

SCIENTIFIC AMERICAN

 Established 1845MUNN \& CO.
Editors and Proprietors
Published Woekly at
No. ${ }^{361}$ Broadway, New York
Charles Allen munn. Preside
3ol Broadway, New York.
Frederick Converse beach, Sec'y and Treas.

TERMS TO SUBSCRIBERS.

 $\begin{array}{r}\$ 3.00 \\ 3.75 \\ 4.50 \\ \hline\end{array}$
THE SCIENTIFIC AMERICAN PUBLICATIONS.
Scientific American (established 1845).
Scientric American Suppiement (estab

 The combined subscription rates and rates to f

MUNN \& CO., 361 Broadway, New York.

NEW YORK, SATURDAY APRIL 24th, 1909

The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sharp, the article short, and the facts authentic, the contributions will receive spe
tention. Accepted articles will be paid for at regular space rates.

THE "DREADNOUGHT" COMPETITION.

The game of war begins to assume Brobdignagian proportions when it is played with battleships costing $\$ 10,000,000$ apiece for counters. England and Germany appear to be playing such a game just now; and this in spite of the fact that the latest official pronouncements of the two governments would lead us to suppose that the dove of peace hovers undisturbed above the international checkerboard. The present feverish excitement over the progress of Germany in the construction of battleships, is due to the sudden realization by the people of Great Britain that the excellent German system of building according to a definite programme, extending over a period of years, gives an assurance of a definite future strength and standing, which is wanting under the British system of leaving each year's addition to the navy to be decided by the caprice of the particular political party, which happens for the time being to hold the reins of office. Furthermore, by a dexterous manipulation of statistics, the party in Great Britain which is desirous of building the biggest possible navy that the liberality of Parliament will allow, has endeavored to impress the public with the belief that within two or three years' time Germany will be in possession of a greater number of "Dreadnoughts" than Great Britain itself. number of "Dreadnoughts" than Great Britain itself.
The note of alarm has served its purpose so well (or. so ill, according as we look at it) that the Parliament has passed a bill authorizing the construction of eight of these huge and costly vessels, the appropriations for which alone will reach the huge sum of not less than $\$ 80,000,000$. That the alarm over conditions, fictitious though we believe them to be, has spread titious though we believe them to be, has spread
throughout the whole of the British empire, is shown by the offer of three of the leading colonies to contribute, should the mother country desire it, six additional "Dreadnoughts," or their equivalent in naval construction. This, expressed in terms of dollars and cents, would mean an additional $\$ 60,000,000$; which brings the total sum that the British empire stands prepared to invest in new battleships alone up to a round sum of about $\$ 140,000,000$.
But although we regard the immediate cause of this excitement as fictitious-the progress of German shipbuilding for the past year having been neither faster nor slower than its predetermined and publicly-announced plan called for-the spirit which has been nounced plan called for-the spirit which has been
revealed during the discussion shows how deeply is revealed during the discussion shows how deeply is
engrafted in the national consciousness of the British people the conviction that the security of the island itself, the integrity of the empire, and the preservation of its commercial supremacy, depend upon the maintenance of an overwhelming preponderance of sea power. This is a principle which has become practically the first article of faith in the catechism of British international politics. Its soundness, at least as affecting British interests, has never been called in question by the other leading powers of the world.

ECONOMIC LOSS THROUGH THE MOSQUITO.

It is well understood that the mosquito, as a vehicle for the spread of disease, is responsible for an untold amount of sickness and general inconvenience. Not all of us, however, appreciate the heavy incidental losses due to the depreciation in the value of mosquitoinfected districts, the impairment of the vitality, and, therefore, of the earning capacity, of malarial patients, and the large total resulting losses as expressed in dollars and cents. A valuable study of this subject has been made by Dr. L. O. Howard, Chief of the Bureau of Entomology of the Department of Agriculture, and presented in a recently-issued Bulletin upon the subject of the economic loss to the people of the United States through insects that carry disease. The subject is dealt with mainly under the three heads
of Malaria, Yellow Fever, and the Typhoid Fly. In the present notice we confine ourselves to the mosquito as a vehicle for the spread of malaria.
It is contended that malaria has retarded in a marked degree the advance of civilization over the North American continent. Particularly was this seen in the march of the pioneers through the middle West and the Gulf States west of the Mississippi. In attempting to estimate the economic loss from the prevalence of malaria, reference is made to the method of Prof. Fisher, given before the recent International Tuberculosis Congress, by which he arrived at an estimate of over a billion dollars annually as representing the cost of tuberculosis to the people of the United States. In this estimate Prof. Fisher considered the death rate for consumption, the loss of the earning capacity of the patients, the period of invalidism, and the amount of money expended in the care of the sick. No such definite basis is available for estimating the effects of malaria; but Dr. Howard, estimating the effects of malaria; but Dr. Howard,
by using the statistics of deaths due to malaria in sixteen of the northern States during the period from 1900 to 1907 , arrives at an approximate death rate for the whole of the United States of 12,000 per year. In the case of malaria, however, the death rate is a less sure indication of the real economic loss than in the case of any other disease; for a man may suffer from malaria for the greater part of his life, with a reduction of his productive capacity of from fifty to seventy-five per cent, and yet ultimately die from some entirely different immediate cause. Sir Patrick Manson, writing of tropical countries, declares that malaria causes more deaths, and more predisposition to death, than all the other parasitically-induced diseases affecting mankind, together. Celli states that, owing to malaria, about five million acres of land in ltaly remain very imperfectly cultivated. Creighton says that this disease has been estimated to produce one-half of the entire mortality of the human race; and, inasmuch as it is the most frequent cause of sickness and death in those parts of the globe that are most densely populated, he considers that the estimate may be taken as at least rhetorically correct.
Now, although there is no perfectly sound basis for a close estimate, at least in this country, between the number of cases of malaria and the number of deaths resulting therefrom, an estimate based by analogy upon Celli's investigation of malarial mortality in Italy leads Dr. Howard to the conclusion that the approximate number of cases of malaria in the United States must be about $3,000,000$. We quite agree with the doctor that it is no exaggeration to estimate that one-fourth of the productive capacity of an individual suffering with an average case of malaria is lost. With this as a basis, and including the loss through death, the cost of medicine, the losses in malarious regions through the difficulty of obtaining competent labor, it is estimated that the loss to the United States, from malarial diseases, under present conditions, is not less than $\$ 100,000,000$ every year.

THE HUDSON-FULTON CELEBRATION.

The celebration of two such epoch-making events as the discoivery of the Hudson River and the inauguration of steam navigation upon its waters is an undertaking, whose execution upon a scale commensurate with the importance of the occasion, calls for no small expenditure of thought, labor, and money. We have before us a brief statement of the object and plan of the Hudson-Fulton celebration, which shows that, as far as a well-thought-out plan can assure success, the committee has done its work thoroughly. An ambitious affair of this kind, however, must not be carried through with an overcareful consideration of the cost. If it is to be consummated with the éclat which its importance demands, there must be none of that lack of funds which may so easily transform an ambitious pageant, or series of pageants, of this kind into a pitiful farce. The State is committed to the enterprise; it has received world-wide advertisement, and it is for the Legislature, the various State societies, and the individual citizens of the State to join hands in rendering the forthcoming celebration worthy of the great events that it will commemorate.
It is the boast of New York State that it contains in New York harbor the principal gate of entrance, and in the Hudson River the goographical key, to the United States and the vast regions lying to the west of the Allegheny Mountains. This noble river and the magnificent harbor into which it discharges have exerted an influence in the development of the latest and greatest of the important republics of the world, which it would be hard to overestimate. When Henry Hudson sailed his little craft nearly 150 miles through navigable water into the very heart of the country, he doubtless understood, navigator and trader that he was, how valuable a route was here for the seaborne traffic of the future; but he little realized that the river formed merely part of what, in the days of the Indian occupation, was already a
great highway of travel by river, portage, and vast inland lakes, to the remote regions of western America. Still less did he understand that from the farthermost point to which he had penetrated would be built in later days a great artificial waterway, through which vessels, many times larger than the "Half Moon," would be able to navigate uninterruptedly from the river's mouth to a system of vast in land seas, from whose shores they would gather and bring down to the seaboard the products of a country rivaling in area and resources that continent from which he had set sail on his adventurous quest.
We can do no more just here than give a brief sum mary of the elaborate plans of the celebration.
The services will begin on Monday, September 27th, 1909, with a rendezvous of American and foreign naval vessels at New York, when a facsimile of Hudson's "Half Moon," now being built in the Netherlands from the original plans, will enter the river and take her place in line. A facsimile of Fulton's "Claremont," propelled by its own engines, will start from the original site, and will also take position in line. On the same day will be opened an exhibition of paintings, books; relics, etc., at the Metropolitan Museum of Art, the American Museum of Natural History, and all the various historical societies. On Tuesday there will be a procession of historical floats, and possibly on this day will take place the competition of mechanically-propelled airships for a prize of $\$ 10,000$ offered for the winner of a race from New York to Albany. General Commemoration Day is set for Wednesday, September 29th, when there will be a dedication of memorials erected in the Hudson River valley. The number and location of some of these are unsettled, but the commission is satisfied that monuments to William the Silent and Henry Hudson, a tablet to the Founders and Patriots of New York, and a tablet on Fort Tryon, will be ready for dedication. Statues of Robert Fulton at Peekskill, Governor Clinton at Kingston, Peter Schuyler at Albany, and Van Rensselaer at Troy have been suggested. The present is an excellent opportunity for the citizens of those towns and the counties in which these towns are located to erect appropriate and too-long-delayed tributes to these distinguished men. On the same day there will be exercises at the universities and colleges throughout the State. Thursday will be devoted to military displays by the army, navy, and national guard. On Friday there will be a naval parade to Newburg, in which the "Half Moon" and the "Claremont" will be the center of attraction. After the parade has reached Newburg, a memoria arch, erected by the Daughters of the Revolution, will be dedicated.
The first week of festivities will close on Saturday, October 2nd, which is designed for a general carnival day in New York city. It will be marked by the return of the New York division of the naval parade to its starting point; and it will terminate in the eve ning with a grand carnival parade, the chief feature of which will be movable allegorical tableaux to be participated in by all nationalities represented. in New York city. There will be a general illumination of the city, a special feature of which will be the display of fireworks from the great bridges of the East River. At 9 P. M. a chain of signal fires upon the mountain tops and other points of vantage along the whole Hudson River will be lighted simultane ously.
What will be known as Upper Hudson Week will begin on Sunday, October 3rd, when the "Half Moon" and "Claremont" will continue their journey up. the river, escorted by a fleet of vessels. The center of interest on Monday will be found at Poughkeepsie, which will witness a naval parade and the erection of a statue of Robert Fulton. On Tuesday the parade will proceed to Kingston, where it is proposed to erect a permanent memorial in the form of a statue of Governor Clinton. Wednesday will find the parade at Catskill. Thursday it will reach Hudson, where a statue of the great explorer is proposed. Friday the flotilla will reach the capital of the Commonwealth, where it is hoped a statue of Peter Schuyler, the first Mayor of Albany, will be ready for dedication. Saturday, the close of the fortnight of festivities, will be marked by the arrival of the naval parade at Troy, where it is proposed to erect a statue of Van Rensselaer, who obtained the first land grant in that section of the country.

