EECENTLY PATENTED INVENTIONS. of Interest to Farmers
Grain-Shocker.-E. Cowin, York, N. D The shocker is adapted to be used in connecing the bundles of grain from the binder and arranging them upon a carrier to form a shock and has means for releasing the carrier, where by the shock is positioned upon the ground
and the carrier withdrawn from under the by the shock is carrier withdrawn from under the same by the forward movement of the ma-
chine. Used in connection with the binder, it chine. Used in connection with the binder, it
has actuating machinery operable from the has actuating machinery operab.
driving mechanism of the binder.

Of General Interes

amalgamator.-W. F. Bedell, North Yakima, Wash. The amalgamator is designed for treating placer material, dredge material, and mill and slime material, and is arranged
to insure the complete separation of the heavy aluable particles, such as platinum, coated gold and the richer parts of amalgam, from
the tailings. The invention relates to amal gamators such as shown and described in Letters Patent of the U. S., formerly granted to Mr. Bedell.
STRINGED MUSICAL INSTRUMENT.-S W. Buercelin, Prague, Oklahoma. The in
strument may be arranged to be picked in he manner of a guitar, mandolin, etc., o played with a bow in the manner of violins, violas, etc. The sound is amplified by the body when a hollow body is used, and is trans-
mitted by- the bridge to sound boxes and ammitted by- the bridge to sound boxes and am-
plified by horns. These horns are arranged way when the instrument is used in the manner of a guitar.
MOVABLE BARRAGE HAVING ROTARY du Jardinontoons.-E. M. Audodin, 12 Rue due following Plantes, Poitiers, Vienne, France, invention. Ease and rapidity of working in opening and closing the barrage. Security of the movable parts, especially during floods and
frost. Perfect barrage (i. e., freedom from leakage). Porfect barrage (i. e., frility of varying at will the level of the water held back. Cheapness of onstoons in. The barrage is constituted by of being floated or sunk to the bottom according to the quantity of water let into them. WRITING-TABLET.-M. A. Drees, Pesh tigo, Wis. The invention relates to letter sheets and tablets therefor, the more particu
lar object being to provide a device in which lar object being to provide a device in which one or any larger number of sheets of pape
may be kept temporarily together, and ar may be kept temporarily together, and ar-
ranged in connection with suitable parts for anged in connection with suitable parts fo ter sheets.
mold.-F. b. Harding and J. J. Brubeck In the present patent the in ention has reference to the manufacture of object in view is to provide a new and improved mold which is simple and durable in posts of different sizes.
FIRE-TANK.-J. W. Kane, New York, \mathbf{N}. Y This invention relates to improvements in ar tanks as are ordinarily located at the top of large buildings for fire extinguishing purposes, the invention being directed to a novel
heating arrangement acting to prevent the water in the
adjustable skid.-W. McCaddin and g. Sutherland, New York, N. Y. The invention relates to skids designed to be used in unload
ing heavy rolls of paper. The invention has for its object the provision of means adapte to permit rolls of paper of different length t be readily up-ended from a skid without damage or injury to the paper.

Hardware.

FaUCET.-P. F. Catanaugh, La Crosse, Wis The invention relates to faucets used for plumbing or other purposes, and is especially
useful in connection with faucets which auto useful in connection with faucets which auto-
matically shut off the flow of liquid when rematically shut off the flow of liquid when re-
leased. It will not permit the leakage leased. It will not permit the leakage
water when it is not in use, and which water when it is not in use, and
closed by the pressure of the water.

Heating and Lighting
Gas-Lighter.-J. Pasternak, New York N. Y. The object in this case is to produce ordinary gas lighter, and which will operat as a shield or cover for the flame so as protect the chandelier or fixture from the flame in the act of lighting the gas.
COMBINATION GAS AND GASOLINE BURNER.-G. A. Manshardt, Naperville, Ill. In this patent the object is to provide a com-
bination gas and gasoline burner arranged to bination gas and gasoline burner arranged to
permit of burning gas or gasoline in such a manner that it requires no tedious waiting is used as the fuel.

