been obtained, for projecting the views upon a screen, as would be done in a stereopticon, so that we can observe the views in their natural colors and greatly enlarged, without taking much more trouble than is found with the use of an ordinary camera. For this purpose he employs a camera of small size like that illustrated herewith, and makes use of three lenses of the same kind, one for each of the red, yellow, and blue color screens. These screens are properly graduated in color beforehand so as to secure the proper effect. The lenses are of the fixed focus type such as are used in the non-focusing kodaks. In the rear of the camera is an ordinary plate holder. The plate used is large enough to take all three images from the three lenses, and owing to the reversed effect there are thus two images at the top of the plate and one at the bottom. As the images given by the lenses are less than two inches in diameter, all three of them can be taken upon a 4×5-inch plate, so that the camera is of small and portable size. A shutter of the rolling curtain type is mounted next to the plate and allows of making the exposures. The color screens are adjusted with the lenses so that the exposures for the three lenses can be made at the same time. After exposing the plate, it is developed, and from the negative a positive or lantern transparency is made in the usual way, so that it also contains the three images in black and white. For making the projection on the screen in natural colors, the transparency is placed in an open slide or plate holder and put in the position occupied by the original plate. A lamp, such as a Welsbach burner or other good light, is placed back of the camera so that the beams of light pass through the plate and out through the lenses. These, as already stated, are of the constantfocus type, that is, they are focused only for parallel rays coming from the distant object, and such rays are brought to a focus on the plate. If now the light be sent through the image, this light will be divergent at first, but upon reaching the lens the rays will be brought to a parallel beam such as the lens received from the distant object in the first place. Such rays therefore will not be concentrated on the screen placed in front of the camera. Taking the case of a single image and its lens, the parallel rays given out from the lens can be brought to a focus on the screen by using a second lens in front of the first one. With the color screen still in place the red image would thus be obtained on the screen. The second combination lens would project the blue image which would be superposed on the first, and the same would be the case with the yellow image, so that the three differ-ently-colored images being thus superposed upon the screen would give the image in natural colors. However, in practice, it would be a complicated matter to use three extra lenses. M. Chéron has found that he can concentrate all three images on the screen and at the same point by using a large condensing lens of the usual type, which he inserts in the circular socket surrounding the three lenses. It will be seen that the projection of the images on the screen is thus accomplished in a simple and quite automatic manner, since all the adjustments are made beforehand so that the three images fall upon the screen and are exactly matched, simply by placing the large lens in position. Thus the projection can be carried out by the use of the camera itself, and there is no extra apparatus whatever to be set up outside of the source of light and the screen.

Each of these lenses has a diaphragm which is set properly for the correct color values once for all for taking the photographs. However, the relation of the color values is not the same upon the photographic plate as it is for the eye, so that when it comes to the projection of the images the diaphragms have to be readjusted so as to give the correct proportions for human vision. This second adjustment, as well as the

SPECIMEN OF CORK-BACKED FABRIC.

first one, is found once for all, so that it is repeated at will without any further trouble. In order to give the correct adjustment of the images, the plate holder which carries the transparency is mounted on a pivot so that if there is any slight difference in position this can be corrected by observing the projection on the screen and turning the camera until the right effec is secured. Should it be desired to take views of ob jects being nearer the camera than the use of the con stant-focus lenses will allow, we can insert the large

fabrics lined with cork.

condensing lens, or another lens of the same diameter can be placed in front of the three lenses. The rays from the object will be then rendered parallel by the large lens before they pass into the small ones.

An objection may be made that the pictures can only be viewed in colors instead of seeing them upon a single plate, as is the case with the Lumière proc ess; but as the Lumière plates are not very trans parent, they cannot be well projected except by calcium light or a strong arc light, and this is not always within reach of the amateur. M. Chéron's process allows of using a gas burner and can thus be employed by anyone, which is a distinct advantage when it comes to projection work. At the same time the views seen in large size on the screen are more agreeable than the small views. The size of the projected image, when an incandescent gas burner is used, is about three feet in diameter, and good illumination of the image is obtained. With a stronger light the diameter can of course be increased. Another point is that this new camera could, with certain modifications, be used for taking and projecting moving pictures in colors.

A reagent which yields a more delicate and charac teristic test of the presence of arsenic than is given by Bettendorff's reagent is made by dissolving 1 part of calcium hyposulphite in 10 parts of fuming hydrochloric acid. A few drops of this solution added to the suspected liquid produce an orange red coloration on standing if arsenic is present. If the quantity of arsenic is large, a brown precipitate is ultimately formed.

TRANBPAREITCY BHOWING THE THREE IMAGES FOR PROJECTION THROUGH THE THREE COLOR GCREENS.

THE MOST POWERFUL LOCOMOTIVES EVER BUILT. The Baldwin Locomotive Works have recently completed for the Southern Pacific Company two Mallet articulated compound locomotives, which are undoubtedly the heaviest engines thus far built for any railway. These locomotives have eight coupled wheels in each group, and in accordance with the previous practice of the builders, are equipped with two-wheeled leading and trailing trucks. The constructive details embody various features of special interest. The calculated tractive force of this design is 94,640 pounds. The locomotives will be used on the Sacramento Division between Roseville and Truckee, where the maximum grade is 116 feet per mile, and the rating 1,212 tons of cars and lading
The enormous size of the engine will be readily appreciated from a study of the following dimensions: The high-pressure cylinders are 26 inches diameter by 30 inches stroke; and the low-pressure cylinders, 40 inches diameter by 30 inches stroke. The boiler is
placed in the piping system between the high and lowpressure cylinders, is located in the smokebox.
In order to facilitate repairs, the boiler is provided with a separable joint, which is placed at the rear end of the combustion chamber. The joint is effected by riveting a ring to each boiler section, and uniting the rings by 42 bolts, $11 / 4$ inches in diameter. Two of the illustrations show the boiler separated at this point, the forward half resting upon the forward truck, upon which the low-pressure cylinders are carried, the rear half with the high-pressure cylinders being carried upon its own frame and wheels.
The waist-bearer under the combustion chamber is bolted into place, while the front waist-bearer and the high-pressure cylinder saddle are riveted to the shell. The dome, which is of cast steel, is placed immediately above the high-pressure cylinders, and the arrangement of the throttle and live steam pipes is similar to that used on heavy articulated locomotives previously built at these works. The exhaust from the high-pres-
low-pressure reverse shaft is placed on the center line of the engine, and is fitted with a universal joint located immediately above the articulated frame connection. The joint is guided between the inner walls of the high-pressure cylinder saddle. In this way the reversing connections are simplified, and when the engine is on a curve the angular position of the reach rod has practically no effect on the forward valve motion. This arrangement has been made the subject of a patent.
One of the locomotives is equipped with vanadiumsteel frames, and the other with frames of carbon steel. The connection between the frames is single, and is effected by a cast-steel radius bar, which also constitutes a most substantial tie for the rear end of the front frames. The fulcrum pin is 7 inches in diameter; it is inserted from below, and held in place by a plate supported on a cast-steel crosstie, which spans the bottom rails of the rear frames between the high-pressure cylinders. The weights on the two

Low-pressure engine and truck with combustion chamber, superheater, and smokebox of boiler.

The boiler, separated at forward tube plate from combustion chamber. Mounted on the same frames are the high-pressure cylinders.

Total weight engine and tender, 300 tons. Drawbar pull, 94,640 pounds, Cy linders: Two high-pressure, 28 inches by 30 inches; two low-pressure, 40 inches by 30 inches. Diameter of boiler, 7 feet; heating surface, 6,393 square feet.

THE MOST POWERFUL LOCOMOTIVES EVER BUILT.

84 inches diameter; the firebox is 10 feet 6 inches long; the fire tubes, 21 feet long; and the feed-water heater tubes, 5 feet 3 inches long. The total heating surface is 6,393 square feet. The steam pressure is 200 pounds to the square inch. The total weight on drivers is 394,150 pounds; the total weight of engine is 425,900 pounds; and the engine and tender together weigh just under 300 tons. The maximum pull on the drawbar is 47 tons.
The boiler is straight-topped, 84 inches in diameter, and is equipped for oil burning. The fire tubes are 21 feet long; they terminate in a combustion chamber, 54 inches long, in front of which is a feed-water heater 63 inches in length. Two non-lifting injectors are provided, and they discharge, right and left, into the feedwater heater chamber, which is kept constantly filled with water. The feed passes out through the top of the chamber', and is then delivered into the main barrel through two checks, placed right and left immediately back of the front tube sheet. A superheater,
sure cylinders passes into two pipes which lead to the superheater. The steam enters the superheater at the front end of the device and passes successively through six groups of tubes. It then enters a T connection, from which it is conveyed to the low-pressure cylinders through a single pipe having a ball joint at each end and a slip joint in the middle. The steam distribution is controlled by 15 -inch piston valves, which are duplicates of those used on the high-pressure cylinders. The final exhaust passes out through the front of each casting, into a T connection, which communicates with a flexible pipe leading to the smokebox. The slip joint in this pipe is made tight by means of snap rings and leakage grooves. At the smokebox end the ball joint is fitted with a coiled spring, which holds the pipe against its seat.

Reversing is effected by the Raggonet power gear, which is operated by compressed air and is self-locking. The gear is directly connected to the high-pressure reverse shaft. The reach rod connection to the
groups of wheels are equalized by contact between the front and rear frames, no equalizing bolts being used in this design. The front frames are stopped immediately ahead of the leading driving pedestals, where they are securely bolted to a large steel box casting. previously mentioned, which supports the low-pressure cylinders.
The boiler is supported on the front frames by two bearings, both of which have their sliding surfaces normally in contact. The front bearing carries the centering springs, and the wear is taken, in each case by a cast-iron shoe 2 inches thick. Both bearings are fitted with clamps to keep the frames from falling away when the boiler is lifted.
The locomotive is readily separable, as the joint in the boiler is but a short distance ahead of the articulated frame connection, and all pipes which pass the joint are provided with unions. The separable feature was tested by the builders, and proved entirely feasible. The tender is designed in accordance with Asso
ciated Lines standards, and is fitted with a 9,000 -gallon water-bottom tank. The capacity for oil is 2,850 gal lons. The trucks under both the locomotive and tender are equipped with "Standard" solid forged and rolled steel wheels. The detail parts of this locomotive have, where possible, been designed in accordance with existing standards of the Associated Lines. The engine is practically equivalent, in weight and capacity, to two large Consolidated type locomotives, and in spite of its great size, presents a pleasing and symmetrical appearance.

$\$ 200$ in Prizes for the Best Garden.

If you have a small garden and you are proud of it, the readers of American Homes and Gardens want to know all about it. For the encouragement of those who have converted an unsightly lot into a lovely, blossoming piece of ground, however small, the Editor of American. Homes and Gardens offers cash prizes aggregating $\$ 200$.
The prizes are offered iur the best-planted, developed and successful village or suburban gardens. The Editor and the readers of American Homes and Gar dens want to know how you planted your garden and What success you had with it. You need not be a skilled writer to compete.
The unusual opportunity offered in the Garden Com petition should call forth immediate and practical results. It is a project that should appeal alike to the owners and creators of gardens, and to those who want helpful hints and suggestions on the making of a small garden. For it is the home garden the inexpensive home-grown garden, for whieh these prizes are offered. In other words the gardens of the people; as distinguished trom the gardens of the gar deners. Everyone may have a small garden, even if it be but a front yard, and it is precisely these home gardens which are made and tended by the family that are sought in this competition.
The Garden Competition raises the plain question; Who has the best garden? And the readers of the Scientific American are invited, with the utmost cordiality, to answer this question.
If your garden is a small one, so much the better. No garden is too unimportant for consideration in this competition, for the award of the prizes will be based on the merits of the gardens as gardens, and not on their. size and cost.
This competition affords a splendid opportunity to give many persons pleasure by making known the beauties of your own garden to them; but it should help and stimulate others in new and other garden work, by giving them some detailed information as to the successful gardens others have created. And if one garden is good, two are better and three more so, until a whole community may be alive with this richest of rural treasures. The practical questions are, How is it done, and what can be done? These two questions, it is hoped, will be abundantly answered in the material sent in for "this competition. We inrite our subscribers and readers, and their friends, and the friends of their friends, who have gardens that they think of real interest and beauty, or who may possess choice bits of garden loyeliness, to enter this competition
The full conditions of the contest will be found in the May number of American Homes and Gardens.

THE LONAR AND SOLAR ECLIPSES IT JUNE, 1909.

 by prof. frederic r. honey, trintty college.The gradual advance of the dates of eclipses was clearly illustrated in the year 1908, which included
narily, the line of nodes comes into line with the radius of the earth's orbit twice each year, and an eclipse is possible only when the moon is at or near one of the nodes. In nine years the plane of the moon's orbit makes one-half a rotation; and as a consequence, one makes one-half a rotation; and as a consequence, one
more eclipse season is included in the number which belongs to this period.

In the year 1909 there will be two eclipses of the

Position of the earth at the time of the ecl.
sun and two of the moon-on June 3rd, a total eclipse of the moon; on June 17th, a central eclipse of the sun; on November 26th, a tôtal eclipse of the moon; and on December 12th, a partial eclipse of the sun. The position of the earth at the time of the eclipse is shown for each of these dates in Plot 1.
Plot 2 is a plot of the moon's orbit for the month of June. That part of the orbit which is above the plane of the ecliptic is represented by a full line. The position of the moon is shown at Greenwich noon for

The moon's orbit for the month of June.
each day from the 1st to the 28th and also for the 3rd and 17 th at the time of the eclitse. In each case the projection of the moon's orbit radius on the plane of the ecliptic would coincide with that of the earth if the two plots were combined in one drawing. Since they are shown separately. they are respectively parallel; and the line of nodes $N N^{\prime}$ is showri in its position relatively to the orbit radii of the earth and moon.

Figs. 1 and 2 are projections of the earth on a plane which is parallel to its axis and perpendicular to the
earth shown at the corresponding dates in Plot 1. On June 3rd, 13.5 h ., when the moon will be near the descending node N^{\prime}, she will come wholly within the earth's shadow. The eclipse, seen in the direction of the arrows, will be partly visible at Washington, the moon rising eclipsed. The beginning of the eclipse will be visible in South America, Africa, Europe, and southwestern Asia. The end will be visible in Africa, central and western Europe, South America, and nearly the whole of North America.
During the interval between the two eclipses the moon's orbit will be below the plane of the ecliptic, as shown by the dotted line. The eclipse of the sun on the 17 th (17 d .11 .5 h .) will occur some time after the moon has passed the ascending node N. The distance from the ecliptic will be so great that the vertex of the moon's shadow will pass very near the north pole. (Fig. 2.) The path of the moon's shadow is shown in Fig. 3, which is an enlarged projection of a portion of the earth's surface near the pole on a plane which is perpendicular to its axis. In this projection the position of the meridian of Greenwich, and of one from which a central eclipse will be visible at noon are shown. The latter, in Fig. 2, is indistinguishable from the great circle which represents the earth, which is approaching the summer solstice, when the meridian at noon will coincide with $a b$, the plane perpendicular to the ecliptic which will contain the earth's axis. The central eclipse between latitudes 51.5 deg. N. and 64.25 deg. N. will be total; and beyond these limits it will be annular. In Fig. 3 the path of totality is limited by arrowheads. A central eclipse shows that the vertex of the moon's shadow reaches the earth where the eclipse is total; and that it does not quite reach it beyond these limits; i. e., the length of the shadow does not differ very much from that of the moon's orbit radius, which at the date of the solar eclipse will be about 236,000 miles. As a partial eclipse it will be visible in nearly all North America, Greenland, Iceland, Japan, north Philippines, China, Siberia, and a small part of northern Europe. It will be visible at Washington, the sun setting eclipsed.