WILBUR WRIGHT'S FLIGHTS IN ITALY.

Last week Wilbur Wright made his first aeroplane flights in the vicinity of Rome. The flights were made above the plain of Centocelle, and were witnessed by a great and enthusiastic crowd. The champion aviator took up several army and navy officers. On April 16 th he made three flights of 6,10 , and 5 minutes' duration. On the longest of these he flew very close to a villa, and afterward rose to a height of 150 feet. The onlookers were astonished at his performance, and at the perfect control he had over his machine. King Humbert expects to witness some of the flights.

ENGINEERING.

Some great records for steam shovel work are being made on the Panama Canal. Recently, during a working day of eight hours a steam shovel, operating in the Empire Construction District, removed 3,941 cubic yards of rock and earth. The shovel was actually at work only six hours and fifty minutes of this time, one hour and ten minutes being consumed in waiting for the cars.
The extension of the railroad system of China is proceeding steadily, if rather slowly. At the present time the total amount of road in active operation is 2,170 miles. There are 806 miles of new road under construction; provision has been made for the construction of an additional 2,232 miles; and 3,286 miles of new line are projected.
A recent report of the power efficiency committee of the American Railway Association shows that during the first fortnight in March there was a decrease in the number, of surplus cars of 8,507 , the total number of idle cars on March 3rd being 299,925 , and on March 17th, 291,418. This steady placing of cars in service is one of the sure indications of the slowlyreturning prosperity of the country.
Advices from England state that the new protected cruiser "Boadicea" during her full power trials exceeded the record for a vessel of her size. The maximum speed achieved is said to have been 27.9 knots. She was designed for a speed of 25 knots, which was also the designed speed of the cruiser battleships of the "Indomitable" class, whose speed records of 26 knots and over now appear to have been surpassed by the "Boadicea"
According to an eminent German economist the aim of a healthy transportation policy should be to diminish, as far as possible, the economically unproductive cost of transport. It is in agreement -with this policy that Germany has built up and is continually extending her inland waterways, upon which, during the past twenty years, she has expended $\$ 150$,000,000 . At the present time Germany possesses in navigable rivers, canalized rivers, and inland canals over 8,278 miles of navigable waterways.
Speaking of canals, we note that the creation of an important naval base on the Firth of Forth on the east coast of Scotland has brought the question of a ship canal between the Forth and the Clyde once more prominently into public notice. As a commercial undertaking such a canal would have comparatively limited value; but for strategical reasons, as affording means of quickly concentrating the warships of the North Sea and the Irish Channel, on either coast, the canal would be worth the heavy expenditure which its construction would involve.

In an effort to provide shippers of coke with an improved car which can be loaded and unloaded in the shortest possible time, the Pennsylvania lines west of Pittsburg have specified that of the recent order for 3,200 new cars, 1,000 should be all-steel cars of new design and of greater capacity than any coke cars hitherto built for regular service. The chief novelty will consist of four hoppers with eight openings in the bottom of the car, making the latter practically self-clearing. The total capacity of each car is 100,000 pounds.
In spite of the rapid increase in the number of automobiles and trolley cars, the horse continues to more than hold his own. According to figures published in the last report of the Department of Agriculture, the number of horses in the United States increased from $13,537,000$ in 1900 to $19,992,000$ in 1908, the total value of the same having risen from \$603,000,000 to $\$ 1,867,000,000$. The fluctuations in the aver age price of horses have been remarkable. In 1893 it was $\$ 61$; in 1897, $\$ 37$; $\$ 44$ in 1900 , and $\$ 93$ in 1908.
The conviction seems to be widespread that the future will witness a great increase in the dimensions of warships. That the German government is of this opinion is shown by the enlargement of the Kaiser Wilhelm Canal, which is to be deepened at once to 36 feet, with provision for a later deepening, if necessary, to 46 feet. The width of the canal is to be doubled, and the new locks at each end of the canal are to be 1,082 feet long, 147 feet broad, and 46 feet deep. These dimensions, by the way, considerably exceed those of the canal locks at Panama.
The huge dredger built for keeping open the Mersey Channel is aptly named the "Leviathan." She is 465 feet 9 inches in length, and is capable of pumping up 10,000 tons of sand and discharging it into her bunkers from a maximum depth of 70 feet in 50 minutes time. The pumping plant consists of fou independent centrifugal pumping engines, each of 800 horse-power. Her capacity is shown by the fact that in a five hours' test, 20,000 tons of material was lifted from the Channel into the hoppers, carried 10 miles, and dumped. In a favorable year of work the "Leviathan" will dredge and remove to a suitable dumping ground at least $20,000,000$ tons of sand.

ELECTRICITY

A report of the telegraph and telephone situation in Germany in 1906 to 1907 has just been published. The total length of the telegraph and telephone lines is over $2,800,000$ miles, $1,360,000$ miles of which are underground. There is a telephone exchange for every 1,956 inhabitants.
Some successful experiments with wireless telephony have recently been made by Lieuts. Colin and Jeance, between Paris and Melun, a distance of thirty miles. The Paris station was located at the Eiffel Tower and was operated by Lieut. Colin, while Lieut. Jeance, with the Minister of Marine, operated the in. struments at Melun.
An electric railway between South Bend, Ind., and Pullman, Ill., has just been completed. The line is $771 / 2$ miles long and the single-phase system is used. The motor cars are each equipped with four 125 -horsepower motors. The main line is furnished with current at 6,600 volts pressure, but this is reduced to 700 volts in cities. Pantograph collectors are used for collecting current at the higher tension.
Plans are under way for providing an unusually attractive electrical illumination during the HudsonFulton celebration next fall. It has been proposed to light up Washington, Union, and Madison squares and Riverside Park by means of lamps placed in the foliage. Mercury vapor lamps could be used to advantage so as to produce a remarkable effect. The Hudson River will be illuminated with search lights, while prominent buildings on Broadway and Fifth Avenue will be outlined with small electric lamps. The city has appropriated $\$ 300,000$ for this celebration.

A device is being placed on the market for preventing a consumer from using more current on his lighting circuit than he has contracted for. When the current consumption reaches the contract limit the lights begin to flicker and continue to do so until normal current is restored. This result is produced by means of a magnet which attracts a spring metal armature. By adjusting the tension of the spring the device may be set to operate at various loads. The mechanism is made to operate on two and three-wire circuits.
According to a daily press report a safe lock has been invented which is provided with phonographic mechanism so that it can be opened only by the voice of the owner. A mouthpiece like that of a telephone takes the place of a knob on the door, and this is provided with the usual style or needle which travels in a groove in the sound record of the phonograph cylinder. Before the safe can be unlocked the password must be spoken into the cylinder by the one who made the original record. The report does not state what would occur if the owner should come down to his office with a bad cold.

In order to do away with the bother of attending to exhausted batteries of doorbell systems, a transformer has just been put on the market which enables one to obtain the current from the city mains. The transformer will operate on the ordinary lighting circuits, and can be installed by anyone with a slight knowledge of electricity. As it has no moving parts, once installed it will thereafter require no attention. It is adapted to operate on circuits running from 100 to 130 volts, and is provided with taps giving 6,12 , and 18 volts, so as to meet the requirements of various styles and sizes of bells and buzzers.

In many of the smaller European towns oil engines are coming into favor as prime movers in central power stations. The reason for preferring oil engines to other engines is that they require very little space and are always ready for work. An excellent example of this use of the oil engine is to be found in the town of lglau, Austria. The plant is described in a recent number of the Electrical World. This plant is provided with two 200 -horse-power engines, rated at 165 kilowatts, and a two-cylinder engine of 130 horsepower operating a 106 -kilowatt generator. Tests have shown that 272 grammes of oil are consumed for each kilowatt hour on a full load.