Machines and Mechanical Devices.

TIMEPIECE-REGULATOR.-R. G. Norto Madison, Wis. The invention relates to chro nometers, watches, and like time-pif..- , and its
aim is to provide an improved regulator aim is to provide an improved regulator, ar-
ranged to permit easy and accurate adjustment of the hair spring of the balance, with
a view to accurately regulate the vibrations the balance of the time-piece
Drill.-J. D. Tully, Pearl, Colo. The ity of drills from a single source of pluralmeans being such that a gang of drills may be placed along in a row in a straight or and connected to each other and to line levels, and connected to each other and to a single
source of power, the particular connecting mearce of power, the particular connecting
meing shafts and tumbling joints, to transmit power. Clutches are provided. at each drill, so that one or more drills may be stopped as desired, and friction clutches are used, so
that if one drill becomes caught its clutch will slip and the becomes caught its clute
Shaft-COUPLING.-W. A. Perry, New
York, N. Y. The invention relates more par ticularly to that type of coupling which in cludes a casing surrounding the adjacent end the shafts to be coupled, and including edge forced into position by the action of efficiency irrespective of the wirection of ro tation of the shaft, which is easily applied, and cannot possibly work loose.
THERMOSTATIC CONTROLLER.-C. Dunham, Marshalltown, Iowa. The invention has reference more particularly to means whereby a thermostatic device disposed in one con-
duit or passage may be operated not only by variation in the temperature of the fluid that conduit, but also by a variation in the temperature of a fluid flowing
separate and distinct therefrom.

Rallways and Their Accessories.

CAR-TRUCK.-G. Roux, New York, N. Y. he invention provides a truck for railway o mechanism applied thereto, and so constructed that the parts of the truck mechanism are rigidly held and braced. Screw posts con-
trolling the brake beams which carry the trolling the brake beams which carry the brake shoes, cross frames and transoms form-
ing supports for the posts, the transoms serving supports for the posts, the transoms serv-
ing rigidly to brace the frame, and a bolster ng rigidly to brace the frame, and a bolster
resiliently supported by the longitudinal frame members of the truck and cross frames are pro vided.

Pertaining to Recreation.

SCORE-BOARD.-J. P. Keenan, Waterbury Conn. The invention relates to games played on bowling alleys. 'The board is arranged to ermit the use of a continuous sheet of plain filled-in allows of cutting off and removing a filled-in portion after the game is finished, and presenting a clean portion of the paper for scoring the next game.

Pertaining to Vehicles.

MEANS FOR AUTOMATIC CLOSING OF PUNCTURES IN PNEUMATIC TIRES.-J. Lindharth, Aaboulevarden 6, Copenhagen,
Denmark. The invention has for its object in arrangement and method for the automatic closing of punctures in pneumatic tires of like, caused either by involuntary damage uring the riding or by willfư injury. This n adhesive fluid of suitable composition and consistency and enveloping the tube by a oosely fitting bandage consisting
non-elastic and fibrous substance.
Note:-Copies of any of these patents will fumish by Muni C for ten cents each Please state the name of the patenter
the invention, and date of this paper