A $\$ 10,000$ Aviation Prize for America.

With a view to encouraging inventors to complete their machines and make flights this summer at New York, the Aeronautic Society has decided to offer a prize of $\$ 10,000$ for a flight of 100 miles. This prize will be divided into five sections, the first of which$\$ 2,000$-will be awarded to the aviator who makes the fastest circuit of the Morris Park race track- $13 / 4$ miles-at the first 1909 exhibition and meet of the Society on the 29th instant; or, if no machine makes the flight on that date, to the first one that accom plishes it upon any subsequent exhibition-flight day, which will probably be Saturdays throughout the-summer. Proportionate amounts will be given for a flight less than a complete circuit on May 29th. As soon as the first section has been won, announcement will be made of the flight required to win the second section, etc.
The offering of so liberal a prize for flying machines oniy at this time should make it worth the while of wealthy sportsmen to aid inventors to a considerable extent financially, with the object in view of winning it. Besides flying for the cash prize, each aviator can at the same time set up a record for the Scientific American Trophy-a record which, if unsurpassed during the year, will entitle the holder to be declared the winner for 1909 and to have his name and record inscribed upon the trophy. Any aviator winning it

The path of totality.
Projections of the earth on a plane which is parallel to its axis and perpendicular to the plane of the ecliptic at the dates of the eclipses.
the lunar and solar eclipses in june, 1909.
three eclipse seasons; the first occurring in the month of January and the last in December, the average in terval between eclipse seasons being less than six months. The plane of the moon's orbit makes one complete rotation in a direction contrary to her orbital motion in a little over eighteen years and a half. Ordi-
plane of the ecliptic at the dates of the eclipses. In these projections more than one-half of the visible hemisphere is illuminated between the dates of the vernal equinox and the summer solstice. This area gradually diminishes as illustrated in the figures, which may be compared with the positions of the
three times in three different years will become the permanent winner.
To encourage its members, over a score of whom are building aeroplanes, the Aeronautic Society has offered three $\$ 250$ prizes for the first three machines making a flight of 500 feet at Morris Park.

(foxrempandente.

TRUTH ABOUT THE "DREADNOUGHTS."

To the Editor of the Scientific American:
As a constant reader of the Scientific American I "The Truth About the German 'Dreadnoughts." ", wish to say that I have always followed the naval constructions of the different powers very closely, and find that your statement is absolutely correct as to the numbers of ships laid down by Germany, their arma ents, etc
After having read so many articles about the "menace" of the German navy, the exaggerated numbers of ships laid down by Germany, as seen almost copied quite extensively by many papers in this coun try, it is really refreshing to read the plain truth which you have so nobly represented to your readers, and which, believe me, will not only make the Screntific American the cleanest and most reliable paper in this country, but will make it a necessity to every eader who reads to learn the truth!

THE NEW GERMAN PHOTOGRAPHY.
 \section*{To the Editor of the Scientific American:}

I noticed in your last week's issue an article regard ing a new phonograph invented by Nees, Hamburg Germany. As your article gave but little data on its workings, perhap.
The instrument is a clumsy affair, its waxed recording and transmitting cylinder being about ten times larger than the ordinary phonograph. The recording, of instrument: the vibrations of the stylus are tan ential to the cylinder.
In the transmitter no stylus is used, nor vibrating diaphragm, but a smooth cylinder revolving synchronously with the waxed one, and in contact with it. A fine jet of compressed air is directed against the line of vibrations on the wax and can only escape
through the grooves in the wax made by the stylus in through the grooves in the wax made by the stylus in horn, thus involving the characteristics of a syren. Washington, D. C.
e. H. Hawley.

More About Signaling to Mars.

Prof. Pickering's idea of signaling to Mars by means of a huge system of mirrors, which will fiash the sun's light rhythmically to our planetary neighbor, seems to have attracted not a little attention, and to have called forth other schemes from more or less eminent scientists.
Prof. Pickering belíeves that $\$ 100,000$ should be spent in preliminary work before any attempt is made to flash signals. These preparations will consist in the building of a huge telescope, and in experimental observations made with the co-operation of the foremost astronomers of the world. The object of this preliminary work is to decide whether or not the canals of Mars are really artificial. In all, three years' time would be consumed in these preliminaries.
A correspondent of the New York Sun, who states that he is a practical heliograph man, calls attention to a fact which seems to have been ovẹlooked. Prof. Pickering proposes to make mirrors of such a size that they must necessarily be moved by machinery. His idea appears to be that if they were each ten feet across, there would be about 500 of them to the mile. The heliograph man points out that a pocket mirror two inches square will do just as much work as a mirror that is ten feet square. All that any mirror can refiect is the single image of the sun. He states that it is possible to fiash from 6 to 48 miles with a shaving glass. This seems to be borne out by the fact that the standard size of an army heliograph is less than 4 inches. Hence, 10 -foot mirrors would hardly be any more serviceable than 4 -inch mirrors. The Sun's correspondent suggests that instead of spending $\$ 10,000,000$ on $\mathrm{an}_{\text {, e elaborate }}$ system of me-chanically-moved mirrors, it will be much cheaper to buy 5,00010 -cent mirrors, or to make a bargain with any looking-glass manufacturer to sell scraps of silvered plate glass at least two inches square. An army of 5,000 men should then be deployed, stationed ten feet apart on the Staked Plains of Texas. They should be given a front sight which will enable them to aim at Mars.
Prof. David Todd of Amherst College also intends to improve the opportunity offered by the earth's proximity to Mars next autumn to discover whether or not the planet is really inhabited. He assumes that if Mars has inhabitants, and if they are as intelligent as we are, they may possibly attempt to communicate with the earth at that time, and that they may employ Hertzian waves for the purpose. It is his plan to take the most sensitive wireless telegraph receivers he can find up in a balloon, in order to diminish any obstructive influence that the atmosphere may exert and listen for signals in space. We wonder how Prof. Todd can tell whether his signals come from Mars, or whether the receivers have not simply responded to electrical -waves sent out from the sun.
Attention has already been called in these columns to Prof. Wood's idea of using a large black spot on the white alkali plains, with which signals may be "winked." According to Prof. Wood, the spot could
be made in small sections of black cloth arranged to roll up on cylinders, exposing the white ground underneath, the cylinders being turned simultaneously by electric motors.

Official Meteorological Summary, New York, N. Y., April, 1909.
Atmospheric pressure: Highest, 30.65; lowest, 29.70; mean, 30.06. Temperature: Highest, 80; date, 19th; lowest, 24 ; date, 11 th; mean of warmest day, 64.5 ; date, 19th; coolest day, 44.5 ; date, 11th; mean of maximum for the month, 57 ;' mean of minimum, 42 ; absolute mean, 49.5 ; normal, 48.7 ; excess compared with mean of 39 years, 0.8 . Warmest mean temperature of April, 54, in 1871; coldest mean, 41, in 1874. Absolute maximum and minimum for this month for 39 years, 90 and 20. Average daily excess since January 1, 2.6. Precipitation: 5.93 ; greatest in 24 hours, 2.80 ; date, 14 th and 15 th ; average of this month for 39 years, 3.39. Excess, 2.54. Accumulated excess since January 1, 1.80. Greatest April precipitation, 7.02, in 1874; least, 1.00, in 1881. Snowfall, melting as it fell, 0.08 inch. Wind: Prevailing direction, northwest; total movement, 10,420 miles; average velocity, 14.5 miles per hour; maximum velocity, 83 miles per hour. Weather: Clear days, 8; partly cloudy, 8; cloudy, 14. In which 0.01 inch or more of precipitation occurred, 15. Fog (dense), 19th; sleet, 29th; frost, light, 16th, 25th; heavy, 12th; killing, 11th. Thunderstorms, 19th, 21st, 22nd, 29th.

The Current Supplement.

There has recently been acquired by the Bavarian state railroad for the haulage of motor coaches over state railroad for the haulage of motor coaches over
short distances, a new type of steam motor which embodies several novel features. This new motor coach is described and illustrated in the opening article of the current Supplement, No. 1741. Mr. Prevost Hubbara, of the United States Department of Agriculture, contributes an authoritative discussion of the temporary tar and oil binders, emulsions, and similar preparations as dust preventives. An ingenious apparatus for destroying moths is described, which apparatus consists of nothing more or less than a powerful searchlight which attracts the moths, and a trap for impounding them. The use of the gyroscope for the steadying of aeroplanes is set forth by Lucien Fournier. The cost of electric heat is estimated in the light of the most recent information. Sir Oliver Lodge sets forth briefly the modern electrical view of matter. Among the minor articles may be mentioned those on the new British battleship "Vanguard," "Aerial Flight in Theory and Practice," "Synthetic Preparation of Ammonia," "A Home-made Pneumatic Elevator," and "A Revolutionary Proposal in Blast Furnace Construction." Prof. Molisch describes a method of detecting the heat which emanates from living foliage. Mr. Lanchester's interesting paper on the Flight of Birds is concluded. S. H. Higgins writes on the Theory of Dyeing. The recent newspaper discussion of the habitability of Mars renders timely Mr. F. W. Henkel's popular article on Life in Other Worlds. The usual Engineering Notes, Science Notes, and Trade Notes will be found in their accustomed places.

THE PALACE OF MIRAGES.

The apparent multiplication of objects placed between two parallel mirrors is a well-known optical phenomenon. The spectator's image is refiected from one polished surface to the other and back again. Inasmuch as at each reflection another image is added to the preceding image and the perspective is increased, the spectator sees himself infinitely multiplied, at least theoretically.

During the International Exposition of 1900 at Paris, Eugène Hénard built a Palace of Illusions on the Champ de Mars, in which structure refiecting mirrors were made to produce endless duplicates of architectural effects, electrical ilhumination being employed to increase the mystifying illusion. Somewhat similar, but even more bewildering, is the Musee Grevin which has recently been erected in Paris.

Hénard's "Palace of Illusions" comprised a hexagonal room about twenty meters (65.6 feet) in diameter, the walls of which were mirrors, framed in great Moorish arches resting on columns and pedestals located at the six angles of the hexagon. A dome carried on arches surmounted the whole. The optical repetition of the same architectural motifs created in the spectator the illusion of a great number of halls extending endlessly in all directions. In Fig. 1, the manner*in which this effect was produced is clearly shown. The hall itself is shown in the center of the drawing by cross hatch lines, together with the six mirrors and the six columns. Immediately surrounding this hall, the spectator saw six exactly similar halls (shown in vertical lines), the result of the first reflection. Beyond this first refiection the spectator saw a second series of halls (horizontal lines), and farther on a third, which in turn was surrounded by other hexagons, and so on in an infinite series.

Considering only the first three repetitions, it will be observed that six halls are produced by the first reflection, twelve by the second and eighteen by the third. A man standing in the center will, therefore easily distinguish thirty-six halls comparatively close to him, and for the following refiections a still larger number of halls, which increases indefinitely. It is evident that a particular piece of decoration, illuminated either with visible electric lamps or by spot lights, will be instantly multiplied in all directions, producing a wonderful spectacle.
The "Palace of Illusions" of 1900 was so illuminated that fifteen different luminous effects could be obtained, so beautiful that $2,000,000$ visitors paid to wonder at the illusion.
The "Palace of Mirages" is a development of the idea which was carried out in the "Palace of Illusions." Whereas the "Palace of Illusions" could boast of only a single scheme of decoration, there are no less than three such schemes in the "Palace of Mirages"; that is, independently of lighting effects, the spectator is presented with three absolutely distinct effects.
This improvement has been effected by Hénard by euploying, in addition to six large fixed mirrors for the walls, twelve smaller revoluble mirrors, which constitute the angles of the hexagon, and to which architectural motifs are applied. These smaller mirrors are pivotally mounted, so that they can be turned to present three different varieties of decorations for refiection. In Fig. 2 the principle of the mechanism is disclosed. At each of the angles of the hall six rotary drums are mounted, carrying six mirrors arranged in pairs, and forming three angles of 120 degrees each. Each angle of the hexagon also measures 120 degrees. Hence, by giving the drum one-third cf a turn, the entire aspect of the hall and its perspective is changed. By means of a very delicate, electrically controlled mechanism, the six drums can be turned either independently or simultaneously. When stationary, the mirrors of the drums complete the angle of the hexagon, so that they are apparently part of the walls. The drums are actuated by a friction wheel, and are stopped without shock by means of a brake of special construction. This precaution is absolutely necessary, when it is considered that even a very slight jar might shake off the very elaborate decorations applied to the mirrors.
In order to obtain sharp contrasts in effects, M. Hénard has interpolated a forest scene between two architectural illusions. By placing at the six angles of the hexagon tree trunks of different forms, the vast number of refiections produced by the mirrors leads the spectator to believe that he is the center of forest avenues radiating from him. It became necessary in carrying out this scheme to conceal the dome by a covering of foliage. This is accomplished by means of a fiexible painted fabric, which slides through a central ring and which is capable of expanding to form a ceiling of leaves for the hall. The fabric is dropped by means of wires and invisible counterweights.
The three schemes of decoration selected are the fol lowing:- A Hindu temple, a forest, an Arabian palare. Although these three schemes of decoration themselves render it possible to obtain wonderful effects Hénard has seen fit to heighten their possibilities by electric illumination. In the Palace of Illusions of 1900, fifteen different luminous effects could be obtained, but in the Palace of Mirages about three times as many are possible. In other words, 45 different luminous effects are obtained by means of 2,500 colored electric lamps, of which 1,800 can be simultaneously illuminated for the final effect in the last scene. If it be considered that the first three refiections produce an illusion of 36 halls, then the resulting illumination is equivalent to $36 \times 1,800$, or 64,800 lamps.
This system of electrical illumination is supplied with direct current of 500 amperes and 110 volts. In order to bewilder the spectator as much as possible, Hénard employs moving as well as fixed incandescent lamps. The moving lamps are tellingly employed in the forest reflections. Amid the foliage shimmering in the pale light of the moon, swarms of luminous butter flies are seen beating their wings incessantly. Pres ently, the butterflies disappear, and a shower of multicolored stars drop from the branches.
The forty-five different luminous effects are obtained by means of a special switchboard which is nothing more nor less than a keyboard having forty-five keys. Whenever a key is depressed, a new luminous effect is obtained. In other words, the electrician plays on a kind of switchboard piano, and changes the illumination at will.
The manufacture of the mirrors was no light task. It was necessary that they should be absolutely plane surfaces, so that no distortions in refiections would be produced.
Had this precaution not been observed, the align ment of the galleries would have been destroyed, and with it the optical illusion. Furthermore, the sides of the angles formed by the movable mirrors had to coincide exactly with the plane of the fixed mirrors.

Since there are 36 revolving mirrors, it is evident that the difficulty to be surmounted was not insignificant. Furthermore, when it is considered that the six large fixed mirrors constituting the sides of the hexagon are enormous, measuring no less than 11 feet by 16 feet, we are safe in saying that they are the largest of their kind which have thus far been manufactured.
Let us now enter the "Palace of Mirages" and obtain some idea, if we can, of the wonderful sights there to be seen.