A new type of army rifle is being manufactured at the Springfield armory which differs from the ordinary in having electrically lighted sights for use at night. A battery is fitted in the stock of the rifle and serves to light a, pair of miniature electric bulbs, placed at each side of the gun barrel, at the extreme end. The button which controls the electric circuit is fitted on the trigger guard, and when the operator presses this button the miniature lamps serve to light the rifle sight. The lights themselves are shielded from view. In twilight hours it is often impossible to take any aim with the ordinary rifle, although the object fired at, owing to its size, may be readily seen. By illuminating the sight in the manner just indicated, the shooter may aim quite accurately. The invention should be valuable for close-range tighting ai night.

SCIENCE.

From extended experiments that have recently been made at Macon, Ga., it has been found that a fine grade of paper cain be made from pulp prepared from the okra stem, and a plant for making paper from this source is likely to be erected in that city at an early date. Okra is easily grown in the Southern States, and could be produced in large quantities as a paper-making plant. The plant is an herb belonging to the mallow family, genus Hibiscus. Its botanical name is Hibiscus esculentus.
The first operation in this country upon a human being in which the cavity of the thorax was opened while the lungs were inflated from a chamber containing air at a greater pressure than that of the atmosphere was performed recently at the German Hospital by Dr. Willy Meyer. Many operations in the thorax have been difficult to perform, and others impossible because as soon as the cavity of the thorax is opened the lungs collapse because of the atmospheric pressure.
Later information on the results of Lieut. Shackle ton's expedition to the Antarctic revealed much that was not discussed in the preliminary dispatches. It is now brought out plainly that the south magnetic pole like the north magnetic pole shifts its position. The discovery is important, because it will enable us to revise our magnetic charts and render navigation safer. It was not known before Shackleton's expedition whether or not the south geographical pole is a vast archipèlago or a continent. Shackleton seems to have established the second view on a fairly firm basis.
Commandant Souié, of the Paris police, has perfected, for the use of the men in his command, spectacles, with the aid of which they may not only see very plainly what is going on ahead of them, but at the same time command a view of what is going on behind them, an arrangement that is expected to contribute materially to their efficiency. At the outer edge or corners of these unique "specs," small, concave mirrors are attached. They are very "true" and so placed as not to interfere in the least with the forward view of the wearer of the spectacles. After brief preliminary use they are found to give excellent ervice.
It will be remembered that M. Yves Delage succeeded in obtaining two good specimens of sea urchin by parthenogenesis at the Biological Station of Roscoff, France. These specimens continued to grow very well, but not long since they died from some cause which is unknown. M. Delage points out that the death was not due to any imperfections in the specimens. Both the specimens resulted from experiments with hydrochloric acid and ammonia. Both of them had a regular growth up to the time of their death, that is, about sixteen months after the metamorphosis. Death was probably due to poisoning in some way.
Owing to the careful adjustment and regulation of temperature neecessary in bacteriological incubators, a new incubator has recently been built which will be heated by electricity and which it is expected will thus overcome the difficulties with gas-heated incubators. Incandescent lamps are used in the new heater to maintain the required temperature of $372 / 5 \mathrm{deg}$. C. A new mercury regulator controls the lamps. The instrument was tested quite recently for a run of forty-five days and the variations in temperature during this time were practically nothing. The incubator is formed with a triple wall, providing a water jacket and an air space, and is covered with asbestos finished in white enamel.
In a recent investigation of the influence of sulphur in illuminating gas upon the air in rooms, Mr. Arthur D. Little, chemical expert and engineer, Boston, compared the effect of the burning of a sulphur match with that of an ordinary gas jet. Analysis of the match showed that it contained enough sulphur to momentarily raise the sulphur dioxide in the room to an amount greater than would ordinarily be maintained by sulphur coming from burning gas. It was shown that the lighting of such a match would actually liberate as much sulphur into the room as ordinarily would be liberated by a standard gas jet burning for over twenty minutes.
The Arctic and Explorers' Clubs of America will organize an expedition to go north in search of Dr. Frederick Albert Cook, the polar explorer, who has not been heard from in over a year. Dr. Cook has no means of coming back. It is possible that he wintered somewhere with the Eskimos, where he could get plenty of food, but there is an uncertainty about it. According to the prearranged plans Dr. Cook was to return to headquarters at Annotoak, Greenland; down Kennedy Channel, through Smith Sound, and in case no ship arrived he would move to Cape York and thence to. Upernavik, expecting to return home not later than September, 1908.

DEMOLITION OF THE FAÇADE OF THE OLD B. \& P. RR. TERMINAL, BOSTON.

by wilinin e. hill.
When fire recently destroyed a considerable portion of the old Boston \& Providence Railroad terminal at Park Square, in Boston-long ago abandoned for railway purposes, and of late used for indoor recreation enterprises-it was determined by those owning the property to remove what was left of the structure. Most of it has been, or will be, razed by the ordinary hand methods, but on account of the shape and size of the great arch, such methods would be hazardous to those employed in the task, and it was decided to bring it down with dynamite.

Accordingly on April 6th, in mid-forenoon, workmen placed in each of the twenty holes drilled in the southerly pier of the arch a stick of 75 . per cent dynamite, about 20 pounds in all. These sticks were connected with an electric circuit and the wires strung along the ground to a point several hundred yards away.
To reduce the detonation, and save many windows-for Park Square is almost in the heart of the city-timbers 12 feet long were piled about the base of the pier. Around the timbers an iron chain was drawn, and canvas was wrapped about the chain and timbers.
The explosion was not very loud, to the disgust of the great crowds that were kept at a safe distance by details of police. The entire arch settled, almost slowly, it seemed to the spectators, to the ground, so disintegrated that its removal is an easy task.

The arch was 65 feet high, of 70 feet span, and 3 feet thick. The building was erected in 1872.

To the Inventor of Electric Railway Appiances.

A word to the inventor or the would-be inventor of electric railway apparatus may not be amiss. Their number is probably greater than in any other line of work, due partly to the substantial reward that is offered to those who are successful, partly to the fact that the deficiencies of much of the apparatus in use at present are very evident and partly because statistics show that trolley cars are used by a much larger proportion of the population of this country than any other electrical invention. To almost anyone who is familiar with street railway apparatus, there appear numerous ways in which the device and methods in use in electric railwar service could either be improved or be substituted by others, with the result that the cost of maintenance would be lessened, the safety of passengers would be increased, or operation would be facilitated in some other way.
These facts cause many who are not familiar with electric railway operation or the requirements of electric railway apparatus to attempt the rôle of inventors. Such people are greatly handicapped by a lack of knowledge of the actual requirements; on the other hand, they have the advantage of looking at the question from the outside and with a free and untrammeled mind which is rarely possessed by those confined to one line of work. Their limited knowledge of operating conditions, however, usually causes them to waste the greater portion of their efforts by attempting to develop something which is impracticable or whose adoption after being perfected would probably introduce more difficulties than its use would avoid. On the other
hand, the fact that they are not constantly thinking about one line of work often enables these outsiders to develop a really much needed article.
There is one device which is as alluring and which is seemingly as impossible to reach as the pot of gold at the end of the rainbow and the average inventor should regard it with caution. This is a self-replacing trolley wheel or a trolley wheel that will not jump the wire. The patent records will show that device after device, all supposed to be improvements on the present trolley, have been patented only to lie dor-
mant. While employed in the shop of a large railway system the writer remembers that it was out of the ordinary if more than two or three weeks went by without some new trolley or trolley harp being offered for trial. The master mechanic of the railway system was one of those broad-minded men who are always willing to investigate and give any new piece of apparatus a trial if it shows possibilities of success or if such trial will rid the inventor's mind of delusions. But he regarded several of these trolley devices as too dangerous to overhead construction to be
dollars had to be expended and those responsible for the scheme either did not have the money or did not have enough faith in their idea to risk parting with this amount.
On another occasion after repeated solicitation a man from a small town of about one thousand people, through which an interurban line ran, was given permission to install an automatic track switch on condition that the company would not be inconvenienced or the street torn up. After the delivery of about two wagon loads of various materials, constituting the parts of one switch, and which included some timbers about ten or twelve inches square and a dozen feet long, the management decided to call a halt, and the inventor (?) considered that he had not received fair treatment from the railway company.
Before bothering a railway company the inventor should feel certain that his device is a practical one and that he has gotten it in as advanced a state as possible, until some of its defects are made evident by trial. But he snould not assume that he can make repeated trials to the inconvenience of an accommodating railway company in order to perfect the apparatus. Every breakdown causes the master mechanic, the superintendent of track or of overhead or whoever permits the trial, to lose confidence in both the apparatus and the inventor. Breakdown of experimental apparatus due to a single weak point has often caused the con-
permitted on a car, even on trial. Of all the devices submitted not one was suitable and the road, like practically all other direct-current roads in the country, is to-day using the simple trolley wheel and harp.

Those who have devised apparatus which they consider great improvements often complain because the railway companies do not give them proper encouragement by allowing the apparatus to be tried or by offering facilities for its development. They do not realize to what trouble and expense the roads would be subjected if they offered encouragement to the many half-hatched schemes submitted. The writer is reminded of one or two instances which are typical. Permission was obtained by some alleged inventors to try a scheme of motor control without loss in resistances and the facilities of the shop were put at their disposal.

Under their directions all the controller reverse fin-

The station after the façade was thrown down.