Full hints to corrospondents were printed at he head of this column in the issue of Novem
(11076) C. M. G. writes: A remark was made about a local drunkard, and it was stated he had consumed enough whisky to "float a battleship." A bystander said that would not
be much, as he could float the "Dreadnought" be much, as he could float the "Dreadnought"
with one gallon of water. By making a skin with one gallon of water. By making a skin
exact shape of ship under-water body and $1 / 100$ inch larger, he could support ship with one gallon of water. Others claimed that at
least the weight of ship in water must be in least the weight of ship in water must be in
tank before ship would leave the bottomi, and cited the law of gravity, where a floating body displaces exactly its own weight of water. The other "school" claims that if ship was set in level rose in containing tank to her normal waterline that ship would rise, citing the fac exert hydraulic pressure on bottom as pe Pascal law and support ship. Personally, I am as much at sea as the alleged ship ever was, and think that the ship and water will act the same one place as another. It is evident that
ship in free water of ocean must bear down ship in free water of ocean must bear down
upon water under bottom with exactly same upon water under bottom with exactly same
force as water at head in feet of bottom below surface forces up, else ship would either sink case. or rise higher until s. Take the be the ton ship, set her down in free water, and she
displaces 10,000 tons of water. Place ship in and of balance beam at same distance from fulcrum, and the two will balance. Put the gallon of water in place of 10,000 tons and set hip on, and as party stated it, "the wate strung this out further than a concise state ment of problem would require, but do it to give you the spirit of the argument, and hope you can show us where we are both wrong, a
certainly think we are. A. The argument i not at all an uncommon one, and was discussed at some length in our Notes and Queries some months ago; the question came to us in terms almost identical to those of your letter and the the possibility of a ship's being supported by so small a quantity of liquid, may be consoled t hear that it created a somewhat heated argu at least practise of our speciansts, who au problems as well as trained in physics. Al your reasoning on the subject is entirely sound, except where (perhaps quoting another) you
refer to the hypothetical conditions arising if refer to the hypothetical conditions arising if
the ship could be placed on one side of a balthe ship could be placed on one side of a bal
ance and the gallon of water on the other. I is unquestionably the case that if a "Dread nought" were placed in a drydock of so nearl place more than and size that inch are at n n the hull, and that $1 / 100$ of an inch thick space filled with water up to the load waterline of the ship, the ship would actually float (a gal
on of water would not degin to fill such space in the case of the "Dreadnought," would take 50 gallons at the very least, but
the amount is beside the point, and may be the amount is beside the point, and may be
referred to as a_{0} gallon). The gallon of water does not balance the ship; it is the difficulty weights that causes so much controversy on the subject. One is inclined to think that the the thin film of water and rest on the bottom forgetting the pressure due to head, which is independent of the thickness of the film. It is of course true that the weight of water dis placed by a floating ship is equal to the tota weight of the ship, i. e., the ship weighs a much as the quantity of its submerg occupied by were the ship not there. What would balance the ship in your case is not the gallon of wate in which it floats, but something that is not there, namely, the quantity of water which moved, and which would have to the ship re the imaginary dock up to the same level in or der to create at the bottom of the dock the same hydrostate film by the weight of the ship. That inch film by the a pressure may be present in so thin a film able; it is an absolute axiom of physics that the pressure of water is directly proportionat or size of the containing vessel. If you hav closed box a root square and a foot high, ful projecting from the top to $1 / 4$ inch diameter projecting from the top to a height of 23 per square inch pressure) there will be 14,40 pounds pressure on the bottom of the box, actly as if the box were a foot square all the actly as the box were a foot square all the
way to 233 feet; and in exactly the same way sufficient hydrostatic pressure to support the ship may be transmitted in your $1 / 100-$
inch film. You may therefore tell your friend inch film. You may therefore tell your friend that as far as purely hydrostatic principles are concerned, he may safely claim that he can
drink-not, we hope, at a sitting, but in a month or two-"enough whisky to float a bat tleship
(11077) J. M. asks: Am I correct in thinking that the Mitchell lifeboat (a rough
sketch of which has been sent you under sepasketch of which has been sent you under sepawind than the lifeboat at present in use on both sides of the Atlantic? This boat, being oars, draws very little water and easily stered, weight 1,400 pounds, seated for 24 person It seems to me that a boat made on this plan, large enough to require 8 or 10 oars to propel
that the open boat must be the hardest to pul against a heavy wind with all the men offer ing resistance to the wind as they sit in the positions; the open boat must also offer a goo deal of resistance, especially in descending
wave. I would like to know how the weight of thise. I would like to know how the weight oa
thisered boat compares with the open boat of the same capacity. A. We should certainly
and say that a lifeboat as shown in your sketch would pull more easily against a head wind than the ordinary lifeboat, supposing it to be submerged to the same depth. Whereas, for the purposes of comparison, it may be considered roughly as an ordinary lifeboat with a lid on, ne would at first sight suppose that a boat of that structure would be heavier than an rdinary lifeboat of equal capacity, but on ac reatest rigidity with least material, we should say that your boat could be built with no more, and possibly even less, weight of material than a equivalent boat of older pattern.
(11078) J. T. asks: Will you kindly explain through your columns a phenomenon berved while looking at moving pictures? The wheels of rapidy-moving vehicles sometimes nd sometimes are stationary relative to the
terval from the moment the spoke of a wheel
leaves any certain position till the following leaves any certain position till the following with the interval between each successive photograph, then the wheel will appear not to re will seem to revolve in a contrary direction, if longer, it will revolve in the direction of the ehicle. As this apparent absurdity detracts rom the realism of certain pictures, perhaps discussion of the laws involved may lead to mprovements. A. Your explanation of the moving picture is, we think, the correct one. There does not appear to be any way in which it can be remedied. It is inherent in the na-
(11079) W. W. S. asks: Will you indy inform me what causes the compass to point north? Is it the influence of the North Star or the North Pole? Has the North Star The magnetic needle comes to rest pointing The magnetic needle comes to rest pointing rere a great magnet. A compass needle would were a great magnet. lengthwise of a bar maget placed under the compass needle, just as it does under the influence of the earth. For this reason we think of the earth as a great magnet. The North Pole and the North Star have no influence over the compass needle.
(11080) L. G. McA. asks: Kindly adise me in your Notes and Queries column if hich possible to intensify a thin negative condition because uch cases as happen at the seashore in most mateur photographing. If you can give me a will ion with operation for same, your kindness will be appreciated by a reader. A. The best
ntensifier we have ever used is prepared as