We pass into a hall of apparently immense size, surrounded by mysterious galleries, which lose themselves in infinite depths. The roofs of these galleries are supported by massive columns in the Hindu style of architecture. The columns are surmounted by elephants' heads richly carved and studded with gems. Around the heads of the elephants great serpents are coiled. At one of the angles of the hall looms the Hindu Trinity: Vishnu, the conserving god; Brahma the creating god; and Siva, the destroying god. The silence of the hall is broken by a few musical chords. Suddenly the eyes of the elephants open. The stones which serve as their eyes and decorations glow in varied colored lights, and the great serpents shimmer like emeralds. Vari-colored lights flash from the ceiling, and pass through all the shades of the spectrum. An immense lotus flower bursts into light in the center of the dome.

The music becomes wilder, and the colors merge into purple and delicate red. The serpents assume a scarlet tinge. The scene is like a brief glimpse of Inferno.

A bell sounds. The entire hall is plunged into darkness. In the gloom columns can vaguely be seen as they shift. Forms appear and disappear. Suddenly the light flares out again, and the spectator finds himself transported into a forest. As far as the eye can see are avenues of oaks, birches, elms, and hawthorns in full bloom. A canopy of leaves spreads out above the
trunks of the trees. Bushes grow around the trees. A soft light filters through the branches. The leaves are touched with the gold of autumn. It is a veritable enchanted forest. Soft music accompanies this delightful vision. Presently a blue butterfly drops from

above, beating its wings. He is followed by a superb peacock, and then by a flying cloud of luminous exotic moths. A bluish light suffuses the scene. Stars begin to appear. One, two, then ten, finally a million, apparently drop down from the branches, only to be extinguished as they reach the ground. It is like a shower of light, a rain of meteors. When the last star has fallen and has been extinguished, night descends, and complete obscurity reigns once more.
Another peal of the bell is heard. The light gradually increases. In the faint illumination the spectator sees long avenues flanked by columns of luminous onyx. He wonders if he is at the court of a Khalif or in the Palace of Aladdin. The dome shines like a sun. The music of a triumphant march rings through the halls. Everything grows brighter and brighter, increasing in brilliancy. Every column scintillates, every arch, every capital, every curve, seems outlined in sapphires, diamonds, and rubies. Columns seem crowned by diadems of precious stones. Mad arabesques seem reproduced infinitely. Everywhere stars shine as though in an endless firmament. Finally, the entire dome blazes forth a brilliant glare of light.

A conference was held at Brussels for repressing the use of saccharine in food products or drink. While the drug has 400 times the sweetening power of sugar, it is dangerous to health and it is desired to prevent the fraudulent use of the product. Delegates were present from all parts of Europe, and it was decided to hold a new conference on the subject at Geneva during the next spring. A resolution regulating the use of saccharine was adopted. Fiscal agents will look after the manufacture and destination of the product and see where it is employed. In many countries of Europe it is brought in by contraband, and in one case there was found in a vessel in the Russian port of Riga about a ton of saccharine, which would re place 400 tons of sugar.

The Arabian palace. By playing upon the keyboard sho opposite, wonderful luminous effects are obtained.

Fig. 1.-How images were multiplied by reflection in "'Palace of Illusions."

The keyboard by means of which the illumination is changed.

The mechanism by which the painted fabric is dropped which serves as the leaty roof of the central hall in the forest scene.

The Hindu temple, one of the three optical illusions produced in the "Palace of Mirages' by the aid of mirrors.

THE EXCAVATIONS AT DELPHI

SOME STRIKING DISCOVERIES MADE BY M. HOMOLLE

By THE PARIS CORRESPONDENT OF THE SCIENTIFIC AMERICAN

The whole of the site of the sacred inclosure of Delphi has now been uncovered by the excavations which have been carried on by the French School of Athens, under the direction of the eminent archæologist M. Homolle. We have already referred to this subject, but the undertaking is so large in scope that it affords an almost inexhaustible field for description. The rights of excavation on the site of Delphi were
tants and contained four hundred houses. This operation alone entailed an expense of over $\$ 50,000$ before any of the excavation work could be commenced.
As to the scope of the excavations which the French School of Athens carried out, this work bears upon the entire sacred inclosure containing the temple of Apollo and the theater, as well as all the portions which depended upon it, including the stadium, the

A wonderful assemblage of artistic riches adorned Delphi. There are votive buildings, statues, and various commemorative offerings. Delphi was the great religious center of Greece, and kings and representatives of various nations came to consult the oracle. On such occasions, as well as after great victories or where there were special reasons for thanksgiving, there were erected what are known as the treasuries

A charioteer, constituting part of a gronp comprising a chariot and four horses.
conceded to the French government by a diplomatic agreement which was ratified by the French and Hellenic parliaments in 1891. It was far from easy to carry on the work of excavation. The site of the ancient sacred inclosure was covered by the village of Castri. Measures had to be taken for removing the whole village, and this required no less than two years, as it was a community of about a thousand inhabi-

Plan of the Temple of Apollo restored by Homolle.
gymnasium, the celebrated spring of Cassotis, and various edifices. The work of uncovering this extensive area required as many as 400 workmen and several miles of track for the 75 light cars which were used for removing the ϵ arth. The extent of the excavations covers about a mile and a half in length. In all this large area the excavation was carried down to the virgin soil.

Figure on the capital of the acanthis column.
or small temple structures containing, no doubt, various precious objects offered to Apollo. These structures had a high artistic value. Bronze and marble groups were in abundance all around the sacred inclosure, and these were executed, no doubt, by the most celebrated artists. We have one marble statue which is a copy of a work of Lysippus, and a figure taken from a bronze chariot group, one of the most remark-

The Treasure of Cnidos.
RECENT EXCAVATIONS AT DELPHI.
able to be excavated within recent years. What re mains have been found-and some of them are illustrated here-fully justify the restoration of the sacred inclosure and its monuments under the direction of M. Homolle.

In the accompanying plan view we have a good idea of how the various structures in the Temenos were distributed. The whole, including the theater, is surrounded by a wall, making the inclosure of a somewhat rectangular form. It extends up a rather steep slope of the mountain side. In the central part is the great Temple of Apollo, which was erected upon a vast terrace or esplanade, thus commanding a view over all the surrounding country. Above, on a higher level, is the theater, while on the lowest land in the foreground are grouped the different votive structures. We also observe the Sacred Way, which winds up the slope and is bordered by the various buildings, finally reaching the temple terrace. Outside the walls there is a large paved area where the religious processions could be formed before proceeding within the inclosure and along the Sacred Way. On one side of this area was the Merchants' Portico where various objects were sold, no doubt of a religious character.
One of the most strking of the small votive buildings is the Treasury of Cnidos, which is in the Ionic style, and enough of the remains were found to justify a complete reconstruction such as is now to. be seen in the Athens Museum. This is shown in one of the present views. This reconstruction was made from the portions of frieze which were found and also of the fronton, together with one of the caryatides and various architectural motifs which gave the pattern of the borders and other details. Measuring about twenty by thirty feet, it is formed of a small cella preceded by the entrance portico or prodomos. The two caryatides are draped female figures of the archaic style, and back of them is the entrance door which is surrounded by a richly decorated lintel. Parts of the frieze are well preserved. On the front side the frieze represents the combat of the Greeks and Trojans around the body of Euphorbus, under the eye of the divinities assem bled in Olympus, who were following the struggle and encouraging the various heroes by their gestures. The assembly of divinities bears some analogy to the wellknown scene which is represented on the frieze of the Parthenon. On the west side the frieze shows the apotheosis of Hercules, who is introduced into Olympus by Athena borne on a chariot with winged horses, and herself represented as winged, while at the other end Hebe descends from her chariot: The west frieze: bears the carrying away of the daughters of Leukippos by Castor and Pollux, with three chariots and horses re calling the Pantheon frieze. A group full of move ment is shown on the north frieze, which represents the Gigantomachy, or combat of gods and giants, a favorite subject of sculpture. On the fronton is a group representing the dispute for the sacred Tripod between Apollo and Hercules. The figures are here sculptured in high relief in the lower part and are entirely detached in the upper part. We also show a detail view of this group, and it is of interest as showing the appearance of the celebrated Tripod upon which sat the Pythia in the farthermost inclosure of the temple and on the border of the opening below which flowed the sacred spring of Castalia:
Regarding the oracle of Delphi, M. Homolle states that in the early period of the sacred spot and before the temple of Apollo had been built, the oracle occu pied what was known as the sanctuary of the Earth and the Muses, and here were the Rocks of the Sibyl. The sacred spring also flowed underneath this spot. When the great temple was built, the seat of the Oracle was transferred to this place, and it remained there during all the history of Delphi. Daochos, the tetrarch of Thessaly, erected a votive offering at Delphi consisting of eight life-sized marble statues ranged in line upon a long base structure. The remains of all these statues have been found, and one of them, which is shown here, is very well preserved. These statues (fourth century B. C.) represented the various members of the family of Daochos, and the present one is the athlete Agias. It is to be reckoned among the most important artistic finds of recent years, as it appears to be the work of Lysippus or at least of his school. The present statues are in marble and are copies of a similar ex-voto group in bronze which existed at Pharsale, no doubt very faithfully executed after the originals. We should not forget that Delphi may be likened to a vast concourse of artistic works, so that only the very best were likely to be erected there. We recognize the qualities of the work of Ly sippus in the length of the proportions, the small size of the head and the careful rendering of the hair. The expression of the face, with half-open mouth, is to be observed. Under each of the statues was engraved the inscription giving the name of the person. We thus have the remains of Sisyphos I, the father of Daochos, in a short tunic; Telamachos, his great-uncle, as a young man leaning upon a Hermes, also the cloaked figure of Sisyphos II, his son, which is larger than life. The heads of these statues are missing, however.

Lack of space forbids us to give more than a passing mention of some of the remarkable objects which are here illustrated, such as the bronze charioteer forming part of a group with chariot and four horses, also the colossal marble Sphinx of Naxos (sixth century B. C.) mounted on the top of a high column, and the three graceful female figures forming the top of the acanthus column.

GOBLETS OF ICE.

It would be well for inventors to study the advantages of reversing or inverting well-established customs or methods of procedure with a view to developing new and valuable inventions. For example, a native of Holland recently conceived the idea that instead of putting ice in a beverage it would be a good plan to pour the beverage into ice. This led to the invention of the ice goblet. For such a novel vessel there existed no precedent, and in the building of a machine for making it, many physical and technical difficulties had to be overcome. The apparatus has now been reduced to a commercial form and the inventor, Mr.' H. D. P. Huizer, has installed a plant at one of the summer resorts near the Hague (Netherlands). The apparatus was also exhibited in Paris, last October, before the First International Refrigerating Congress.
The ice goblet as shown in one of the engravings is a conical drinking vessel like a tumbler made entirely of ice which is placed in a smaller paper shell for convenience in handling and for protection against surrounding heat and direct contact with warm bodies such as the hand, table, etc. It weighs $31 / 2$ ounces and is 5 inches high. The walls, which are slightly tapered, are about $1 / 8$ of an inch thick and terminate

The ice goblet Forming the ice Theice goblet show complete. goblet. in section.

Selling beverages in goblets of ice.

GOBLETS OF ICE.

in an arched bottom of $3 / 8$ inch thickness. It has a capacity of $1 / 4$ liter (about $1 / 2$ pint). By a special process the ice may be made in all degrees of transparency or opacity, and even with a flowery structure. It can also be colored to give it a pleasing aspect. A drink out of one of these goblets is said to be delightfully refreshing and not as cold as one would think.

The refrigerating capacity is quite sufficient to hold the beverage about half an hour in summer; but it collapses instantly at a second refilling. As it thus can be used only once, the sanitary properties are ideal. Everyone has his own goblet, which is thrown away after use. In its manufacture it is not touched by the hand, and by using pure or distilled water an absolutely clean goblet is obtained. The paper shell is thrown away after being used a single time, because when wet it loses its shape and it does not pay to dry and reform it.
One would imagine that ice was entirely unsuitable for such a purpose, but as is well known a great deal of heat is absorbed in melting ice. In the goblet the ice is insulated by the paper incasing it and itself insulates the liquid within, while the difference of temperature between the two diminishes rapidly, thus arresting the melting of the inner side. Owing to these very favorable conditions the goblet has an astonishingly long existence. The same ice goblet thrown in water would melt away in a few minutes.
One of the illustrations shows in section the apparatus for making the goblet. It consists of a mold a and a core c. A measured quantity of water is tirst
poured into the mold, then the core is inserted, which presses the water upward in the space b between the two. The device is submerged in refrigerating brine m. If the temperature of the brine is kept at - 10 deg. C. (14 deg. F.) the ice goblet is ready in a quarter of an hour, at -20 deg . C. (-4 deg . F.) in but 6 minutes. The core has a chamber d at the bottom, constituting a kind of diving bell, in which the water rises only as far as the hydrostatic pressure and the contracting of the confined air by cooling will allow it. The freezing takes place in regular layers from without inward; the ice at first closes the top of the space and then the solidification gradually proceeds downward and ends in the chamber, where because of the expansion an arched bottom n will be formed and around this a peculiar shaped inner gripping edge. In the same way the air confined in the water is forced to eescape therein. The ice goblet is not re moved in the ordinary way of thawing it out-such would obviously be its ruin. The mold is made of a material expanding more rapidly than ice (viz., a special metal) and the core is made of a material expand ing more slowly than ice (viz., a special porcelain), so that the dilatations by heat are: $a>b>c$.
The apparatus is sunk for a while in a special heater, giving off just enough heat to the mold without transmitting any perceptible heat to the ice gob let; now this latter is instantly drawn out with the core, to which it adheres chiefly because of the grip ping edge within the chamber d. The latter is in reality a structural part of the bell-shaped piston e, that is carried by a rod f ending in a handle g out side the core. On pressing' the handle downward the piston expels the ice goblet, which is then caught in a paper shell. The whole operation takes but a few seconds.

About 100 ice goblets per hour can be made with one horse-power, so that only very small refrigerating machines are needed for producing considerable quantities.

Moving Pictures in Natural Colors.
Many unsuccessful attempts have been made to produce moving pictures in natural colors. The compara tively simple Lumière process is not sensitive enough, and the threecolor process is too complicated. Let us first consider how a motionless screen picture in nat ural colors can be produced by the three-color process If the scene is photographed through a red ray filter and a positive transparency, made from the result ing negative, is projected by red light, a red picture of the red parts of the scene will appear on the soreen A blue and a yellow partial picture can be produced in the same way, and if all three are thrown on the screen simultaneously and in exact register the re sult will be a picture of the scene in its natural col ors, if the tints and intensities of the three mono chrome pictures have been correctly chosen. It ap pears scarcely possible to repeat these intricate opera tions 16 times in a second, the rate at which moving pictures are taken and projected.

Several years ago Charles Urban made some experiments on the possibility of substituting successive for simultaneous projection of the differently colored partial pictures, on the theory that the persistence of retinal impressions applies to color as well as to form. More recently, G. Albert Smith has continued the experiments, devoting particular attention to the extension of sensitiveness toward the red end of the spectrum and to the possibility of substituting two colors for three. The experiments have. been so far successful that Smith and Urban, working together have exhibited in London, Paris, and Berlin, very satisfactory moving pictures, in approximately natural hues, using only two colors, with the aid of a colored light in projection. The colors of the ray filters are orange-red and green-blue, but their composition, and that of the projection light, are yet a secret. The nega tives are made on a single film, alternately through the red and green-blue halves of a disk which rotates with the proper velocity between the film and the lens The strip of positive film made from this negative film is projected with the aid of a similar device Hence positives $1,3,5,7$, etc., of which the negatives were photographed through a red filter, are projected in red, and positives $2,4,6,8$, etc., from negatives made with a green filter, are projected in green. The colors of the successive pictures (modified by the spe cial fixed color screen used in projection) are com bined by the persistence of retinal impressions and approximately reproduce the natural tints of the scene. The varying tints of the red coats of soldiers drilling in direct sunlight were beautifully brought out.-Umschau.