DEMOLISHING THE FAgADE OF THE OLD BOSTON \& PROVIDENCE TERMINAL AT BOSTON.

demnation of an otherwise good article.
In developing an idea the inventor should keep sim plicity uppermost in his mind. Simplicity carries with it the idea of being easily understood and of something not likely to get out of order. It must be remembered, too, that the apparatus will fall into the hands of men who are not as skilled and as careful as watchmakers and should consequently be built in such a manner that it will stand more than a reasonable amount of abuse. Street railway apparatus and appliances are in fact subjected to about as hard a treatment as any machinery devised, and it is the lack of proper design and construction to withstand such treatment that causes many new devices to be thrown out.
But if the path of the inventor of street railway apparatus is a rather thorny one, the reward is proportionately great. The electric railway fraternity is always ready to adopt a piece of apparatus that proves itself of worth and it is willing to pay well for it.

The writer remembers one casting that sold for about $\$ 9$ which to all appearance could not have cost more than 50 cents. On much other apparatus the difference between the cost price and the price at which railways are willing to purchase is almost as great.—John Hobbs, in Street Railway Journal.

Formaldehyde in Milk.

Shrewsbury and Knapp describe, in the Analyst, a rapid method of detecting and estimating formaldehyde in milk. Sixteen volumes of a normal solution of nitric acid, or 6 volumes of pure nitric acid are added to 1,000 volumes of concentrated hydrochloric acid. Two volumes of the mixed acids are heated with one volume of the suspected milk to 122 deg . F. for ten minutes over a water bath, with constant agitation, and suddenly cooled to about 60 deg . F. The presence of formaldehyde is instantly revealed by a violet coloration, and the quantity of formaldehyde can be
gers in the storeroom were mounted on long boards and a car was also brought over the pit and the fields removed from the motors. In addition quite an amount of wire was cut into small pieces. After several days of inactivity orders were received to replace the fields in the car, the so-called inventors left the shop and the incident was closed. It afterward developed that the new "invention" consisted in weakening the fields by shunting them or by winding them in sections. Operations came to a stop because a point was reached where about one hundred and fifty estimated by comparing the tint with a series of standard tints produced by mixtures containing known proportions of formaldehyde. The test is most sensitive when the proportion is from 2 to 60 parts of formaldehyde to 10 million parts of milk. If the proportion is greater than this the suspected milk should be diluted with a measured quantity of pure milk.

The greater portion of surveys on the Hudson Bay Railway has been completed. On February 1st, 365 out of a total of 465 miles had been finished.

EXPERIMENTS IN INGOT CASTING

The tremendous expansion of rail transportation in the United States in recent years has imposed upon the steel-rail mills a correspondingly excessive pressure. The present plants are marvelous creations of inventive genius resulting in an almost incredible capacity of production. But it is more than hinted that their perfection of mechanical arrangement has been unaccompanied by any improvement in the quality of the rails. Indeed, Mr. R. W. Hunt, a railway expert, declared in effect at the April meeting of the American Institute of Mining Engineers (1907) that the rail process of to-day is inferior to that of twen-ty-five or thirty years ago. This he thought was conclusively shown by the fact that an abandoned mill of the earlier period was purchased some years ago and reinstated in the business of turning out rails. One of the railroads has about 100,000 tons of the rails made in accordance with the older methods and an equal amount of rails manufac tured more nearly after the manner of the present procedure. In the matter of rail breakages, those oc curring in the rails made by the older methods are but one-fourth those with the rails of the more re cent procedure. If the chemical composition of the two classes of rails be taken into account, the advantage of the older methods of manufacture
would be still more marked. Reheating and slowness of manufacture seem to be the main points of differentiation. But with the steel plants to-day, haste seems to be the cardinal virtue.
Profs. Howe and Stoughton have been performing some experiments in ingot casting which indicate that increased deliberation in the preparation of the steel for the rolling mills is required. Their experiments have been made not with steel, but with wax, and their object has been the investigation of the laws governing the formation of "pipes" and segregates in ingots. Not all substances form pipes. But wax and rail steel agree in doing so. That is, each substance when the attempt is made to cast it in the form of solid ingots, tends instead to solidify with a more or less open core along the upper part of the axis of the ingot. If this core or pipe is still in the ingot when it reaches the rolling mills, it has been pretty well ascertained that it will not be eliminated in any of the rolling processes. Consequently, it is important to learn the fundamental cause underlying its formation, as this knowledge may lead directly to such management of the casting operation as to secure either its complete effacement or a reduction to a minimum.

These two investigators have busied themselves in casting little bars or ingots of wax. Of course it would be preferable to experiment with large stee ingots of the sizes used in il man used in rail manufacture. But such experiments are rather unmanageable and very expensive. The wax-ingot experiments are, consequently, of distinct use in pointing the way that experimentation with large steel-rail ingots should take.
Further, a second large factor contributing to the imperfection of the rail-steel ingot is the presence of segregation. That is to say, the composition of the steel in large ingots is found not to be uniform throughout the mass. There is usually one locality where the carbon, phosphorus, and sulphur contained in the steel occur, not in the average degree, but con-

1. Ingot poured rapidly (half a minute); 2, ingot poured fast at first, but slowly afterward; 3, ingot poured very sluwly ; 4, ingot poured with large end up ; 5 , ingot poured with small end up; 6 , ingot which was kept hotat top and progressively cooled at bottom.
centrated. This concentration is the segregate. Metallurgists do not seem to entertain very strong hopes of its total prevention. At the same time, solid information as to its character and the laws of its formation can scarcely fail to lead to methods of casting favorable to a reduction of the evil.
The wax used in the experiments was commercially pure stearic acid mixed with a small quantity of copper oleate. The oleate was of a bright green color As its specific gravity was greater than that of the wax proper, it might be expected to go to the bottom

No. 2 (if we except the small pipe at the bottom where the teeming was rapid) is about 14 per cent of the length of the ingot. If it be thought that this botttom pipe ascribed to fast pouring at the commencement of casting confuses the evidence, Fig. 3 makes the matter clear. This ingot was poured even more slowly than No. 2. The evidence-afforded by these three ingots would seem, therefore, to show very clearly that slow pouring tends to efface the pipe.

The next two ingots, Figs. 4 and 5, disclose the marked advantage of casting ingots with the large end up. The pipe in Fig. 4 occupies but 30 per cent of the total length of the ingot in the one case, as contrasted with 82 per cent in the other. It is quite conceivable that if the wax had been teemed into the mold corresponding to Fig. 4 with the deliberation exercised in the case of ingot No. 3, the pipe would have been well nigh eliminated. Apparently, Profs. Howe and Stoughton did not experiment with this combination of conditions, perhaps deeming the result sufficiently obvious, apart from particular demonstration.
Now there is good evidence, aside from these wax ingot experiments, tending to prove that tapered ingots cast with the big end up disclose considerable reduction in piping. Mr. J. O. E. Trotz cast a number of gently tapering steel ingots, some with the big end up, some with it down. The result was found to be very dis-
of the ingot, if gravitation were the only infiuence at work. This oleate represents the carbon, sulphur, and phosphorus of the ordinary steel. Its behavior under the conditions of casting might be expected to throw light upon the segregation in steel ingots. In order to make any concentration of this green oleate markedly visible, a small quantity of red ceresine was added to the wax. This substance has, it seems, little tendency, if any, to segregation, and consequently acts as mere coloring matter, giving the stearic acid a color contrast to the oleate. It should be noticed, be- tinctly in favor of the larger end up. . The steel used was 0.50 per cent carbon. Mr. A. A. Stevenson likewise reports great diminution of piping in a steel ingot cast with the large end up as contrasted with others cast with the small ends up, all the ingots being strongly tapered.
In casting the ingot shown in Fig. 6, the top was kept in a molten condition for over an hour, while below, from the bottom upward, the ingot was progressively cooled by ice-water. Now the ingot shown in Fig. 7 was cast with these conditions of solidification pretty well re versed. That is to say, this ingot was forced to "freeze". from the top downward. By comparing the two, it will be seen that there is a great contrast in the length of the pipes. The pipe in ingot No. 6 was continuous for 26 per cent of the ingot's length, but extended in a modified form for 37 per cent. In ingot No. 7 the pipe was 85 per cent of the total length of the ingot. In the engraving, the pipe of No. 7 is apparently interrupted by a "bridge" near the lower end. The pipe extends, however, through this bridge. The difference in piping brought about by solidifying from below in one case and from above in the other is indicated by the two percentages37 and 85.

The ingots shown in Figs. 8 and 9 do not exhibit any very marked difference in piping-the pipe of No. 8 being 61 per cent while that of No. 9 is
fore referring to the details of the photographs, shown in Figs. 1 to 13, that while the longitudinally split ingots of wax disclosed the color contrast, it was found necessary, in order to represent this in engravings, to retouch the photographs and then rephotograph them.
Fig. 1 is an ingot where the teeming, or pouring, was done rapidly, occupying but half a minute. Fig. 2 is an ingot poured fast at first, but with extreme deliberation afterward, the teeming occupying about an hour and a quarter. The pipe in the first ingot occupies about 90 per cent of the length. The pipe in

7. Ingotforced to " freeze" from top down ; 8,9 , ingots cooled slowly ; 10 , ingot cooled rapidly ; 11, ingot cooled less rapidly ; 12, cooling on one side accelerated by cold water ; 13, segregation in last cooling part.

A study of "pipes" in wax ingots.