curic bichloride...... 240 grains	
monium chlorid	ns
Water, distilled.......... 20	
Solution No. 2.	
mmonium chlorid	
Water, distil	
Solution No. 3.	
Part A.	
Potassium cyanide......., 120 grains	
Water, distilled......... 12 ounces	
Part B .	
Silver nitrate	0 gra
Water, distilled	

dd B to A, pouring in a little at a time, with stirring, to dissolve precipitate, as long as the precipitates dissolve. To intensify a plate, ensity desired. For according to ification soak ill completely whitened on the back side. Rinse and soak in No. 2 for a minute. Rinse and all whiteness disappears Wash thor ughly and dry. Some of the best printing negatives we have seen have been made by intensifying with these solutions. No. 2 may be used repeatedly, filtering when necessary. Nos. 1 and 2 had better not be used more than
once for best results. Be very careful with he potassium resunts. Be very careful most deadly poisons. On no account put the fingers nto the mouth after having them in the solu tion, until they have been washed with soap
and water. Mercuric bichloride is popularly called corrosive sublimate. It too should be handled with care. These solutions should both be kept where children and prospective suicides cannot have access to them.
(11081) A. J. B. says: 1. What would Fig. 1 , with the end of the red at point A in point D and a force of 1,000 pounds pulling at point B, the other end of the rope? The
direction of the two parts of the rope is direction of the two parts of the rope is
such as to make the angles between A and such as to make the angles between A and
D, A and B, and B and $D \quad 120$ degrees each. D, A and B, and B and $D 120$ degrees each.
A. The force exerted at point A is the esultant force of D and B, or 1,000 pounds.

Please explain the term "triangle of forces." . . the sides of the triangle formed by any three straight lines parallel to their diFig. 2 we have angle \boldsymbol{C} equal to 90 D Fig. 2 we have angle C equal to 90 degrees Let side $A D$ or the hypotenuse of the triangle represent a force of 1,000 pounds. Then, by