It hàs recently been discovered that the candelila plant contains wax in sufficient quantities to make the plant industrially valuable. The plant rejoices in the botanical name Pedilanthus pavones euphorbiacea and grows in Central America and Mexico. The wax is white in color, very hard, with high melting point.

PRIMITIVE FIRE-MARING MACHINE.

Y capt. John g. mac kizer.

Some time ago the Scientific American published an article describing primitive methods of making fire. The accompanying sketch shows, in section, a firemaking machine which I obtained from a native in the Lobo Mountains, Batangas, P. I., and which embodies a different principle from any described in the article.

To operate it, the machine is held in the left hand, and the piston, loaded with tinder and inserted far enough in the well to insure a straight entrance, is struck home and quickly withdrawn. Some skill is required to accomplish this rapidly enough to get the spark to the air before it is extinguished. It is made of caraboa horn. The tinder is scrapings from the in-

FIRE-MAKING MACHINE

 terior of bamboo, and the lubricant is tallow.After some difficulty I induced the native, who was of the lowest type, to show me how he could make fire without his machine. Taking a large section of dry bamboo, he split off a piece about three inches wide and eighteen inches long, and cut a trough across it near one end. This trough he carefully deepened until at its middle point it just broke through. On another piece he cut a row of notches on one edge. Then scraping a quantity of fuzz from the interior of the bamboo, he pressed a bit of it through the small hole at the bottom of the trough, and laid the piece concave side down on a pile of tinder. He held this piece down with his knee, and with both hands sawed rapidly in the trough with the other piece. In a few seconds the tinder began to smoke, when he lifted the bamboo and blew the spark into a blaze. I then tried it with equal success, but have been unable to get just the right touch to pieces that I have prepared myself.

HOLDER FOR GRINDERS.
 by o. d. carter.

A very simple device for holding dies and other work of similar shape while grinding on small emery wheels may be made as shown in the sketch

Between the top plate A and bottom plate B are two blocks, C and D, of sufficient thickness to allow the work to pass freely between A and B. The block C has a knurled screw passing through it, which firmly holds the work against the block D. The latter is

HOLDER FOR GRINDERS.

formed of a circular piece and may be clamped at any desired angle by means of a nut.
The knurled screw E holds the roork against the lower plate. All bolt heads are sunk fush with the bot tom plate. H is a suitable rest for the above clamp. Its shank I is turned to take the place of the ordinary rest of a small emery wheel. By raising or lowering
the rest, the required clearance is obtained. When the grinding is finished, the edge of the rest engages the shoulder K of the lower plate B, thus making it certain that each piece will be ground at the same angle and length.

TOOLS FOR THE WORKSHOP.-II. bit i. g. batley.

(Continued from the issue of April 24th.)
a combination planing and shooting board
It is sometimes necessary to put a long straight or bevel edge upon a board; and while this can be done by the aid of the try square or bevel square, the board being held in the vise, the accuracy of the work depends largely upon the skill of the mechanic, and requires much practice. For the amateur, and even the professional, a board such as shown in the accompany ing illustration is desirable.
All that is necessary for planing square edges only is a board about 9 inches wide, secured to one underneath, 15 inches in width, each $7 / 8$ of an inch thick, and as long as the bench. The boards must be planed perfectly true, the working edge in particular, and a stop of some kind should be furnished at one end.
Sometimes it is necessary to plane a long miter edge on a board, in which case an ordinary shooting board, such as described, will not do.
One arrangement of shooting board for long miter joints is shown in the cross-sectional view A, in which a is a length of 3 by 4 -inch timber, to which is secured a board b, at an angle of 45 degrees, by means of triangular blocks c, spaced about 2 feet apart, commencing near the ends. One end of the shooting board is held in the vise d, the other end resting upon pegs in the apron of the bench. The board e, whose edge is to be planed, is clamped to the board b, and the plane f shot along the 3 by 4 -inch piece a.
At B is shown another scheme, where two 9 -inch boards, g and h, are secured together by means of screws, driven in from the underside of the lower board h, which in turn is hinged to a board i, in the same plane, 6 inches wide. By means of blocks, j or k secured to the board i, bevel or miter edges of 45,60 ,

COMBINATION PLANING AND SHOOTING BOARD.
and 30 degrees can be planed along the edge of any board e, as detailed at C. A wedge stop l, of hard wood, is furnished at the far end of the plank g, several being made of various thicknesses, to suit the work in hand.
Before using the board, the work bench should be swept down, and it is very necessary to have it level. Ordinary hinges for holding together the boards h and i, are perhaps best, being steadier; but for convenience when the board is out of use, if the double swing hinges m are used, the 6 -inch board i can be folded under the others, as shown at D, the blocks of course having first been removed.
Care must be taken to place the hinges a trifle below the surface, or the edge of the plane will wear over them, as it is shot from one end of the board to the other.

the saw clamp.

The majority of saw clamps on the market are either secured to the workbench by means of a thumbscrew clamp or other adjustment, or they are held in the vise-an arrangement having several bad features, which are overcome by the clamp here described. With this clamp it is unnecessary to take out the saw, or unscrew the vise, when changing off to file the other edge of the teeth. Instead, the clamp and framework is turned around bodily. It can be moved from place to place, to a good light, or wherever most convenient, since it is not dependent upon a vise or bench for its support. The clamp being longer than the width of the vise, takes a better grip upon the saw; and the simplicity of clamping it (without the usual adjustment by means of a screw or pin) recommends it.
The framework may be made of light wcod; the 4 by $3 / 4$-inch pieces being let in flush with the face of the $18 / 4$ by $31 / 2$-inch side bars, to stiffen it." To prevent the 4 -inch slot for the saw splitting down when the
clamps are driven in, a bolt is put through, as indicated, $61 / 2$ inches from the top.
The clamps should be hard wood, 30 inches long, shaped out as detailed. The $41 / 2$-inch recess, to allow for the saw handle, should be cut when the two clamps are together, since this makes them right and left handed. When making the two clamps, the taper should be obtained before the edges are rounded off, as shown in broken lines.

CONVENIENT CLAMP FOR SAWS.

The lower right-hand corner sketch shows the clamp in the framework without the saw. When necessary to set a saw, it is dropped in the 4-inch deep slot, teeth up, the two clamps wedged into place on each side of it being driven home with a mallet or hammer.
(To be continued.)

A TANTALUM DETECTOR.

by alfred p. morgan.
A detector for wireless telegraphy has recently been devised, which makes use of a tantalum wire or filament in contact with a globule of mercury. While this detector is not so sensitive as the electrolytic or silicon type, and will not respond as well to very faint signals, it more than makes up for this when used for detecting signals of ordinary strength. It will then give tones several times as loud as either of the two types mentioned, and does not require the use of highresistance telephone receivers. Its normal resistance is about 1,500 ohms, which drops as low as 250 to 270 when struck by oscillations. The construction of such a detector is quite simple and well within the ability of the amateur. The first operation is to secure the tantalum wire. This may be taken from a tantalum lamp of the battery type. A deep scratch is made in the glass all the way around the base of the globe by means of a small three-cornered file moistened with turpentine and camphor. A second scratch is made from the base to the tip on both sides. A light tap will then break the globe in two. Do this carefully lest you break the filament.
Cut the filament off within about $1 / 16$ of an inch from where it is joined to the platinum or iron wires. This can best be done with the points of a small pair of scissors. Then break the small glass stub which holds the wires in place, so as to secure the tantalum with about $1 / 4$ inch of wire fastened to it.
A screw in which to fasten it so as to permit of adjustment may be taken from the carbon of an old dry cell. A fiber or hard-rubber washer will make a good head for the screw. Bore a $1 / 16$-inch hole in the end of the screw. Make it about $1 / 8$ of an inch deep.

HOME-MANE TANTALUM DETECTOR.

Place the end of the wire opposite the tantalum point in this hole, and pack tinfoil around it with the head of a sewing needle, or if preferred fasten it to the screw by means of a small drop of solder.
The cup is best made from a piece of carbon rod. Remove the rod from an old dry cell, and saw off a piecs about an inch long from the end containing the orass connecting cap. Then trim off all the rough edges of the carbon with a coarse file. A hole $1 / 2$ inch in diameter and $1 / 4$ inch deep should be bored in the
center of the rod at the end, forming the cup for the mercury. Bore a $1 / 8$-inch hole through the base where the cup is to be fastened, and countersink it to $1 / 2$ inch in diameter from the under side. This enables the brass nut to be put on the under side, thus serving both to hold the cup firmly in place and as a connection for a wire to the binding post. This is shown by dotted lines in the drawing. The yoke is made of a piece of sheet brass. Two holes are bored in the feet, and it is fastened to the base by means of screws. A hole is bored and tapped to receive the screw point. If a tap is not to be had, a $1 / 4$-inch hole may be bored in the yoke, and a battery nut soldered directly over the center of the hole.

The detector is best mounted on a piece of $1 / 2$ rinch hard rubber measuring about 3 by 4 inches. Four binding posts will be required for the usual connec-tions.-Electrician and Mechanic.

THREAD CUTTING WITHOUT A DIE.
 by J. A. bergstrom.

It sometimes happens that the threads of $₹$ bolt or pipe break off and must be cut without the aid of a screw-cutting die. This can be accomplished very

THREAD CUTTING WITHOUT A DIE.
easily with the aid of an ordinary half-round file and a little patience
Take a block of wood and fasten it in a vise. Make a V groove in the block deep enough for the cente of the pipe to come a little below the surface. If the pipe is long, it will be better to make two of these blocks, so as to keep it steady. Now into this groove place a pipe with thread same as wanted, and on one side of the block drive in a nail. Place the flat side of a half-round file against this nail and see that it forms the same angle with the pipe as the thread does Then drive in another nail on the opposite side of the block, so that it will touch the flat side of the file. Now remove the pipe and replace with the one to be threaded. Hold the file with the smooth side against the nails and while filing keep turning the pipe. The pipe should be rocked backward and forward. That is to say, on the forward stroke of the file turn the pipe in the opposite direction, thereby insuring a much better thread.

A SIMPLE METHOD OF CONSTRUCTING A HANDLE. by w. c. m'Kenzie.
The accompanying illustration shows a simple method for constructing a neat and strong handle for a box, or a drawer. The handle is fashioned from two similar shade roller .brackets which are fastened in place by means of screws at the points where the handle is needed. A piece of pipe or tubing is posi

SIMPLE METHOD OF CONSTRUCTING A HANDLE.
tioned between the brackets and is held in place by a stiff wire or other rod which passes through the tubing and the openings in the brackets, having the ends hammered down or riveted at the outside of the bracket. The tubing may be of brass or any other suitable material adapted for the purpose, and preferably tending to add to the appearance of the handle.

The ends of the tube should be inserted in the concavities of the brackets, as is shown most clearly in Fig. 2.

METHOD OF PATCHING A BOILER.

by john w. e. laker.
The following method of bolting a patch on a boiler perhaps shows some originality. It was required to patch the bottom of a combustion chamber

bOLTING A PATCH ON A BOILER.
of a very old boiler, badly pitted on the water side. Riveting was impossible for want of space. The patch was five feet by two, fitted on the fire side, and the greatest difficulty to overcome was to make the bolts watertight, owing to the impossibility of driving them or getting a contact under the heads against the bad plates. Gaskets did not appeal to the repairer, and a metallic contact was aimed at. This was accomplished by making each bolt act as an ordinary miter-seated valve. They were turned a hand-workable fit (all but the last $: 1 / 4$ inch, which was tight) to reamered holes of steel, and case-hardened, fitted in from the water side, and hammered up with a spanner. The "seat" was sunk into the boiler plates. There were altogether 128 bolts in the patch. The job when finished passed a government surveyor's examination, and steamed from Honolulu to San Francisco without mishap.

PENCIL SHARTENER.
 by Joseph n. Parker.

I have to provide means for the sharpening of one hundred or more pencils daily, and after having tried with little success a number of the expensive sharpeners, I fitted up a small all-metal carpenter's plane in a box, and it answers the purpose admirably. After a little practice one can easily make any kind of a point desired. The bit will stay sharp long enough to point several thousand pencils, and then it can easily be re-

CARPENTER'S PLANE AS PENCIL SHARPENER.
moved for sharpening.
shows how it is done.
Shavings from pencils are excellent for driving away moths.

COPPERING FLOWERS WITHOUT WAX.

 by arthur e hagarty.The writer is interested in electroplating flowers, etc., and has had considerable success in coppering and silvering, using no wax. The rose (or other article) is dusted over with the finest graphite (blow the excess off) and immerse in the copper solution. An ordinary rosebud is thickly and sufficiently plated in about fifteen hours, using six large-sized gravity batteries. Of course the silvering and gilding are easy after a good coat of copper has been deposited. The wax is unnecessary except to stiffen the petals or when lass, etc., is to be plated.
Some beautiful rosebuds have thus been plated in copper and silver, with the stalks, etc., enameled green Undoubtedly many amateurs would like to experiment with this work, if they knew it was so easily done. A stout copper wire is pointed with a file and carefully drilled (by hand) into the center of the lower part of the bud, care being taken not to break off the small green petals. After dusting well with the graphite the wire is thrust through a piece of heavy cardboard as a handy means of adjusting in the plating bath, which should be about $1 / 4$ inch above the flower. The wire is then connected, and in a few minutes the copper can be seen creeping over the petals. The flower should not be disturbed till entirely plated. Of course the flower can be put in any position, but the vertical position is the best, because the petals tend to float out of position when inverted. The wire can be bent in the form of a large hook with the point upward, but this măkes unnecessary and wasteful surface to plate with a small battery. All the plating should be
concentrated on the flower, if possible. The finished flowers should be polished for bright effects, and well rinsed in hot water, or boiled, to get rid of the acid, which would otherwise corrode.
Some. very beautiful effects can be obtained with ferns, etc. Anything can be plated which is not affected by the acid during plating. To deposit on glass it must be coated with paraffin first, all the excess of graphite being brushed off.

BLUE-PRINT WASHER.

BY w. J. c.
A very compact blue-print washer, which has the great advantage not only of taking up very little space, but also of permitting the washing to be done without the usual slopping over and dripping incidental to the use of tanks, can be made very cheaply of galvanized iron, as shown in the accompanying sketch. The washer is attached in a vertical position on the wall, and the pipe furnished with valve running up the side and across the top. The last piece of pipe, the horizontal, is drilled with one row of holes $1 / 16$ inch diameter about 3 inches apart, and so placed that the water strikes the back of the washer at an angle of about 45 deg . To wash a print,

the water is turned on for a moment, wetting the back of the washer, and then shut off and the dry print stuck up on the wet surface. Care should be taken that the top edge of the print comes slightly above where the water strikes, to prevent the print being washed down by water getting back of it The water is then turned on, and a thin film of water allowed to run over the face of the print. If there is no trimming space left on the print, it can be turned upside down after a few moments, to insure the top edge being washed evenly. This method washes prints in a very short time, as the running water is much more effective than the tank method Painted with aluminium paint, the washer looks well in any office, and will save its small cost in a very short time.

PUTTING ON A NEW CLUTCH LEATHER.