 EXPERIMENTS IN INGOT CASTING.45 per cent. The conditions were largely the same, both being cooled very slowly. The 16 per cent difference is to be attributed mainly, no doubt, to the fact that although both ingots were retarded greatly in cooling, as wholes, No. 8 was cooled from the top and No. 9 from the bottom. This agrees with the results disclosed by Nos. 4, 5, 6, and 7. Now No. 10 was cooled very rapidly, and, in contrast to the slowly cooled ingots Nos. 8 and 9, exhibits a pipe extending almost to the bottom.
In Fig. 12 we have the case of an ingot in which
the cooling on the one side was accelerated by means of cold water. On the opposite side, cooling was hindered by the use of flannel. The distinct displacement of the pipe in the direction of the flannel may be very distinctly seen in the engraving (Fig. 12). Now let us gather up some of the lessons to be learned from these experiments, in so far as piping is concerned: First, slow teeming reduces the pipe. (See Figs. 1, 2, and 3.) Second, casting with the large end of tapered ingots up tends to shorten the pipe. (See Figs. 4 and 5.) Third, a top kept molten diminishes the pipe. (See Figs. 6 and 9 as contrasted with Figs. 7 and 8 , respectively.)
But what of the segregate? In Fig. 1, it lies at A near the bottom. The slowness with which Nos. 2 and 3 were cast tended to prevent fhe concentration of the green oleate into a single segregate. There were a number of local concentrations along the axis of No. 2. In No. 3, which was cast with still more deliberation, the absence of segregation is stated to be very marked. In ingot No. 4, the segregate lies above the center, while in No. 5 it is near the botem.

The segregate seems to display a tendency to lie in the part which freezes last. By referring to Fig. 12, where the cooling was retarded on the left but hastened on the right, the bridges E, F, and G because of the strong green coloration seem to Profs. Howe and Stoughton to mark the position of the segregate. If this be the case, though they are not unreserved in their statement, then the deflection of the segregate to the warmer side would seem pretty clear. As fur ther evidence of segregation in the last cooling part, the cases of the ingots shown in Figs. 11 and 13 are particularly cited.

GLASS INDUSTRY OF THE UNITED STATES.

If we consider the minor factors of civilization, glass should certainly be accorded a very high place, as it enters into many of the daily affairs of life. It is one of the oldest industries in the world. Pliny states that certain Phœnician merchants were preparing a meal on the seashore, and set their cooking vessel on a mass of the sand and alkali, which, when subjected to the fire, resulted in vitrification. In all the ages glass manufacture was considered of prime importance, and was often regulated by government edicts.
Glass is a hard, transparent substance, formed by fusing together mixtures of the silicates of potash, soda, lime, magnesia, alumina, and lead in various proportions, according to the kind or quality of glass required. Silica in the form of sand is the only constituent of glass that is absolutely essential, and enters into the composition of all varieties of glass as its true foundation. Silica as sand occurs very abundantly in the United States. The proportion of silica used varies according to the character of glass desired. An increase in the percentage of silica in any glass increases the resistance to melting and fusing. The various grades of sand contain more or less impurities, which are removed or neutralized by washing or chemicals. Iron when present imparts to gfass a greenish tint, which can be corrected by the suse of manganese. The bases used include sodium carbonate, sodium sulphate, sodium nitrate, calcium carbonate, litharge, and potash. Other auxiliary chemicals used in glass making are arsenic, carbon, and manganese. Glass makers call arsenic the "great decarbonizer," while manganese dioxide is known as the "great decolorizer." Carbon is .employed in glass making to lower the fusing point when salt cake is used as a base, and to impart color when a glass from a straw yellow to a dark amber is desired.
The question of fuel is undoubtedly the one most important to the glass maker. With the aid of a good fuel a glass maker can produce a comparatively good glass from impure materials, but he cannot make a good glass with a poor fuel, no matter how pure the materials may be. Manufacturers have naturally located where coal was cheap, or where natural gas was available. Natural gas is the ideal fuel for glass making, and as the supplies get exhausted, producer gas is being substituted. Oil is used to some extent but is expensive. The following figures showing the quantity and cost of materials used are from the bulle tin relating to glass making issued by the Bureau of the Census for the year 1905, the latest available figures:

Materials used, total cost.................... \$26,145,522 Glass sand:	
Tons	769,792
Cost	\$1,547,147
Soda ash (carbonate of soda) :	
Tons	215,462
Cost	\$4,068,804
Salt cake (sulphate of soda) :	
Tons	53,905
Cost	\$802,611
Nitrate of soda:	
Tons	11,915
Cost	\$511,854

The great wall of China, which even to this day represents the original idea of Chin, the first em peror, is described and illustrated in the opening arti cle of the current Supplement, No. 1738. A. W. Gibbs writes on the smoke nuisance and the railroad. He takes up the subject in a new way and shows that the railroads must produce power with the fuel of the country through which they run, and that bituminous coal is the fuel with which the whole ques tion must be settled. Somewhat of a novelty is the incandescent lamp device which is mounted upon the Eiffel Tower at Paris, so as to show the hour and minute. Our Paris correspondent writes on the sub ject. Water and salt solutions as dust preventives are discussed by Prevost Hubbard. Robert Grimshaw writes on iron-bronze alloys. Our interest in the effects of radium rays on living organisms is enhanced by the discovery that radio-activity is widely distrib uted in nature and that all plants and animals are influenced by radio-activity. Prof. C. Stuart Gager of the University of Missouri, contributes an excellent article to the literature of the subject, in which arti cle he shows the influence of radium rays on a few life processes of plants. Emil Freund tells how arti ficial gems have been made in the past and how they are made now. Prof. Jacob Reighard's monograph on subaqueous photography is continued. Animal fat and oils is the subject of another technological article of interest.

(taxxexpandente.

AIRSHIP TERMINOLOGY.

To the Editor of the Scientific American:
An airship is either a "heavier-than-air machine" or a "lighter-than-air machine." But these are very,
clumsy names. Why not call the former a "pondro", clumsy names. Why not call the former a "pondro," sufficiently "regular" in derivation to justify them sufficiently "regular" in derivation
Washington, D. C.

The International Aeronautic Exposition at
 \section*{Frankfort-on-the-Main.}

The first real aeronautic exposition the world has ever seen will be held from July 10th to October 10th at Frankfort-on-the-Main, Germany.
The period from now until the opening of the exposition in July will be one of strenuous activity for the management, since the buildings and grounds are not yet completed and in order.
The Grand Exhibition Hall, with its gigantic dimensions of 130 meters (426 feet) long and 65 meters (213 feet) diameter of central dome, was erected at a cost of $\$ 1,500,000$. It is perhaps the most imposing exhibition hall in Germany, and countless numbers of inflated balloons of the ordinary round shape will be able to float freely under its great middle dome.
For the large dirigibles four huge balloon sheds are being built, one for the "Parseval," one for the Riedinger kite balloon, one for the Von Clouth dirigible from Cologne-Nippes, and one for the dirigible of Dr. Gans of Munich. A Zeppelin shed will be added as soon as the negotiations now pending with the Zeppelin interests are concluded. It may also be considered as certain that the new motor balloon of the Rhenish-Westphalian Motor Airship Company, now building in Elberfeld under the direction of the well-known aeronaut Oskar Erbslöh, will be shown in a special pavilion. Therefore four or five motor balloons will be constantly in view in Frankfort throughout the duration of the exposition.

The new "Parseval" airship of 6,000 cubic meters (211,890 cubic feet) capacity, which, since its brilliantly successful trial flights at Bitterfeld, has been put into commission, will make regular trips, carrying passengers, in the neighborhood of Frankfort throughout the duration of the exposition.

Since a great number of competitions for free balloons will be held during this time, the question of gas supply was a serious matter. This question has been most fortunately solved by the offer of the "Elektron" Chemical Company to furnish daily to the exposition free of charge 1,000 cubic meters (35,315 cubic feet) of hydrogen gas. A special track will be laid down for delivering the steel cylinders of compressed gas at the filling sheds. In this manner it will be possible to fill and refill the great balloons in their sheds directly from the railroad car without unloading the steel cylinders. Moreover, a strong current of il luminating gas will allow of the simultaneous filling of various balloons. For trial flights a level territory of perhaps half a square mile in extent has been pro vided near the exposition grounds

Herr Mathis of Strasburg, who has bought the original Wright aeroplane, announces trial flights of this and also of a new Wright machine with a Fiat motor.
Trials of the Voisin aeroplanes will take place on the experimental field in Griesheim, which has been turned over to Herr Euler by the military authorities Dr. Ing. Reissner and Herr Prof. H. Junkers have also entered flying apparatus. Furthermore, numerous models of flying machines, motor balloons, balloon sheds, etc., will be on exhibition. Instruments, maps, provisions for long balloon journeys in speciallyprepared packages, methods of illumination, and special clothes for ballooning will be united in a special section.
The question of suitable attire for women has been taken under special consideration by the German Association for the Improvement of Women's Clothes, and the results arrived at will be made the subject of a special exhibition.
Of most particular interest will be the demonstration of a process discovered by the "Elektron" Chemical Company for the inexpensive production of hydrogen. A separate building will be erected for this purpose, and here may be seen the ascension of small balloons filled with the gas obtained.
An aeronautic experiment station will be erected by, Prof. Prandtl, where experiments in air resistance, etc., will be conducted.
Connected with the exposition will be a recreation park, in which, among other things, will be shown for the first time the spectacle of a battle between naval and aerial men-of-war. Among the names of the guarantors who have up to the present time subscribed over $\$ 175,000$ is to be found that of Count Zeppelin, who is down for the considerable sum of $\$ 2,500$.

$\mathbf{\$ 2 0 0}$ in Prizes for the Best Garden.

If you have a small garden and you are proud of it the readers of American Homes and Gardens want to know all about it. For the encouragement of those who have converted an unsightly lot into a lovely, blossoming piece of ground, however small, the Editor of American Homes and Gardens offers cash prizes aggregating $\$ 200$.
The prizes are offered for the best-planted, developed and successful village or suburban gardens. The Editor and the readers of American Homes and Gardens want to know how you planted your garden and what success you had with it. You need not be a skilled writer to compete.
The unusual opportunity offered in the Garden Competition should call forth immediate and practical results. It is a project that should appeal alike to the owners and creators of gardens, and to those who want helpful hints and suggestions on the making of a small garden. For it is the home garden, the inexpensive home-grown garden, for which these prizes are offered. In other words, the gardens of the people, as distinguished from the gardens of the gardeners. Everyone may have a small garden, even if it be but a front yard, and it is precisely these home gardens which are made and tended by the family that are sought in this competition.
The Garden Competition raises the plain question, Who has the best garden? And the readers of the Scientific American are invited, with the utmost cordiality, to answer this question.
If your garden is a small one, so much the better No garden is too unimportant for consideration in this competition, for the award of the prizes will be based on the merits of the gardens as gardens, and not on their size and cost.
This competition affords a splendid opportunity to give many persons pleasure by making known the beauties of your own garden to them; but it should help and stimulate others in new and other garden work, by giving them some detailed information as to the successful gardens others have created. And if one garden is good, two are better and three more so, until a whole community may be alive with this richest of rural treasures. The practical questions are, How is it done, and what can be done? These two questions, it is hoped, will be abundantly answered in the material sent in for this competition. We invite our subscribers and readers, and their friends, vite our subscribers and readers, and their friends,
and the friends of their friends, who have gardens that they think of real interest and beanty, or who may possess choice bits of garden lovelinéss, to enter this competition.
The full conditions of the contest will be found in the May number of American Homes and Gardens.

New Expgriments withe Mippmann's Color Photography.

H_{2} ह. Ives has been seeking the causes of the difficulties which are encountered in the practical operation of Lippmáan's process of photography in natural colors. The principal results of the investigation are the following:

The image obtained with monochromatic light is improved by using an emulsion containing less silver bromide than is usually employed. The smallness of the number of stationary waves observed in the film in previous experiments is attributed to the exclusive employment of pyrogallic acid as the developer. The tanning of the gelatine by the oxidation products of pyrogalli; acid prevents the developer from penetrating deeply into the film. Λ much larger number of stationary waves can be detected when a hydrochinon developer is used, and it is advantageous to bleach the dark silver deposit with mercuric chloride. The purity of the reflected colors increases with the thick: ness of the sensitive layer. For the rendering of white a rather coarse-grained emulsion sensitized with isocol is most suitable. The whites are produced by fine particles of silver separated in development and diffused throughout the film. The colors of natural objects are most correctly reproduced by an emulsion containing silver bromide in particles rather larger than those which are most suitable for monochromatic pictures. The best thickness of the sensitive layer is $1 / 5,000$ inch. The duration of exposure and development is of great importance.
As the fine-grained emulsion of the Lippmann plates is sensitive only for violet, and not even for bright blue, a sensitizer for blue is absolutely necessary. Isocol is the only sensitizer that was found to cover the spectrum without a gap.
As a substitute for the mercury mirror, Ives recommends a silvered celluloid film placed in optical contact with the sensitive layer. A plate of glass is heavily silvered and covered with a thick solution of celluloid in amyl acetate. After the evaporation of the solvent the plate is immersed in water, whereupon the film of celluloid separates from the glass and carries the silver with it.

Ives also obtained excelleni results by combining the Lippmann process with the Ives three-color process.

Gold and Silver Coinage for 1908.

The United States government made a profit of $\$ 10,541,371$ during the year of 1908 on the coinage of silver, nickel, and one-cent bronze pieces. These figures represent the difference between the price paid by the government for the metals and their coinage value. Silver bullion purchased for subsidiary silver coinage during the past year aggregated 18,819,279 standard ounces, and mutilated and uncurrent United States silver coin of the face value of $\$ 1,162,982$ was received for recoinage. There was purchased 525,833 ounces of silver bullion for the Philippine government, the cost of which, $\$ 295,054$, was reimbursed to the United States by that government.
The coinage executed by the mints of the United States during 1908 amounted to $\$ 197,238,377$ in gold, of which $\$ 106,182,420$ was in double eagles, and $\$ 4,829$,060 in eagles of the design prepared by the American sculptor, the late Augustus Saint-Gaudens. The amount of subsidiary silver coinage was $\$ 16,530,477$, which is the largest subsidiary silver coinage executed in any one year since 1877. The amount of minor coinage was $\$ 1,946,008$. There were coined for the government of the Philippine Islands $25,003,915$ pieces of silver coin, of the value of $18,131,793$ pesos, and for the government of Mexico 1,397,291 silver 50 centavo pieces.
The figures showing the production of gold and silver for the past year will not be forthcoming for many months, the amount of production for 1907 having just been calculated. In that year the gold output amounted to $\$ 90,435,700$, and silver for the same period was $56,514,700$ fine ounces- $\$ 37,299,700$. The total production of the precious metals of the whole world for 1907 is placed at $\$ 410,555,300$ in gold, and $185,014,623$ fine ounces in silver- $\$ 122,090,000$. The consumption of gold and silver in the industrial arts in the United States amounted to $\$ 40,727,070$ and $24,369,784$, respectively.
The stock of gold coin in the world on January 1st last was $\$ 7,014,600,000$; silver coin, $\$ 3,530,000,000$, and of uncovered paper, $\$ 4,302,500,000$, making the whole world's money value at that time amount to fourteen billion, eight hundred and forty-seven million, and one hundred thousand dollars.

The Distance Sense of the Blind.
It has long been known that some blind persons can move about in places that are entirely strange to them with a remarkable degree of certainty and without coming into collision with any large object. Half a century ago Spallanzani discovered that bats can steer clear of obstacles in total darkness. In order to make sure that the sense of sight was not employed, he blinded some bats, and found that they flew about as confidently and safely as before.
This experiment proved that warning of the presence of objects is received through some part of the surface of the body other than the eyes. In the case of blind persons, it was thought at one time that this warning was given by sound waves reflected by the objects, but this theory is disproved by a simple experiment. When a blind man's ears are stopped completely the sense of distance remains, although it is greatly diminished. This shows that the sense of distance is not identical with the sense of hearing and that a distinction must be made between the sense of distance and the directional power of the blind. This power depends chiefly on the sense of distance, but involves also hearing, smell, the temperature sense, and perhaps still other factors.
It is a noteworthy fact that the sense of distance is not possessed by all blind persons, but is found only in a few and to very different degrees in these. The blind possessors of this sense locate it in and near the forehead and say that the sensation is vague and somewhat resembles a light touch. From the experiments of Kunz, Woelfflin and others it appears very probable that the distance sense is a function of the sensory fibers of the first branch of the nervous trigeminus, which ramifies through the face. It is still unknown whether the distance sense is served by special nerves or by fibers which also serve the pressure and other senses. An investigation of the conditions which favor this sense would be very valuable, practically as well as theoretically, for thorough development of the distance sense would make the lives of the blind far safer and more independent than they are at present.-Dr. Woelffin in Umschau:

In the production of naval stores for the year 1908, of the total $36,500,000$ gallons of turpentine produced by all the naval-store producing States, the yield from Florida was more than $17,000,000$ gallons; and of the total of $4,000,000$ barrels of rosin, the output of this product from Florida was nearly $2,000,000$ barrels. Georgia ranked next to Florida in the production of these products, yielding $1,000,000$ gallons of turpentine and $10,000,000$ barrels of rosin.

THE PEARL FISHERY OF CEYLON.
an industry over 3,000 fears old. By OUR ENGLISH CORRESPONDENT.
Oriental pearls have always been regarded as of the finest and most brilliant jewels, and have always occupied a high position, the demand far exceeding the supply. The greater part, and the most highly prized, come from Ceylon. The pearl fishery is one of the oldest industries in the world. Scientific methods have not until recently entered into its development. For over three thousand years, the pearl oyster harvest has remained in the hands of the natives, whose skill in diving has been handed down from one generation to another; and despite the great advances that have been made in the art, their primitive methods are still efficient, economical, and productive. In next week's Scientific American we will publish a description of a machine for digging oysters, which will probably be able to perform much more efficiently the work of the natives.

For years the fishery constituted a government monopoly yielding a handsome revenue, but three years ago it leased the work to a private enterprise for the sum of $\$ 125,000$ per annum. The government was probably prompted to adopt this course from the speculative character of the undertaking. Whereas formerly a bumper harvest was secured one year, realizing possibly over a million dollars, several years of barrenness followed so that the average income became comparatively small.

The fishery is jealously guarded, the season is care fully regulated by ordinances, and the oyster beds are kept under constant surveil lance to prevent illegal fishing or deterioration. On the average the season lasts about a month and pro vides occupation for over 45,000 people. The scene of operations is the estuary of the River Modragam in the Gulf of Manaar on the northwest coast Here the banks or beds known as "paars" are peculiarly adapted to the raising of the bivalve which thrives abundantly. The bed is a stretch of shallow water varying from 18 to 60 feet from 18 to 60 fee in depth and stretching 50 miles along the coast and about 20 miles out to sea. The sea bed here is clean hard sand offering but slight clinging security to the oysters in inclement weather Indeed, oyster propagation is extremely dependable upon the weather. For instance, a survey showed that over one hundred thousand million young were clinging to one bank, but the facilities for their adhering were so slight that a second inspection a few weeks later found that the greater part had been swept away either by currents or the monsoon, and irretrievably lost. Under such circumstances the industry is one purely of chance.
The natural deficiencies in the sea bed must be supplemented by artificial remedies, so that the oyster spat may secure a firm hold against the severest weather. To this end the marine biological scientist Prof. Herdman, D. Sc., F. R. S., is engaged in scientific investigations to improve the conditions. In order to encourage the growth of the pearl-yielding cestode it is only possible to use certain materials for deposit ing or "cultching" upon the bank, to which they may adhere. The most suitable media have been found to be clean broken tiles and bricks, but as these are very difficult to obtain, experiments were made with native refuse by Prof. Herdman, but it was found to possess insufficient gravity to secure a desired deposit upon the sandy sea-bottom, and was easily and quickly swept away. The best results are now obtained from a cal careous cultch consisting of old broken bleached corals and dead shells from a beach. Prof. Herdman also advocates the utilization of the dead oyster shells themselves for this purpose. The "cultching" of the oyster beds is being carried out upon these lines.