A clutch leather may be cut from a wide piece of leather belting of uniform thickness, usually $1 / 4$ inch. If the piece chosen is too thick, it will be impossible to release the clutch fully. Take off the old clutch leather, lay it out flat, and use it as a pattern for the new leather. (See cut.) As the leather will stretch somewhat, it is not essential to have the new leather curve as much as the old one. Cut the new leather about $1 / 2$ inch short, and punch and counter sink holes in its ends for the rivets, whose heads should be below the surface of the leather. Soak the new leather in water until it is thoroughly soft. Stretch it over the clutch, and put temporary rivets in the ends. Mark the central rivet hole, remove from the clutch, and punch that hole. Put the leather on

PUTTING ON A NEW CLUTCH LeATHER

the clutch again with temporary rivets, and punch and mark the remaining holes. When all have bee punched and countersunk, rivet the leather in place. For this purpose it is necessary to have a bar whose end diameter is about the diameter of the rivet heads This bar is used as an anvil against the rivet heads Two men are necessary, and the whole job, after the leather has been taken out of the water, must be done quickly, else the leather will shrink so that it will not go on.

RECENTLY PATENTED INVENTIONS. Electrical Devices.
POLE.-W. Roberts and C. Roberts springfield, Ohio. The invention relates more especially to such poles as are used for string-
ing electric circuit wires and the like. The Ing electric circuit wires and the like. The
pole can be braced equally on opposite sides, pole can be braced equally on opposite sides,
when for. example, the pole is inclined on when for. example, the pole is inclined on
curves and the like. The device is adapted removably to carry a mast and cross-arms upon which the wires are strung. Messrs.
Roberts have invented another pole or standard formed from concrete or other plastic sub stances adapted subsequently to harden, and having reinforcing tension members imbedded or partially imbedded therein, T-iron or similar elongated members, and having annular olding members encompassing the tension ecured together by a connection of special secur.
WIRE STRETCHING AND SPLICING DE-vice.-P. O. Larson, Kellys, N. D. The in ention refers to devices for stretching and and is designed to do away with the necessity of using clamps, pulleys, etc., now commonly used for this purpose, which becomes neces-
sary when wires are cut, or broken by accisary when wires are cut, or bro
dent, accumulation of sleet, etc.

Of Interest to Farmers.
DRAFT-EQUALIZER.-H. C. Scott, Ritzville, Wash. The aim of the invention is to
provide an equalizer arranged to distribute provide an equalizer arranged to distribute
the load to be hauled equally to the animals in the team, to reduce the friction of the working parts to a minimum, and to provide a comparatively short but very strong and
durable equalizer not liable to get out of order nor cause entanglement of the animals when in use.

Of General Interest.

ANCHORING-BASE FOR POSTS:-P. T Bailey, Middletown, R. I. The base is cap able of being readily paaced in position, and is within the ground, will be firmly and immovably anchored, while that portion above the ground, and which is adapted to receive the post, will admit of vertical adjustment of
the post and also lateral adjustment of the the post and also lateral adjustment of the
post in any direction necessary to bring it in post in any direc
METAL STAIR.-C. F. Steiber, New York, N. Y. The invention especially relates to
staircases which are formed of metal. The instaircases which are formed of metal. The in-
tention in this instance is to produce a staircase adapted to be formed of steel or similar material, and the invention relates especially to the form of the separate parts and the
manner in which the stairs are built up theremann
GATE.-C. A. Eidsmoe, Beresford, S. D One object here is to provide a swinging gate which may be adjusted to any degree of in clination above or below the horizontal, and retained in such adjusted position. Another
object is to provide a gate comprising an adobject is to provide a gate comprising an ad and having its free end adapted to be raised r lowered, and means for retaining the frame in its adjusted position
SUCTION DEVICE FOR AIR, GAS, OR SMOKE PIPES.-A. Cauchemont, 17 Rue de
'Aqueduc, Paris, France. The air in entering the apparatus at one of the openings reaches a pipe tangentially. This air produces a suc ion effect inside this pipe and the smoke, gases or vitiated air escape through the open ings and pass to the annular space comprised between the pipe and the strips of the lantern
Owing to the relative vacuum produced by the wind at the rear of the apparatus, the smoke or gases are drawn outside in passing through the apertures in the lantern.
SUSPENSORY.-G. C. Jounson, Dillon, S . This suspensory embodies a scrotum sup novel construction, which forms a receptacle for the member and affords convenient means for the introduction and discharge of liquid medicaments for
diseased organ.

Hardware

COMBINED LEAF-CLIP AND LINE-MARK ER.-E. A. BAGby, Louisville, Ky. This
spring-actuated clip is especially adapted to clamp upon a leaf of a book or manuscript, and also to grip the flat end of a fiat lining
strip having parallel side edges, so as to hold strip having parallel side edges, so as to hold leaf or page and be disposed adjacent to selected line thereon; and for changes in adjustment for locating the straight edge of the iner strip close to lines on the page successively, to facilitate the correct posting of ac counts or transfer of statements, and execut
ing work requiring exact reading of written ing work requiring exact read
or printed lines consecutively.
WIRE-FENCE TOOL-B. B. Wood, Helena Mont. In the present patent the invention is an improvement in tools for use in building wire fences, and it has for a particular object the provision of a novel construction
wherehy to apply to the crossing wires of wire wherehy to apply to the crossing wires of wire
fences the clamp covered in a former patent d to Mr. Wood
SOCKET FOR SASH-CORDS:-F. DEGIOR
tains particularly to means for use in securing cords to a sash, or for holding a sash
cord when the sash is disconnected, as for instance when the window is being cleaned. The object is to provide a socket which greatly facilitates the attachment or removal of the
cord but which is constructed in such a way cord but which is constructed in such a way
as to effectually prevent any accidental disas to effectually preve
placement of the cord.
LEADER-BRUSH.-M. Blackman, Jersey City, N. J. The object of the inventor is to produce a brush especially adapted for use in painting the inner side of leaders or rain
spouts. In the operation of the device, it will feed small quantities of paint from the reservoir to the brush, and the parts are so arranged as to enable the devi
corners or bends of a leader.

Heating and Lighting.

gas-meter.-W. F. Etzel, Lowell, Mass. This invention relates to dry gas meter havmeasuring chambers. The object is to provide improvements in meters, whereby gas passes
freely through the parts of the slide valve freely through the parts of the slide valve
reats to and from measuring chambers, thus seats to and from measuring chambers, thus
reducing the decrease of the gas pressure, incireducing the decrease of the gas pressure, inci-
dent to its flow through the meter, to a minident to
mum.

Household Utilities.

bruSh.-C. W. Patrick, Phoenix, Arizona Territory. This brush is primarily intended for the bath, although with slight modifica-
tions it is adapted as a scrub brush for floors wood-work, windows and scrubbing in general, where quick thorough cleaning is desired with the least possible exertion. For the bath, the used as a scrubbing device, in addition to presenting a sanitary article effecting its own cleaning when in use
INSECT-EXTERMINATOR. - MARGARET E. Cochrane and J. J. Cochrane, Jersey City,
J. In this case the improvement refers more particularly to exterminators adapted to ise used for destroying bed-bugs or the like,
and each of which in general consists of a and each of which in general consists of a
burner adapted to have one end connected to any suitable gas supply, and a pan movably the dead insects.
bath-tub attachment. - Nellie L. Ghimore andion is an inge, Phoenixville, $\mathbf{P a}$ for use in application to bath tubs. The aim is to provide a frame which can be applied to and removed from the tub, and will afford dish. It will be found useful for general use but especially so in boarding houses among MOP-WRINGER ATTACHMENT. - W. F. McGlaughlin, Denver, Colo. The purpose of
the inventor is to provide a construction, the inventor is to provide a construction,
wherein the mop. may be twisted to expresis therein the mop. may be twisted to express
the water therefrom, without the necessity of using the hands in direct contact therewith. When the cloth has been sufficiently wrung the cloth into its original position, after which the operation may be repeated.

Machines and Mechanical Devices

PENCIL-MAKING MACHINERY.-F

PENCIL-MAKING MACHINERY.-F. P.
Dorizzi, 66 Elm Grove Road, Barnes, Surrey, Dorizzi, 66 Elm Grove Road, Barnes, Surrey,
England. Mechanical means are provided for nserting the leads or other material preferng means. Leading means comprise a serles of hoppers arranged over a suitable bed along which the grooved boards to be leaded are slid and means connected to each of said
hoppers for feeding a single lead or strip of other for feeding a single lead or strial boar at the required moment
PNEUMATIC HAMMER.-V. E. LANE, Berwick, Pa. Among the objects of this inventroke in connection with a cushioned downstroke in connection with a cushioned back-
stroke, to render the hammer, as far as practical, independent of specified pressure of air in order to make it operative; to facilitate the removal and replacement of. the barrel; hold the rivet-set securely at the end of the barrel, to prevent accidents and the set from falling out.
SCREW-CUTTER.-A. R. Wersz, New
York, N. Y. The invention has for its object York, N. Y. The invention has for its object
the provision of a screw cutting device which simple in construction, effective in operation and durable in use, adapted to be readily of being accurately adjusted to screws of dif ferent diameters.
CARRIAGE-DRIVE.-J. J. Sullivan, Eagle Mills, Ark. The invention is particularly usethe like. An object is to provide a support for the piston rod of a carriage drive, so that the piston rod is prevented from sagging and thereby wearing the stuffing-box and other
parts with which jo 2 comes in engagement, in parts with which
an irregular mann
LACQUERING-MACHINE FOR CANS.-C. b. HANTHorn, Portland, Ore. The invention quering cans. The object is to produce a machine which will operate automatically to re-
ceive cans which are fed to it, in such a
manner that the cans will be dipped in a bat of lacque
FIRe-ESCAPE.-J. Hegedus, New York, N .re object of the inventor is to provide a and arranged to permanent use on buifdings vice for conducting people from any one of the floors of the building safely to the ground and to permit the use of the device by fir e floors.
Linotype-machine.-C. Alibrecht, Charvention is to provide means for reducing the vention is to provide means for reducing th as they leave their magazine and enter the vertical channels. Another object is to imhute between the delivery mouth of the mag azine and the vertical channels, particularly machines designed for a plurality of maga chute is where, therefore, the said part o hute is made movable.

Prime Movers and Their Accessories.

BALANCED VALVE.-W. Ord, Brooklyn Ohio. The intention in this case is to pro vide detalls of construction for a value whic are practical and very emcient, and that en able the balancing of pressure on the body of the plug valve, so that leakage around the be adapted for conde the valve bod trol the passage of fluid throughout.

Railways and Their Accessories.

 RAILWAY-TIE AND RAIL-FASTENER.P. E. Fetter and W. A. Stickley, Kenmare practically provide a the inve of tie that will prevent shifting in the road bed, and to provide a smoothness of track that will lessen resistance, thereby saving property, and alsoto provide a rail lock that will hold the rails more firmly than spikes, and admit of
the necessary expansion and contraction of the necess

Pertaining to Recreation.

ROLLER-BOAT.-R. E. Sharp, Newaygo Mich. In this patent the invention relate object of the inventor is to produce a the having a simple construction which will be pelling mechanism and improved steering pro

Pertaining to Vehicles.

COMBINED HEARSE AND PASSENGER vehicle.-F. Hulberg, New York, N. Y vehicles, such as automobiles, and its object is to provide a new and improved combined hearse and passenger vehicle, arranged to ac
commodate a coffin and flowers in one com partment and passengers in a separate com COMBINED ODOMETER AND SPEED OMETER.-R. G. SANFORD, Yonkers, N. Y The invention has for its purpose to provide or the actuation of the measuring means in the same direction, irrespective of the direc dispense with the usual flexible shaft such as is employed when the meter is applied to vehicle, and in general, to provide a construc
tion having little or no tendency to vibrate. No Notr.-Copies of any of these patents wil Please state the name of the patentee, title o

Kindly write queries on separate sheets when writing books, etc. This wii! facilitate answering your ques ions. Ise sure and give full name and address on every

Full hints to correspondents were printed at the hea of this column in the issue of March 13th or will be
sent by mail on request.
(12076) F. E. S. says: I am inclosing a opy of a report on the efficiency of a ne and placed on the market by a local concern With 3.5 gallons of kerosene they developed by brake test, 52 horse-power constantly for one hour. I am unable to find any efficiency tables for steam engines using kerosene for
ruel. Can you tell me what the best ma chines now on the market do deliver? 3.5 hour ; 3.5 gallons kerosene 52 horse-power for pounds; 1 pound kerosene has 21,000 B. T. U. 494,970
B.
T.
T. U. equal
$385,086,660$ pounds; 52 horse-power is $102,960,000$ foot pounds per hour. Fraction of the energy in
the oil which is delivered by the engine is 102,960,000