The material has the advantage of being readily ob tainable in almost inexhaustible quantities at very lit tle cost. The area to be covered by a first installment of cultching is twenty-five square miles, upon which thousands of tons of cultch have to be dumped. The monsoons prevent this work from the middle of May to the middle of October.
Four or five months before the season commences the banks are inspected to determine whether there shall be a fishery, and to estimate the extent of the yield. This has revealed the presence of over 400,000 ,000 young oysters upon the Periya Paar Karai, which is a continuation of the famous Periya Paar itself, from which the greatest yields of cestodes have been gathered during the past 3,000 years. This small sized, profitable, and reliable bank lies at a depth of from 50 to 54 feet and about the limit of the capabilities of the native diver, and probably for this reason it has not received the attention in the past that its yield would suggest.

The company also first exploited the banks known as the Dutch Modragam, Karativu, and Allanturai areas. They had previously preved so poor that they became neglected. They were inspected in 1904, but were found of no value. A second survey was undertaken with the result that a fishery was effected that year which otherwise would have proved barren. It netted the Ceylon government $\$ 300,000$. In 1907 these banks yielded a gross revenue of $\$ 350,000$.

The fishery is generally carried out in March or April. A short time before this a final survey is
rs his oysters he drops over the side and quickly slides down a rope to the bed. When his bag is full he gives a sharp tug of a line and is quickly hauled to the surface where he discharges his haul and redescends. These men can remain under water from one to one and a half minutes, and they seldom come to the surface without a full load. The oysters are placed in bags, averaged to a common size, and sealed by an officér.
A careful watch is kept on shore upon the weather, and directly the wind changes the signal is given and immediately the fieet sets sail and races home. The return of the fieet is one of the most picturesque sights in the Orient, as the accompanying illustration shows. A considerable trade was formerly transacted in pilfered gems, but owing to the stringent precautions adopted now, and the continual presence of an official on board, this traffic has practically been suppressed. After landing, the sacks of oysters are borne off to the kottu, or official inclosures, where they are stored until their disposal by auction. The diver is rewarded by being given a third of his catch. As the oysters may or may not possess valuable contents he invariably disposes of them in small lots to humble speculators, who trust to luck that they may net a crop of gems.
At the auctions bids are made for oysters held in bags. Formerly bids were for parcels of 1,000 , which practice involved laborious counting. The purchaser transports the load to his quarters, where if he is only a small dealer he will open them himself, but if a capitalist will hand them over to his staff. Oys ter opening and searching are car ried out in every part of the town and the place be comes littered with shells.
The pearls are aken to mer chants whose pur chases will often aggregate tens of thousands of dollars. The gems are bought by weight deter mined in sensitive scales with seeds used as weights. They buy and transact sales as well The stones are bought according to their luster fineness, and size. In addition to these merchants there are many who transact business in a small way, while the huckster is always present cutting, drilling, and mounting pearls with the most primitive tools. Auction purchasers upon an ex tensive scale employ natives to open the bivalves and extract their contents, which are emptied into long vats, where they are sluiced by natives seated on the outer side of the vessels, who merely agitate the wate and scour the oysters with their hands. Here again constant vigilance has to be exercised to prevent purloining of gems. Despite the care observed it is always possible for small pearls to escape into the refuse Even this is carefully examined subsequently, as wel as the oyster dried dust by being sifted through the hands.

The monopoly is required to expend a minimum of $\$ 1,000,000$ upon improvements. It realized that inspection should be carried out for ascertaining whether virgin banks existed beyond the known area. This has been partially brought about by the exhaustion of the two great fishing areas which have yielded prac tically the whole of the pearls found during the past 100 years. That probably there are several unknown banks is borne out by the discovery of a new paar by Prof. Herdman holding some $5,000,000$ five-year-old oysters rich in pearl. In some areas the conditions are so propitious to the growth of the cestode that the spat has a severe struggle for existence. Where myriads of young bivalves appear at fairly regular intervals but never reach maturity, it has been suggested that the spat should be transplanted to more favor able areas, bat here a difficult obstacle has to be overcome, since it entails the handling of millions of oys ters, and in a good fishery the garnering of $100,000,000$.

In 1907, $9,000,000$ of spat were moved from a rich to an impoverished bank, but it was a mere dip in the bucket. What is required is some method of economically handling the young upon an enormous scale. Dredging has been found unsuitable since it disturbs and churns up the sea-bed where the spat is lying, so that a considerable amount is destroyed: The pearl banks, it may be pointed out, äre merely sand-banks formed of sandstone and concretions upon which isolated masses of coral grow without forming reefs, so that severe disturbance of the oyster bed may very easily be set up. It is found that the collection of the spat by native divers is slow but the most satisfactory.
The pearl-bearing cestode is not a true oyster for edible purposes but is more closely allied to the mus sel family. It differs from the ordinary animal in
having a "byssus" or bundle of tough threads by means of which it secures a firm adherence to suitable materials, and similar to the facilities possessed by the mussel. Attempts are being made in cultivating this oyster by artificial impregnation of the pearlforming larvæ. Investigation is being carried out to ascertain the origin of the spat, and how it periodically disappears. In connection with this research a thor. ough study is being made of the seacurrents on and around the oyster banks and of the surface drift in the Gulf.

The fishery is very intermittent. Prior to 1803 there had been none for twelve years, and the gituation became so serious that a commission was ap. pointed to investigate the subject. In 1905 the harvest was the greatest on record. Over $80,000,000$ oysters were collected, realizing soline $\$ 1,250,000$, two.
thirds going to the island's treasury. In the subsequent two years it dwindled regularly and 1908 proved barren. It is against the recurrence of intermittent fat and lean years that scientific developments are being conducted, so that the fishery each year may be of more steady and reliable proportions. By the assistance of acience it is anticipated that the speculative character of the enterprise may be almost eliminated. During the past few years the tendency toward "community of interests" had developed among the natives at the auction sales. A "ring" was formed to bring prices down, at the same time keeping out small purchasers, but an officer promptly suspended the auction indefinitely. The members of the ring, apprehensive that their journey to the island would prove abortive, broke up, since which time there has never been any attempt at "combination."

Method of extracting pearls from oysters by merchants.

Examining shell refuse for pearls that escape detection in washing the oyster.

Oyster boats coming in from the sea beds.

A native diver cleaning oysters and finding a pearl.

Counting oysters in the Goot Kottu. A process which is no longer in general use.

Pearl merchants weighing the gems on sensitive scales with seeds as weights.

The Dissipation of Fog and Smoke

The experiments of Aitken have proved that dust particles play a very important part in the formation of fogs, by serving as nuclei for the condensation of water vapor. The electric and electrified particles known as ions are still more effective in condensing saturated water vapor, because their electric charges strongly attract and retain the water, thus counterbalancing the effect of surface tension, which promotes evaporation from the surfaces of drops of very small diameter. Hence ionization may produce fog and it may also destroy fog by collecting minute drops into large drops, which fall as rain.
In 1884, before Aitken's researches, Sir Oliver Lodge discovered that an electric spark discharge (which is now regarded as a stream of ions impelled by electric force) quickly dissipates smoke and dust clouds, and he has since employed the same means for the dissipation of fogs. These experiments, which have a great interest for railway and maritime traffic, are being conducted at great expense, especially in Liverpool, in the hope of keeping the suburban railway lines clear even in the foggiest weather.

About a year ago a French engineer, M. Dibos, be gan a series of experiments in the dispersion of fog by Hertzian waves and lately he has improved his apparatus by the addition of oxyhydrogen flames, states Cosmos. The effect produced by these flames may be partly caused by their heating the air but it is probably due chiefly to ionization, for it is well known that flames produce vast numbers of ions, or electrified particles, which become disseminated through the atmosphere.

The first decisive experiments with the flames were made on December 25th, 1908. The aerial waves were generated by an inductor of about 400,000 volts. Above the conical antenna by which the waves were emitted was placed a metal ring of smaller diameter which carried a large oxyhydrogen jet at each of the cardinal points of the compass. The four jets were connected by India rubber tubes to a central gas holder, which was supplied by a battery of cylinders containing compressed oxygen and hydrogen. The fog, which had prevailed for a week, was very thick that morning. When the emission of aerial waves commenced the oxyhydrogen flames had attained a temperature of $3,600 \mathrm{deg}$. F .
By the addition of the flames, the time required to clear the space surrounding the antenna was reduced from 40 minutes to 20 or 30 minutes and the diameter of the clear zone was greater than in the previous experiments with Hertzian waves alone, increas ing from 400 feet to 500,530 , and 560 feet. The effect was maintained for nearly two hours and until the experiment was stopped by the exhaustion of the supply of oxygen. On the afternoon of the following day experiments with
ther Hertzian waves alone were commenced, but were discontinued in a few minutes, as the wind had shifted to the northeast and the fog was quickly dispersed by a brisk breeze from the North Sea (These experi ments were per formed at Wimereux on the shore of the English Channel.)