385,086,660

unlikely to find tables of combined efficiencies
the method of testing the efficiency of an
engine by the fuel consumed under the boiler ad before much advance had been made with liquid fuel. There is no analogy whatever be-
tween the terms engine horse-power and tween the terms engine horse-power and boiler horse-power, the latter being an unsat-
isfactory term only used for want of a better. isfactory term only used for want of a better.
That the capacity of the accompanying boiler depends upon the relative efficiency as well as the capacity of the engine may be shown by the fact that a single-cylinder non-condensing engine may take as much as 30 pounds of team per horse-power per hour, whereas a modern triple-expansion condensing may require as little as 10 pounds. At the same ine your comparison of the power delivered
useful work with the B. T. U. contained in he fuel consumed is a perfectly legitimate The figures are figures are apparenly correct. best we know of for any kind of fuel shows an efficiency little more than half as high based on fuel consumption per horse-power.
(12077) J. V. A. asks: I am seeking nformation on the question of water power.
wish to utilize the water in a stream runing through a flat country, with hills about ills to 400 feet high on bothe creek's supply Could you put me in communication with me one or a firm, who could advise me as o the best method of obtaining from 12 to 15 horse-powe from this creek, by hydraulic ram, to elevate water to the hills nearby to rive Pelton wheel, or undershot current wheel, Poncelet's undershot wheel by damming up Ye creek, or any other method that may suit? ou may be in a position to answer this ques
ion; if so, please let me know. I would equire full details and plans of wheels, their onstruction and application to the creek etc (I wish to construct the wheels myself, if pospower. The machinery I wish to operate
rom the stream is a Sisal hemp decortiating machine, and possibly a small circular saw. I inclose a rough sketch of cross
section of creek, and some figures which wore be one the fection ble one for the erection of the machinery in event of your undertaking this question.
Your method of measuring the fiow of . water is quite reasonably approximate and making due allowance for error and oriation of the flow, we should say that
just about enough water to generate 15 horse-power in the manner you suggest. A good Pelton or similar impact waterwheel hould deliver 75 per cent at least of the o for 15 power in a given fall have a fall nd quantity of water with a theoretical a fal of 20 horse-power. The formula is H.P. $=$ $00189 Q H$, in which $Q=$ quantity of water cubic feet per minute and $H=$ head in supposing you lift your water with a
to a height of 100 feet above the stream $0(H . P)=.0.00189 Q \times 100$ or $Q \frac{2}{0.189}=$
06 cubic feet per minute nearly. A good am with not more than 100 feet conveyance
ill lift about $1 / 14$ of the water required to perate it to a height ten times that of the all required to operate it, so that 106 cubic eet of water could be raised 100 feet by $14 \times$ $106=1,484$ cubic feet of water with a fall of 10 feet. Your flow at the rate of 66 fect in 15 seconds of a stream 11 feet wide and 7
inches deep represents 1,694 cubic feet per nches deep represents 1,694 cubic feet pcr
minute, so that you have a fair margin. The ength of the drive pipe does not matter, proided you have the whole of the water re uired to drive the ram inclosed in a pipe i. e., the dam need be only 5 feet high if
there is a further fall of 5 feet from its foot the point at any convenient distance down tream where the ram is situated. We should say that you could not get the requisite power with a current wheel, as its efficiency is ex-
tremely low. With a Poncelet or, better, a ow-head turbine, you could, but we should ay the first cost of dam and equipment would higher.
(12078) H. R. P. asks: Will you indly answer the following questions? What is meant by the term cycle in relation to gas
engines? Why is an engine which makes two evolutions to every explosion called a fourcycle engine? How is it possible for any en-
ine to have more than one cycle? A. The "cycle" of any engine is the complete sequence of operations gone through by the operating huid; in the case of gas or other internalexplosion engines it consists of inspiration uring one stroke, compression during one troke, ignition, explosion, and expansion durng one stroke, and exhaust during one stroke. he terms "four-cycle" and "two-cycle" are misleading, and should more properly be "four account the term "four stroke-cycle" is now ming into use. In two-cycle engines, either y exploding the gas on both sides of the verlap eack other, and whereas each is exactly the same as in the four-cycle engine, one or other cycle is completed every two strokes.
The term "two-cycle" has, however, the alter The term "two-cycle" has, however, the alter-
native sense that two separate cycles are used native sense that two separate cycles are used
in operating the engine and, therefore, though . later term than "four-cycle" and derived . later term than "four-c
rom it, is less inaccurate.
(12079) J. S. asks: Kindly tell me in your Notes and Queries column how to pro-
duce extreme cold by means of carbonic acid duce extreme cold by means of carbonic acid
gas and ether. I have tried letting the gas run into a bag this to be the method. Ther sult should be a kind of frappe effect to use for a freezing mixture. A. Carbonic acid gas
has no action upon ether. No lowering of has no action upon ether. No lowering of
temperature would be expected from passing the gas through ether. If liquid carbon dioxide is allowed to escape from a tube into a bag, some of the liquid will be frozen and
solid carbon dioxide will be found in the bag. solid carbon dioxide will be found in the bag.
Place this in a porcelain crucible and pour Place this in a porcelain crucible and pour
ether into the crucible. A pasty solution of drop in temperature. Tyndall's "Heat as a gives m
dioxide.
(12080) M. A. C. says: 1. In evaporration, does the water vapor formed crowd back the air? A. Carhart's "University Phys-
ics," vol. 2, will give you a correct view of
the process of evaporation. There is no pushthe process of evaporation. There is no push-
ing back of the air by the molecules escaping from the surface of the water. There is
plenty of room for them between the moleplenty of room for them between the mole-
cules of the gases of the air. 2. Does the air ffer any resistance to evaporation of water of water molecules into it-15 pounds to the of water molecules into it- 15 pounds to the he atmosphere which keeps the water in the liquid form upon the earth. Otherwise all the earth, as the atr now is. 3. What is the best explanation of just how evaporation produces cold? A. The only explanation of evaporation is that heat changes water into vapor.
The heat used for this work does not affect a thermometer, and is called the heat of vaporization. Since this heat must come from ome other body, the surrounding bodies are hem to change the water into vapor. 4. Heat is defined as molecular motion. Does that mean that the amount of heat depends on the number of molecules striking a thermometer as
well as their velocity? A. The more rapid the molecular motion, the higher the tempera ture of a body. More molecules would then
strike a thermometer in a second, of course They a would also strike with a higher velocity 5. In the expansion of gas against pressure,
which is affected, velocity or number of mole cules, in the change of temperature? A. In velocity of the molecules is changed, and therefore the number of molecules per second passing a given point will also be changed.
6. Will you discuss the question if the ex 6. Will you discuss the question if the ex-
pansion be into a vacuum? A. The expansion of a gas into a vacuum does not produce any no work in expanding. 7. What is the best ducing cold? A. There is but one explana tion of the action of salt and ice as a freez ing mixture. The melting of the ice and salt
is caused by the heat absorbed from the article is caused by the heat absorbed from the article
to be frozen. The heat required to melt ice is very large, 80 calories per gramme. What is the best explanation of rain being
produced by a current of air striking a moun tain? That is what cools the air? A. Warm air can hold more water vapor than cold air
When a warm current strikes a cold mountain side, the chilling of the air reduces its ca pacity for moisture and saturation is soon
reached, after which the formation of rain drops begins. All these questions are treated in good textbooks of physics under heat. I you have not the Carhart referred to above
we can send you a copy for $\$ 1.75$ prepaid.
(12081) A. E. W. asks: 1. Would you explain what is meant (when giving the cali-$30-30,25-20$, and $56-50$? I understand that there is a big difference in the size of calibers mentioned, and that the $25-20$ is a bottle shaped cartridge, but there is no apparent dif
ference in the diameter of shell and ball of 56-50. A. In giving the caliber of small arms by two numbers, $45-90$, the first number stands for the caliber expressed in decimals of an the number of grains of powder used in the charge. In the case of the 25-20 gun, the 25 stands for a repeating rifle, the 20 for a single
shooter. The weight of the bullet is the shooter. The weight of the bullet is the same
in both cases, but the repeater cartridge is enlarged to take a larger charge of powde 2. What does the number giving the gage or
shotguns mean? What part of an inch ar they, or do they not represent some part an inch or foot, $10,12,16$, and 20 gage? The gage of the shotguns, as 10,12 , etc., is
survival of the old-fashioned nomenclature. early days it was customary to find out how many spherical balls went to the pound weight
If 10 , the gun was called a If 10 , the gun was called a 10 -gage gun. Ice manufactured by a process, where cans of
water to be frozen are immersed in a tank of brine, cooled by pipes carrying ammonia
there often appears a place in the center o there often appears a place in the center o
the cake that is white or nearly opaque, some times looking like very small air bubbles. being clear at the center as it is at the side of the cake? I have been told that it was
ammonia in the water, and some even claim
that can be when the ammonia is confined in
the pipes. I think it is a defect in the freezthe pipes. I think it is a defect in the freez-
ing. A. The white or semi-opaque place in the center of cakes of artificial ice is nothing bubbles. The process of freezing excludes sus pended air from the water, leaving it in the
form of bubbles (as it often appears in nat form of bubbles (as it often appears in nat
ural ice) if steps are not taken to prevent it In the can system of artificial ice making, the water is agitated while freezing to get the outside inward, the outside and from end of the cake is generally clear. Somelong enough, as the block becomes nearl solid, and an accumulation of bubbles remains in the center near the top. You will notice that the white part you speak of is always
at one end of a whole cake-the end whic was uppermost as it stood in the can. There is no possibility for the ammonia from circu lation pipes to reach the cans, the freezing
of the latter taking place in brine, not ammonia, and elaborate tests of the purity of properly conducted plant. The occurrence of this white core in plants using distilled water (from which the air is removed) as many now do is a sign of imperfect distillation or
filtration, but not of such impurities as tration, but n.
(12082) L. M. K. asks: 1. A tank of cubic feet capacity is filled with a gas at of gas will there be at 1 pound pressure? A. The answer to your first query is figured by
the formula $P_{1} V_{1}=P V$, representing Boyle's aw that the pressure of any gas is inversely as the volume and vice versa. In your case
$P_{1}=1$ pound, $P=200$ pounds, and $V=5$ or $V_{1}=1,000$, i. e., a gas having a volume of 5 cubic feet at 200 pounds pressure (185.3
gage) would have a volume of 1,000 cubic feet at 1 pound pressure, or 13.7 below atmosphere. The above are absolute pressures, which must be used for the solution to be accurate by the formula; if you use gage
pressures (pressures above atmosphere) add pressures (pressures above atmosphere) add
14.7 pounds to both pressures before substituting in the formula. 2. To what pressure is
it safe to compress a gas? A. A gas may be safe to compress a gas? A. A gas may be
compressed to any amount according to circumstances, strength of container, temperature, etc., which you do not mention. All
gases can be liquefied by sufficient pressure, their pressure becoming greatly. reduced by
liquefaction. 3. At what pressure is illuminating gas Illuminating gas for domestic purposes is de-
livered at about half a pound pressure above vered at a
(12083) C. S. R. says: If a coiled pring made of pure iron is placed in a bath
of hydrochloric acid, the spring dissolves, and errous chloride would be formed according to the following equation: $\mathrm{Fe}+2 \mathrm{HCl}=$
$\mathrm{FeCl}_{2}+\mathrm{H}_{2}$. \quad Heat would be evolved as a result of the chemical action, and the chemical bout 80,000 be changed into heat energy, each substance. The solution thus far is
clear, but here is clear, but here is the difficulty: Take the ron spring and compress it and tie it with
some thread so that it remains in a compressed position. The spring now possesses potential energy as a result of this compres-
sion. Now place the spring, in this compressed position, in the HCl as before; the
ron will dissolve as before, the spring all the iron will dissolve as before, the spring all the is not acted on by the HCl . The question now rgy the spring possessed? A. It appears to us that under the conditions you name there would be a liberation of heat in consequence
of the tension of the spring. That is to say, you provide two equal quantities of acid, and dissolve therein two springs exactly alike except that one is wound up and the other
is unwound, there will be a greater liberation f heat by the dissolution of the spring under ension than of the other spring, the differof the energy used in winding the spring. This question is very interesting, and has been discussed in our columns heretofore. We
think it can be determined only by a careful experiment, coupled with quantitative meas
(12084) G. H. H. asks: I have here mechanical problem, the solution of which would like to see in your query column.
Suppose we have two disks of equal diameter, ach having ten blades projecting at equal

distances around the rim, as shown in above sketch. Now if one disk is made to revolve
10,000 R. P. M., while the other is stationary and in a position where one of its blades voulving blades, there would be 100,000 con tacts made per minute. Now if both disks
were revolved in opposite directions, at exwere revolved in opposite directions, at ex-
actly the same speed, 10,000 R. P. M., would
the number of contacts remain the same, or
would they, be increased, and if so how much?
A. Since by revolution of the left-hand wheel at the same speed as that of the right-hand wheel B, each of the ten teeth of A touches one tooth of B once in every revolution, in
stead of only one tooth of A coming in contact with the teeth of B, as when A was still, hould appear at first sight that there should be ten times as many contacts as be-
fore; but whereas before one tooth of A was touched in• each revolution of B by every tooth B, now one tooth of A thes in each number of contacts is therefore multiplied by en and divided by ten, and remains the same (12085) E. M. S. asks: 1. Where does he largest supply of pearls come from? A. ity come from fisheries around Ceylon: see ur article of April 24th. 2. How is a pear valued? A. Pearls have a certain minimum
alue by weight above which their value varies more than that of any other gem
through quite arbitrary conditions of form, color, perfection of "skin," lack of irreguy? A. Imitation pearls are now made so as to be detected with difficulty but are not dentical chemically or physically with natura Does the voltage or the amperage destroy life in electrocution? A. A high voltage is re-
quired but as generally understood a fairly high amperage is the more essential. A very mall current at 5,000 volts pressure may be taken with impunity from an induction coil whereas persons have been killed by large
rents at pressures as low as 500 volts. What is the meaning of the terms "cycle" a "frequency" in electricity? A. A cycle is on tive force in an alternating current. The voltage rises from zero to its plus maximum and falls through zero to the same negative value
and back to zero in each cycle. The fre uency is the number complete cycles in a second. 6. Is there any difference in color between the water of the Red Sea and that
of the Mediterranean? A. We should say that the difference is largely imaginary except in o far as the color is influenced by depth and the character of the bottom, which, in the sels pass through the Suez Canal? (8) Do they oo through at night? A. Vessels pass through and day, the canal being lit by powerful to the volume of the traffic but in 1904, 2,733 to the volume of the traffic but in 1904, 2,733
ships passed through the canal, with a tonof passage is 18 hours. 9. How many kilowatt can a three-phase circuit of 7 strands of No. 6 wire cable transmit at 100,000 volts for a dis tance of 155 miles? and (10) what would b the amount of power lost in transmission . We cannot make this calculation withou making you a charge. The subject occupies neer's Handbook, which we can send your the \$4. We do not encourage lists of you for o long as the foregoing, which are no less hibited in our "Hints to Correspondents." Most of these questions could be answered
from a dictionary and some from a school reader. The above are answered only on a count of inquirer's address being probably re mote from a library.

NEW BOOKS, ETC.

The Bullet's Flight From Powder to Target. By Franklin W. Mann
Milford, Mass.: \& Co., 1909. Large 8vo.; pp. 384 Profusely illustrated Price, $\$ 4$
which is not commensurate with its mportance or interest. and it possesses un usual value, not only because it furnishes a large amount of information of a very practical kind, but because this information is th
result of a practical experience on the part of the writer extending over a period of
thirty-eight years. The author tells us that thirty-eight years. The author tells us that
the results of his experiments as here given have been persistently and laboriously worked
out with an earnest desire to assist his fellow out with an earnest desire to assist that con
craftsmen. In view of the fact jecturing and theorizing have been so preva
lent in rifle literature, the work has been kept free from speculations, except where the have either been proved to be false or have
b'een fully substantiated by recorded experi been fully substantiated by recorded experi-
ments. The first impression on glancing through this work is of the extrordinary num average at least one to every two pages. Most of these are photographic reproductions of the results of actual tests. Particularly fine are
those made of bullets before and after firing, and the large number of illustrations of carefully indexed targets against which firing tests
had been made. The work has also been enhad been made. The work has also been en-
riched with lettered line cuts and with halftone engravings of various experiments that throw light upon the questions discussed. for the rifle enthusiast. There is a full dis for the rifle enthusiast. There is a full disof difference of length, of variations of rifling, as that of venting the barrel near the muzzle. An idea of the contents may be gathered from
few of the subjects treated, such as the

Personal Element vs. Mechanical Rifle Shoot-
ing; Utility of Vented Barrels; High-Pressure Shy; Utility of Vented Barrels; High-Pressure
Sharpshooting Powder; Telescope Mounts; Ruined Rifle Bores vs. Smokeless Powder vs:
Primers; Accurate Ammunition Difficulties; Flight of Bullets Gyration and Oscillation Motions Executed by Nonmal Flying Bullets Determining Rifle Twists; Kinetics of Spin, . In many respects this work is unique this subject. It is thoroughly praotical, and will be found to be of very real value to those of the rifle with a view to improving the allround efficiency of that weapon.
Trigonometrische Längenbestimmung Geodätischer Grundlinien. Von A
Tichy, Inspektor der K. K Oster Tichy, Inspektor der K. K. Oster
reichischen Staatsbahnen. Wien Eigentum und Verlag des Osterreich ischen Ingenieur und Architekten Vereines, 1909.
The author of this monograph was com missioned in 1900 to devise a method of plotting the four great Alpine tunnels. He was of employing definite triangulation data, and evolve an entirely new method based upon method was inapplicable for plotting tunnel ines in so mountainous a country. At that time the author was compelled to adopt system of optical measurement based upon ualified logarithmical method which seemed best adapted for the purpose. At the same carried it out in practice, a method which would seem to be somewhat more exact than he qualified optical method in question. It instrument was completed and actually bloyed. It is this instrument and its manner of use which Herr Tichy has thoroughly decribed in this monograph.
he South Americans. By Albert Hale Indianapolis: Bobbs-Merrill Com pany, 190. 360 pp., 8vo., fully inus Price, $\$ 2.50$
To anyone contemplating a pleasure trip to South America or around the coast of our be confidently recommended as providing pleasrable instruction, which will greatly add to the reader's intelligent interest in sights to be
seen. To exporters or others having trade reeen. To exporters or others having trade re-
ations with the South American republics delations with the South American repubics de-
iring to improve the efficiency of their sales ervice by an intelligent sympathy with their The author says that he writes "with a North merican pen but looking through South merican eyes," but we should say rather that e looks through North American eyes carefully purged of any prejudicial point of view nd with an admiable determination not to verlook the good points of his subject. Such
work, if it reaches the reat work, if it reaches the readers who most international amity, without which the indusdal development by foreign capital of immense areas of great prejudiced, can fail to be repaid for its perusal by the interest of the story. After some inroductory notes in lighter vein but none the less interesting the author takes up in turn
the geography, the history, the government the geography, the history, the government
and the people and present conditions of Arand the people and present conditions of Ar
gentina, proceeding to discuss in the same rder the same topics with regard to Uruguay, Brazil, and Venezuela in turn. He continues
with a general review of trade conditions ana oncludes with an admirable chapter on the Monroe doctrine. It is a suggestive comment on the influence of democracy that in discussing the weaknesses which all nations possess,
he author refers most frequently, as traits of South America in general and Venezuela in particular, to those marks toward which the are most frequently directed-bombastic oratory nd "graft" To offset this we are told that gallant manners on the part of the lower an ariom the beggar wealth, education, and blood, usually all three," of neither of which he American Handy Boor of the Brewcan Handy Book of the brew ING, Malting, AND Auxiliary Trades.
By Robert Wahl and Max Henius,
Ph.DD. Two vols, Chicago. WahlPh.DD. Two vols. Chicago: Wahl-
Henius Institute of Fermentology, Henius Institute of Fermentology,
1908. 1,600 pp.; 12mo.; ill.; tables; etc.
Most trades have their h ndb ngineering being blessed with the largest numof in reference to brewing and malting, there no industry which has a more thorough handbook. It aims to be a pocket encyclopædia, by reference to which brewer, maltster, cooler, bottler, or anyone connected with the commercial end of brewing may find the an swer to any question which may come up in his work without his having to wade through
bulky textbooks and peruse quantities of in formation in search of a single item. This
formse quantities of in requires the condensation into the smallest arithmetic, algebra physics, chemistry, rudiments of machinery steam engines, and refrigeration, as well as practical details of brewing and malting, cask-
ing, bottling, and shipping; but so success-
fully was the work done, that the first edition
was exhausted in a year, and the second larger one in a few years more. The present
third edition includes the improvements in third edition includes the improvements in
brewing and malthouse operations due to the recent developments of electrical machinery and gives a new chapter on electricity and
magnetism. A new chapter is also included magnetism. A new chapter is also included
to cover recent botanical studies of barley and the chapters on Mechanics and Power are rewritten, while only the tables have been retained from the chapters on Arithmetic and Algebra. The printing and general appearof the been much improved by division the division being so arranged that few individuals in the brewing trades requiring the volume as a pocket companion will not nee need, each for his particular specialty in one volume. Of the allied processes discussed, refrigeration is better treated than in any pocket book we know of the same scope, character as a model handbook in its line. Dfnamo, Motor, and Switchboard Cir-

CUITS For Electrical Engineers. By
William Rushton Bowker. Second
Edition. New York: D. Van Nos-
trand \& Co., 1908. 8vo.; pp. 168;
130 figures. Price, $\$ 2.50$.,
The special object of this book is to present the subjects indicated by the title in a nonmathematical way, and as viewed from the practical standpoint. The author originally had in view the needs of the student preparing
for the City and Guilds of London examinations or the City and Guilds of London examinations the work covers certain important sections of the Syllabus of the Ordinary and Honor Grades However, this would make it no less valuable to the American student and practical engineer. In the present second edition two new
sections have been added to furnish information sections have been added to furnish information
in regard to central-station layouts. This renin regard to central-station layouts. This ren-
ders the book particularly useful to centralders the book particularly useful to
station engineers and their assistants.
Elektrische Uhrén. Von Dr. A. Tobler,
Dozent am Eidg. Polytechnikum in
Zürich. Zweite Auflage, bearbeite
von Johannes Zacharias, Ingenieur,
Mit 120 Abbildungen.
Mit 120 Abbidungen.
Since the publication of the first edition of Zacharias' "Electrical Clocks," the technique
of the art has advanced to such a degree that a new edition seemed necessary. Wall clocks, and even timepieces in which great
accuracy is demanded, are now electrically driven. In order that the art might be fully covered it was necessary to omit electrical firm alarm apparatus which found a place in
the first edition. In this volume, therefore, only electrical timepieces are described. In attacking the subject, the author has described first, electrica installations which are neces-
sary to drive a clock train. He then passes inally diselegraphs, recording appations which have made their appearance in the last thirty years. Inasmuch as the data here presented have been collected largely as a result of personal intercourse with manufacturers, engi-
neers and scientists, the book may be taken as an authoritative presentation of an interesting technical subject.
Practical Concrete Block Making. By Charles Palliser. New York: In-
dustrial Publishing Company, 1908. dustrial Publishing Company, 1908.
75 p.; 12mo.; fully ill. Price, 50 cents.
The author, though obviously somewhat prejudiced in favor of the concrete block from his years of successful experience in its manu that much of the criticism applied to the block should more properly belong to the careless is well written in clear, simple language, with out any chemical or engineering formulæ, and explaining every technical term, so that any
workman starting in the business for himself can understand every step of the operation of making good substantial concrete blocks
The author tells how to select molds and materials, how to find the right proportions cure, and how to place the bricks in the practical hints on how to secure the best architectural effects.
The Problem of Age, Growth, and Death. York Charles S. Minot, D.Sc. 1908. 280 pp .; 8vo.; ill. Price, $\$ 2.50$. Whereas this book deals with a series of
biological problems, it is, as the author points out, essentially a study of a single phenome-
non, the increase in the amount of protoplasm. The increase to be considered is not that dis tributed through the system of the growing
organism, but that which occurs within the organism, but that which occurs within the
limits of a single cell. The ultimate object of all biology being the discovery of the na-
ture of life, the author considered that the most promising opportunities for the attack changes affected by age in organisms, senescence being a qualification of living matter having no apparent parallel in the inorganic.
It is an essential feature of life and therefore a useful guide to the proper aim of biology. If genius is properly defined as "an infinite capacity for taking pains" Mr. Minot's study
may certainly be described as a work may certainly be described as a work of
genius. He explains the limitations under
which he has labored, the great number of
interesting by-paths revealed as he started along his chosen road which his other occu-
pation prevented his following, and does not at all claim his book to be a complete treatise ithin the limits indicated by the goes and within the limits indicated by the title the
work is admirably thorough. For a number of reasons convincingly explained by the auhor but too long to be quoted, the guinea-pig in which to study growth as a function of age typical of its phenomena in any other organism, and some idea of the painstaking ature of the study will be obtained from the statement that for long periods as many one hundred guinea-pigs, kept under the personally examined twice every day. The esults obtained are by no means confined to being compared with changes in the higher animals including man. The language is clear and to the point and free as far as possible
from Greek and Latin scientific terms, making it as interesting to the layman as to the iological student.

A Synthese des Pierres Precieuses. Par Jacques Boyer. Paris: Gauthier Villars, Imprimeur Librairie du Bureau des Longitudes de l'Ecole Polytechnique, 1909.
This little monograph on the synthetic roduction of precious stones is one of the rst attempts which we have seen in book form to present a general review of the
manufacture of gems artificially. Mr. Boyer ives an historical résumé and discusses in Moissan, and Hannay. The little book gives one a fairly good popular idea of the work which is being done in a
field of physical chemistry
Hydraulic Tables. Second edition, re-
Wiley \& Sons, 1909 . 104 pp.; 8vo. Price, $\$ 1.50$.
This new edition contains little alteration eyond correction of errors discovered in the rovement, being already well known as the ished. An interesting explanation of the derivation of the formula known by the name harge from high weirs is added in rosponse o requests from users of the former edition. Automatic Screw Machines and Their Tools. By C. L. Goodrich, Screw Machine Expert Pratt \& Whitney
Company, and F. A. Stanley, Associate Editor of the American Machinist. New York: Hill Publish-
Bouverie Street, London, E. C.
ing and Mining Journal, Power and The Engineer. Octavo; pp. 255; illustrated. Price, $\$ 2$ net.
The subject matter of this book naturally divides itself into two parts. One devoted to ion, general tool equipments, methods of camand containing specific information on making and using these tools, the speeds and making which they should be operated, and other par ticulars which will be of service to mechanics interested in screw machine work. In the chapters on camming, the book illustrates and describes in detail the different makes of automatic screw machines and turret lathes, ining machines, magazine feed, and other types of machines for finishing castings, forging, etc. fith full tables of speeds and feeds for dif ferent kinds
cutting tools.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Issued for the Week Ending May 4, 1909,
AND EACH BEARINGTHAT DATE
[See note at end of list about copies of these patents.]

Legal Notices

Scientifific FImerican."

$\underset{\substack{920,578 \\ 920,188}}{ }$

s.

Engine and Foot Lathes

 MACHINE SHOP OUTFITS, TOOLS ANDSUPPLIES. BEST MATERIALS. BEST
WORKMANSHIP. CATALOGUE FREE

Foot and Power and furet Lathef fleas
$\$ 54.00$ per day And the CAMERA- CAR properit Ansone cape
 money for youss Be indepenchent and make

New Belle Isle Motor Co, Dept 0 , Detroit Mich A Home= Made 100=Mile Wireless Telegraph Set
 Price to cents by mail. Order rrum your newsdealer o
frum
MUNN \& CO., 361 Broadway, New York

harry r. Geer co., 851 Mclaran Ave., st. Louis, mo

Palmer Motors Cylinder. surtionary nad Marind Mane One
to Twety H. Pe Catalogue FREE. PALMER BROS.

POU USE GRINDSTONES?
 specialtyof selecting siones. for matse se,
cial purposee. Send for catalogue I?
The CLEVE 6th Floor, Hickox Bldg., Cleveland, 0.
Gas, Gasoline and Oil Engines
Including Producer Gas Plants by garder d. hiscox, m.e. Sixteenth Edition, Revised, Enlarged and Reset.
Size $61 / 2$ x $9 / 1 /$ inches
illustrations. Price $\$ 2.50$ pages.
post paid

Tplete, compred and enlarged edition is a a com-
date work, treating fully on oughly up-todate work, treating fully on the construction,
installa,
gasolion, operation and maintenance of It treats on the theory of gas, gasoline and oil power, together with their care and running. are fully explained and illustrated. Valuable in-
formation on the testing for economy and and the erection of power plants is also included gases cannot fail to prove of value to all interested
in the generation of producer gas and its in gas engines. A list of the leading gas and oil
engine manufacturers in the United states and
Coind a list of United States patents issued on gas, gaso-
line and oil engines and their adjuncts from 1875
to date.

MUNN \& COMPANY, Publishers 361 Broadway, Now York

Home-Made Experimental Apparatus

In addition to the following articles, the
Scientifl American Supplement has published Scientife American supplement has published of which over 17,000 are listed in a carefully
prepared catalogue, which will be sent free of charge to any address. Copies of the Sc.
American Supplement cost 10 cents each. If there is any scientific, mechanical, or en-
gineering subject on which special information is desired, some papers will be found in this
catalogue, in which it is fully discussed by atalogue, in which
competent authority.
A few of the many valuable articles on the
making of experimental apparatus at home are ELECTRIC IIGHTING FOR AMATEURS. perimental installation can be set up at home. AN ELECTRIC CHIME AND HOW IT MAY
BE CNNTREVTED AT HOME, is described in
Scientifo American Supplement 1566. THE CONSTRUCTION OF AN ELECTRIC HOW TO MAKE A 100-MILE WIRELESS A STMPLE TRANSFORMER FOR AMA-
TEUR' USE is so plainly described in Scien-
tific American Supplement 1572 . that anyone can A $1 / 3$-H.-P. ALTERNATING CURRENT DY
NAMO. Scientific American Supplement 1558. THE CONSTRUCTION OF A SIMPLE PHO-
TOGRAPHIC AND MICRO-PHOTOGRAPHIC APPARATUS Is simply explained in Scientific A STMPLE CAMERA-SHUTTER MCADE OUT
OF ABEASTEBOARD BOX, PINS, AND A A
RUBBER BAND is the subject of an article in HOW TO MAKE AN AEROPLANE OR GLID.
ING MACHINE is explained in Scientifio Ameri-
 In this article it is shown how a lamp chimney
may serve to Indicate the pressure in the in-
ferior of a liguid; to explain the meaning of
capillary elevation and depressione to serve capillary elevation and depression; to serve as a
hydraulic tournique, an aspirator, and intermit-
tent siphon; to demonstrate the ascent of liquids of the bursting bladdor and of the phenomena
expansive
of torce of gases. Scientific American Supplement
1583 .
HOW A TANGENT GALVANOMETER CAN
BE USED FOR MAKKING ELECTRICAL MEAS-
UREMENTS is described in Scientifl American TEEE CONSTRUCTION OF AN INDEPEN-
 AN EASIIY MADE HIGH FREQUENCY AP-
PARATUS WHMCHE CAN BE USED TO OB-
TAIN EITHER D'ARSONVAL OB OUDIN CUB TAAN EITHER D'ARSONVAI OR OUDIN CUR-
RENTS Is described in Scientific American
Supplement 1618 . A plunge battery of six cells, a two-inch spark Anduction coill, a par pair of one-
pint Leyden jars, and an inductane eoil, and al
the apparatus required, most of which can be
made at home.
SIMPLE WIRELESS TELEGRAPH SYSTEMS
are described
in
Scientifc American Supplements 1363 and 1381
THE LOCATION AND ERECTION OF A 100 clearly explained, with the help of di
in Scientific American Supplement 1622.
THE INSTALLATION AND ADJUSTMMENT
OF A 100 -MILE WIRELESS TELEGRAPH OUT. FIT, illustrated with
can Supplement 1623 .
 Supplement 1624. THE CONSTRUCTION OF AN EDDY KITE THE DEMAGNETIZATION OF A WATCH is

HOW A CALORIC OR HOT AIR ENGINE HOW A CALORIC OR HOT AR ME MADE AT HOME is well explained,
Wint be help of illustrations, in scientifl THE MARING OF A RHEOSTAT is outlined Good articles on SMALL WATER MOTORS
are contanned in Scientific American Supplement
1494, 1049, and HOW AN ELECTRIC OVEN CAN BE MADE THE BUILDING OF A STORAGE BATTERY
is described in Scientific American Supplement A SEWING-MACHINE MOTOR OF SDMPLE A Wheatstone bridge, Scientifio Ameri Good articles on INDUCTION CoILS are con-
tained in Scientific American Supplements 1514 1522, and 1527 . Full details are given so tha
the coils can readily be made by anyone. HOW TO MAKE A TELEPHONE is
A MODEL STEAM ENGINE is thoroughly de-
scribed in Scientific Americun Supplement, 1527 . HOW TO MAKE A THERMOSTAT is ex ANEROID BAROMETERS, Scientific American a water bate, scientific American Supple VAL CHEEAP LATHE UPON WHICH MOCF subject of an article contained in Scientifio Each number of the Scientific American Supplement costs 10 cents by mall.
MUNN \& CO., - 361 Broadway, New York

Measuring instrument, E. Hiergesell....... 920,868 Measuring the axial thrust of driven shaifts,
 Metallic Fitzgeral etal

Milk and cream saving device, sanitary, Milking apparatus, E.................
Miter box, J. F. Winkler
Mixer feed device

burner, w. D. Breckenridge.............. 18 .

 aper hanging machine, G. Cook...........
Paper making machine, automatic stock
regulator for, Hilaman \& Clough......
 Pen, wri
Phonogra
Phonogra
wort

 Programme indicator, electric, A. . Lonerga
Pump, carbureter arir, A. D. Elliott......
Pumping system for hydrostatic apparatus,

Ra
\qquad

 920,761
920,392 Refrigerating apparatus, F. A. . Rider....
Refrigeration and water supply, system Refuse burner, B. Fox
Resilient wheel, F.
Resistanee materiai, \mathbf{H}. Thomas. Geisenhoner
Revolving furnace for volatilizing zin
 Rubber footwear, G. E. Sidth.
Rubber from rubber bearing plants,
ical separation of, E. Delafon
\qquad
 Sap ${ }_{\text {Breeden }}$ reng apron and receptacle,
Sash

Sash crossing bar joint, A. Windeknechit.
Sash lock, R. Th,
Sash lock for fireproof windows, auto..

Screws, lock for machine, W...........
Scrubbing machine, C. H. Henning
Seal,
Seaming machine, can, F. Rudolphi..
Seaminig machine, double, $\begin{aligned} & \text { Ostlin } \\ & \text { dolphi } \\ & \text { Seasickness, } \dddot{\text { device }} \text {, for preventing. }\end{aligned}$.

steel. Before you buy a revolver, have your dealer
show you this one. You can see the safety-principle show you this one. You can see the safety-principle
at a glance. If youre looking for an absolutly sefe
revolver-a weaponthat shoots straight and hard when revolver-a weaponthat shoots straight and hard when
you want it o, and that positivly cannot be discharged
vonless you actually pull the trigger--the Hopkins \& unless you actually pull the trigger-the Hopkins \&
Allen Triple Action Safety Police, is the revolver that you need.
The Walnut Army Grip gives a strong, firm hand-
hold, and add seally to the hold, and adds greatly to the weapon's effectiveness.
22,32 , and 38 calibre, nickel or blued. 4 inch barrel, bued, $\$ 10.00$.
barrel, blued, $\$ 10.00$.
Atall. good hardware and sporting goods stores. If
your dealerdoesn t sell lits send us price; we will supply your dealerdoessit sellititsend usprice; we will supply
you direct, and guarantee safe delivery and satisfaction.

Our new 1909 Gun Guide and Catalos, shows
the most extenive line of figh--rade, low-price

THE HOPKINS \& ALLEN ARMS Co.

For Everybody

LTPAMTITHIS MANTA
Visifile Writers or othervise

Free
Catalogue of Scientific and Technical Books

We have iust itsued a new edition
of our Catalogue of Scientific and Technical Books, which contains 144 pages, and a cony will be mailed
free to any address on application

[^0]

Classified Advertisements

 Advertising in this column is 75 cents a line. No lessthan four nor more than ten lines a cecepted. Count se ven words to the line. All orders must be accom-
panied by a remittance. Further information sent on READ THIS COLUMN CAREFULLY.- You will find consecutive order. If you manufacture these good write us at once and we will send you the name and
addrees of the party desiring the information. There necessary to give the number of the inquiry Where manufacturers do not respond promptly the
inquiry may be repeated. \quad MUNN \& CO.

BUSINESS OPPORTUNITIES
 Inquiry
buttons.

PATENTS FOR SALE

 maniry No, 8894.- For man fataturers of an auto

 ${ }^{\text {In maniry }}$ No:
 Full peniticuara edaries Joseon stauder, 213 Frankin

TYPEWRITERS.

 Witer Exchange, 23Park Row, Nee Mork.

MISCELLANEOUS.

 Inguiry
ingo.
Non Boiler Co.
.

LISTS OF MANUFACTURERS.
 Mumates should be obtained in advance. Address lhe Western Stump Borer for porting stumps.

Inquiry No. 8936.-Wanted machinery used to
spn or wrap paper penclis in the mannerthat paper
pencils are made

 turbinines. No. 8953.-For manufacturers of water Inquiry
smal kornel from the pear-ut.
Inquiry No. 895\%. Wanted manufact
 impairy No. 8961. - For the manufacturers of
impairy No. 8964.-For address of parties making
Inquiry No. \$965.-Wanted the address of the
Conguiry No. S966. - Wanted the address of the

ancouiry No. \$969.- Wante
Inquiry No. 89.8.2.-Wanted to buy complete outat Inauiry
ested in fishing reels. 894.-For address of firms interBuiliers of moving stair cases.
Inquiry No. 8976- For the

Inquiry No. f9y\%.-For manufacturers

 liquiry No. g9s1. Wanted agas machine making the gas regula

 Inquiry No. 8983.-Wanted address of frms who
 Inquiry No. 8955.
manufacturing puzies.

DESIGNS.
Blaa
Bra
Cab
Cob
Con
Dish

39,963,
39,946,

 \qquad
TRADE MARKS

Rutter, Riliey \& Dietrich.....................
Canned salon, Nortwester
Cans, metal, Southern Can Company of Bal
 Cieanning compouna, Commercial Paste C.
Cloansing preparation,
Cothing
 Coffee, Meieier coiree co.

VALUABLE SCIENTIFIC BOOKS

Industrial Alcohol Scientific American
 ITS MANUFACTURE AND USES A Practical Treatise based on Dr. Max Maerceer's
 Reference Book

 brǘck and Lange. Comprising Raw Materials, Malt ing, Mashing and Yeast Preparation, Fermentation Distillation, Rectification and Purification of Alcoho Free Alcohol, Methods of Denaturing, Its Utilizatio for Light, Heat and Power Production, a Statistica Review and the United States Law.By JOHN K. BRACHVOGEL, M.E.
528 Pages 105 Illustrations Price $\$ 4.0$
Experimental Science g GeORGE M. HOPKIN: Revised and Greatly Enlarged. 2 Octav Cloth Bound. Postpaid, $\mathbf{\$ 5 . 0 0}$
Owing to the, amount of new matter added the book
is now published in two volumes handsomely bound in
buckren buckram. Of the additions which have been made
amonk the most important are: A full illustrated de amonk the most inportant are: A full illustrated de-
scription of $3 / 4$ H. . Flectric Motor, prepared expressly
for this edition of " Experimetalis.
 on Alternating-current Machinery, and clear, concise
Explanations of Wireless Teeegraphy and Tlepephony,
Electrical Measuring Instruments, the Electric Clock, the Telegraphone. High Tension Currents, the Nernst
Lamp, and methods of measuring the heat of the star No other work contains such a fund of trust worthy up-
to-date scientifif information, presented in a clear and
simple style. Send for descriptive circular.

The Scientific American Cyclopedia of Receipts,

Notes and Queries 15,000 RECEIPTS
th
This splendid work contains a careful compilation o the most useful Receipts and Replies given in the
Notes and Queries of correspondents as published in Notes and Queries of correspondents as published in
the Scientific American during the past sixty years the SCIENTIFIC AMERICAN during the past sixty years
togetherwith many vaiuable and important additions.
Over Fifteen Thousand selected receipts are here Over Fifteen Thousand selected receipts are here collected, nearly every branch of the useful arts bein
represented. It is by far the most comprehensive vo represented. It is by far the most comprehen.
ume of the kind ever placed before the public.

Modern Plumbing Illustrated

By R. M. STARB Price $\$ 4.00$
A COMPREHENSIVE and up-to-date work illusA trating and describing the Drainage and Vent lation of Dwelligs, Apartments, and Public Build ings, etc. The very latest and most approved
methods in all branches of sanitary installation are given. Adopted by the United States Government in its sanitary work in Cuba, Porto Rico, and the
Philippines, and by the principal boards of heath Philippines, and by the principal boards of health
of the United States and Canada. 300 pages; 55 full page illustrations.

Modern American Lathe Practice

By OSCAR E. PERRIGO, M.E.
Price $\$ 2.50$
A COMPLETE book of 400 pages on The Modern American Lathe. Its development from the
earliest times up to the present day; its modern form as constructed by up-to-date builders; its gen-
eral and special classes of work; the quantity of its output, and its marvelous accuracy.

Modern Steam Engineering in Theory and Practice By GARDNER D. HISCOX, M.E. Price $\$ \mathbf{3 . 0 0}$
$\mathrm{T}^{\text {HIS }}$ is a complete and practical work of 487 pages, dealing with the care and management
of Boilers, Engines, Pumps, Superheated Steam, Refrigerating Machinery, Dynamos, Motors, Eleva-
tors, Air-Compressors, and all other branches with tors, Air-Compressors, and all other branche
which the modern Engineer must be familiar Nearly Two Hundred Questions with their An-
Nwers on Steam and Electrical Engineering likely to be asked by the Examining Board are included. These if studied by you will help you to procure a
license. It is fully illustrated with detail engravings, not to be found elsewhere.

Punches, Dies and Tools for Manufacturing in Presses

By JOSEPH V. WOODWORTH
Price $\$ 4.00$
A PRACTICAL, work of 500 pages fully illustrated of Die Making, Punch Making, Die Sinking, Sheet Metal Working, and Making of Special Tools, SubPresses, Devices and Mechanical Combinations for
Punching, Cutting, Bending, Forming, Piercing, Drawing, Compressing and Assembling Sheet Metal
Parts, and also Articles of other Materials in Machine Tools. Two Hundred and Ten Processes are clearly described and fully illustrated.

The Scientific

 American Boy By A. ROSSELL BOND12mo. 320 Pages. 340 Illustrations Price $\$ 2.00$ Postpaid
This is a story of outdoor boy life, suggesting a large umber of diversions which, aside from affording enn each instance complete practical instructions are The needs of the varlous articles. irections for making tramping outtits, sleeping bags nd tents; also such other

Diversions, including Trick Photography The illusions are illustrated by the highest class of
ngravings, and the exposes of the tricks are, in many cases, furnished by the prestidigitateurs themselves.
Conjuring, large stage illusioris, fire-eating, swordswallowing, ventriloquism, mental magic, ancient magic,
uutomata, curious toys, stage effects, photographic tricks, and the projection of moving photographs are
all well described and illustrated

A Complete Electrical Library

By Prof. T. O'CONOR SLOANE
An inexpensive library of the best books on Electri-
ity. Put u in a neat folding box. For the student, the amateur, the workshop, the electrical englneer
schools and colleges, comprising five books, as follows: Arithmetic of Electricity, 138 pages. How to Become a Successful تlectricici.............. 1.0 Fivricity Simpliffed, 158 pages........ Five volumes, 1,300 pages and over 450 illustrations
A valuable and indispensable addition to every lib OUR GREAT SPECIAL OFFERR.-We will nblue eloth with silver lettering, and indolomed in a a neat or the complete set. The regular price of the five
olumes is $\$ 7.00$.
The New Agriculture
By T. BYARD COLLINS
12mo, 3y4 Pages, 160 Illustrations
This valuable work sets forth the changes which bave taken place in American agricultural method
which are transforming farm life, formerly so hard, into the most independent, peaceful, and agreeable exist-
ence. Farm life to-day offers more inducements than at any previous period in the world's history, and it is of the most practical treatises. The presentwork is one of the most pract.
ever been issued.
The latest and best book on the subject. Contents:
. The New Call to the Farm.-II. The New Soil.-rrigation.-III. The New Fertilization.-IV. The New
rransportation.-V. New Interests.-VI. New Crea
tions.-VII. New Varleties.-VIll. New Practice.-IX New Machinery. - X, The New Inspiration

HOME MECHANICS FOR AMATEURS

By GEORGE M. HOPKINS. Author of "Experimental Science" Price. $\mathbf{\$ 1 . 5 0}$ Postpaid
The book deals with wood working, household orna working; making model engines, boilers and wate motiors; making telescopes, microscopes, and meteoronight lights, dynamos and motors, electric light, añ
an electrical furnace. It isa thoroughly practical bool

Electrician's Handy Book By PROF. T. O'CONOR SLOANE, A.M.,E.M., Ph.D. and Edges in Gold. Pocket Book Style. Price $\$ \mathbf{3 . 5 0}$.
$\mathrm{A}_{\text {THOROUGHL }}^{\text {THO }} \mathrm{P}$ practical reference book of 768 A pages, covering the entire field of electricity.
Contains no useless theory. Everything in it is to the point and can be easily understood by the stuing electrician. The advanced electrical engineer
will also receive great benefit from its perusal and will als
study.

PARIS GARTERS
 2. machine in iall furniture taic

 THE MANLLE LAMP C. OF AMERICA, Dept.
Chicago, III.
Portland, Ore.
Winnipeg, Can.

INFUSORIAL EARTH

ALL GRADES
DIRECT FROM AUGUST GIESE \& SON DTRECT FROM
THE MINES
Codar Btreet
NEW YORK

2c a Week Does Washing!

 We Prove it at OUR ExPENSE

The 1900 MotorWasher

Sent Anywhere on 30 DAYS' FREE TRIAL!

SAVE MONEY-SAVE TIRE TROUBLES
 CARD PRINTER

WIRELESS BOOKS RE The Latest on Wireless Telegraphy, by Newton Harrison, E. E.
Tells how to make and use inexpensive wircless outfits for send-
ing and receiving up to 100 miles. Full details and drawings. ing and receiving up to 100 miles. Full details and drawings.
12 mo. Cloth. Price, 50 cents. Wireless Telegraphy for Amatears, by R. P. Howgrave-Graham.
Cives full explanation of the construction and working or appa-
ratus for short distance transmission. 160 pages. 51 illustraratus for short distance transmission. 160 pages. S1 illustra-
tions. 1 2mo. Cloth. Price, $\$ 1.00$. Wireless Telephone Construction. Another good book, by
Newton Harrison, explaining booth the sending and receiving
stations with suffien stations with sufficient details-so any one can build a "WireSPON \& CHAMBERLAIN, 123 S. A. Liberty St., New York

WE WILLMAKE $\begin{gathered}\text { your models } \\ \text { and give you } \\ \text { estimates on }\end{gathered}$ manufacture of any metal novelty. Automatic machinery, tools, dies and expert work our specialty.
AUTOMATIC HOOK \& EYE CO.. Hoboken. N. J.

THE CLOSED DOOR

A NOTHER day's delay! And customers "yelling like mad"' for their
goods. It's bad business, you'll admit. But don't blame the poor old He does the best he can. One of the first aids to better conditions in your traffic department will be found in

Gapia Commercial Power Wagons

International Auto Buggy

The Most Advanced
Example of Dependable Motor Buggy Design and Construction

T HE INTERNATIONAL AUTO BUGGY is a reliable and economical car for city or country use, in any kind of service-pleasure or business-over all kinds of roads. We would be glad to show you the power, simplicity, accessibility of all its parts, easy control, comfort and usefulness of the International Auto Buggy-the highest type of motor vehicle.
 Horse Power -14 by brake test, equivalent to to 18 or 20 in inch solid rubber tires. Springs -36 -inch full elliptic.

INTERNATIONAL HARVESTER COMPANY OF AMERICA 100 Harvester Building (INCORPORATED) CHICAGO, U.S. A.

Big Money In Drilling
 Cyclone Drill

 CYCLONE DRILL COMPANY, 11 Main St., Orrville, Ohio

Engineering
 News

The Leading Engineering Paper of the World. For Civil, Mechanical, Mining and THE ENGINEERING Lowate desired engineering equipment write our "Readers Want " department.

HolsmanAutomobiles

GOBBO
$=2$
=
THIS IS THE MASCOT that has brought good lack to
Max welldring the entire 10
O00 mile non-stop entine Aot mile non-stop engine ran.
Attach one to yoor radia'r a cap
and you will have no boodoo. Price $\$ 1.00$ Prepaid ready to attach.
Discount to Dealers.
$\underset{2-4 \text { Lincoln St., }}{\text { The Boston, Mass. }}$

CRUDE ASBESTOS DIRECT FROM MINES
\qquad

[^0]: MUNN \& CO., Publishers of Scientific American