An automobile mirror is now made based upon scientific principles. The laws of reflection and refraction are taken into proper ac count, so that not
only is a greater volume of light projected by the lamp, but this volume is thrown just where it is wanted. The two surfaces of the mirror have curves differing in their radif the first or unsilvered surface having a deeper curve. The rays of light which strike the first surface perpendicularly pass on without refraction to the rear or silvered surface, and again reach the first surface by reflection, where they are bent or refracted. But those rays striking the mirror outside of the center do so at a greater and greater angle as the edge is approached, and are refracted more and more as the angle is increased. The marginal rays are therefore so refracted that when reflected by the silvered surface and again bent by the first surface the entire volume of reflected light is concentrated into an intense parallel beam to be directed exactly where wanted.

A HOUSE-TO-HOUSE MIRROR SYSTEM.

The idea of using mirrors to enable one to see ob jects without exposing one's self has found expression in more than one novel of adventure. A few patents have also been taken out for reflecting devices which render it possible to see, from a second-story room of a house, a person entering by the front door below. A New England inventor, Mr. Dana S.- Dudiey, has elaborated the plan on such a scale in his own town, that he is able to observe the surrounding country for a considerable distance, merely by looking down a tube mounted in his back yard.
Mr. Dudley's system may be employed for reflecting to a receiving station images of objects and persons in remote apartments of the same house or distant houses. The system comprises, as may be supposed,

Diagram showing arrangement of mirrors and tubes.
a series of main pipes or tubes and branch tubes about a foot in diameter, which ramify a house, or which may be extended underground from one house to an other beneath an intervening structure. Plane mirrors are mounted in the tubes for the purpose of reflecting the images around corners, from one tube to another. Either by electrical or mechanical means it is possible to operate a particular mirror in a particular room from a central station and cut off reflections from all other mirrors in the system, so that objects in that particular room alone may be seen. Any of the visual tubes entering the central station may be thus connected with each other.
One form of the invention (one of the simplest, moreover) is illustrated in the accompanying drawings. The object of this particular form is to render it possible to see at the point A whatever may be happening at the point C, despite the fact that a building intervenes, as shown in the drawing. At A and C, twelve-inch mirrors are mounted on ball-bearing trunnions and swiveled on a vertical axis, so that they can

His arrangement of mirrors and tubes in his own house enabled him to send his own reflection through several rooms and back to himself again, so that he saw himself as if afar. He could look around the house through one lens of the telescope eyepiece and see his other eye. Two persons seated next to each other at the receiving mirror and separated by a screen could see each other clearly, after their images had been transmitted through room after room, the faces appearing remotely distant, although the two were near enough to shake hands. Mr. Dudley has also used his apparatus to reflect sunlight into cellars and dark rooms, the first mirror being so mounted that it could follow the sun's movement, as in the case of a heliostat.
Telephones can be employed in connection with this system, so that two persons may talk to each other and see each other at the same time.

A New Phonograph.

Consul Thomas H. Norton, in the following report from Chemnitz, describes a new German invention which combines the phonograph and the siren:
The methods for recording sound have reached a higher stage of perfection than those employed for its reproduction. The chief difficulty encountered in the present systems of reproducing conversation, and especially music, from phonographic and similar records, is caused by the friction of the needle resting upon the surface of the rapidly revolving disk or cylinder. This introduces a more or less noticeable buzzing or rumbling sound, which interferes materially with the clear'ness of musical notes or spoken words. Numerous attempts have been made to overcome this unpleasant accompaniment. In none of the devices hitherto brought forward has complete success been attained, since all involved the factor of friction as the fundamental means of transmission.

In a recent number of the Deutsche Musikwerk-Industrie, a German inventor describes a newly patented instrument, in which friction is completely avoided. It combines the leading elements of the phonograph and the siren. The novel and essential feature is the substitution of a current of compressed air for the needle or stylus of Edison's intention.
In a siren, openings of various sizes allow the production of all musical notes with any desired degree of intensity or length. In the new instrument, perforations in the disk of a siren are replaced by tangential incisions on the surface of a large record cylinder. A second perfectly smooth cylinder rests close upon the surface of the first cylinder and revolves in unison with it as the two cylinders are set in movement. A constantly varying succession of minute openings between their surfaces is presented, due to the incisions on the record cylinder. When a powerful blast of compressed air is directed upon the line of contact between the two cylinders, at such an angle as to be an exact tangent to the surfaces of both, sounds are evoked identically as in the case of an ordinary siren. It is pos sible to communi cate signals and even words which can be readily heard miles awas. It is already evident that a field of usefulness is open to this new inven tion as an adjunct to the equipment of seagoing vessels.. Its availability $f o r$ musical purposes has not yet been tested sufficiently to determine whether it can successfully vie with the gramophone, phonograph, etc., or even replace them. The cylinders thus far employed are about ten times as large as ordinary phonographic cylinders, and this fact renders the instrument necessarily somewhat clumsy. The requirement of a current of compressed air may also militate against a widespread domestic use, although such a current can be supplied by a comparatively inexpensive attachment to a water tap where the water supply is under considerable pressure.

Illuminating Mass for Pyrotechnic Purposes.Take 36 parts of nitrate of baryta, 15 parts of iron filings, 1 to 10 parts of aluminium powder, 1 part stearine, 3 parts of sugar of milk, and 3 parts of dextrine.

HOW TO bUILD A CHANUTE-TYPE GLIDER.

Many forms of glider have been tried, but the one which has so far given the most general satisfaction is known as the "Chanute" type.

Either bamboo or spruce may be used for the framework, although the latter material is the more convenient to work with.
If spruce is decided upon, the following materials will be required:
92 feet 8 inches of spruce 1 inch square in 8 pieces, 11 feet 7 inches long.
59 feet of spruce $3 / 4$ inch square in 12 pieces, 4 feet 11 inches long.

Fig. 1.-Dimensions of the frame.
57 feet of spruce $3 / 4$ inch square in 12 pieces, 4 feet 9 inches long.
Also 50 feet of spruce $3 / 4$ inch square in 4 pieces 6 feet 7 inches long, 4 pieces 3 feet $31 / 2$ inches long, and 4 pieces 2 feet $71 / 2$ inches long, for framework of rudder.
3 square feet of sheet iron $1 / 8$ inch thick.
$241 / 2$ feet of mild steel rod $3 / 16$ inch diameter.
11 dozen $3 / 16$ inch nuts.
Ball of strong twine.
About $51 / 2$ pounds of steel piano wire, No. 16.
About 40 yards of unbleached muslin 1 yard wide.
The framework should be clamped together, as holes in the sticks would seriously weaken the joints. Two suitable forms of clamp are shown in Figs. 3 and 4.
To make the clamp shown in Fig. 3, cut off a piece $83 / 4$ inches long from the $3 / 16$-inch steel rod and thread the ends for a distance of one inch, using. a $3 / 16$-inch stock and dies. Clamp the rod vertically in the vise at exactly 4 inches from one of its ends, and bend the projecting 4 inches over at right angles to the rest of the rod, using a hammer and making the bend as sharp as possible. Treat the other end in the same manner, taking care not to injure the thread on the ends. You will thus have bent the rod into the

Fig. 2.-General view of main frame.
form of a letter U with a flat bottom, the sides of the U being 4 inches long and $3 / 1$ inch apart. Take a piece of the $3 / 4$-inch spruce and see that it fits accurately between them. Now clamp the U so formed vertically in the vise with its two legs projecting exactly $21 / 4$ inches above the vise jaws. Bend them over at right angles in the same manner as before, and you will thus get the form shown in Fig. 3. For the clamp plate C cut from the sheet iron a piece $21 / 4$ inches long by $3 / 4$ inch wide.
To make the clamp shown in Figs 4 and 8 cut from $3 / 32$-inch sheet iron a piece $61 / 2$ inches by $51 / 4$ inches, and then trim to the form shown in Fig. 8. As bamboo varies considerably in section from point to point, it is desirable to make each clamp to suit the dimensions of the bamboo at the point which it is to occupy. The dimensions given in Fig. 8 are therefore only approximately correct. The method of applying the clamp is shown clearly in Figs. 4 and 7; the two cross pieces of the T embrace the vertical and hori-
zontal struts, while the stem portion passes round the long horizontal rod. The clamp should be bent to shape as shown in Fig. 6, a piece of 1-inch bamboo being used to mold the circular portions. The final adjusting of the clamp should be made when it is placed in position. The two flaps of one of the T pieces pass between those of the opposite one when bolting the clamp together.
We are now ready to assemble the frame, which for convenience should be made in two sections.
Take two of the 11 -foot 7 -inch lengths of spruce

Figs. 3 and 4.-Clamps for square and round sticks.
(one being the upper edge of one side of the frame and the other the lower edge diagonally opposite) and mark off on each distances of 4 feet 7 inches and 9 feet 2 inches from one of the ends. At each of the points so found, and also at the end from which the distances were measured, clamp one of the 4 -foot 11 -inch and 4 foot 9 -inch lengths of spruce in the manner shown in Fig. 4. To the free ends of the uprights and cross pieces attach the other two 11 -foot 7 -inch lengths in precisely the same manner. A rectangular cage or frame 9 feet 2 inches long by 4 feet 9 inches high will thus be formed, with the free ends of the longitudinal rods projecting 2 feet 8 inches from the end. Construct a similar cage out of the remaining rods. Place the two portions of the frame thus formed together so that the free ends of the longitudinal rods overlap, and lash each pair of the free ends together with strong twine, making the framework 21 feet in length, 4 feet 9 inches in depth, and 4 feet 11 inches wide. (See Fig. 2.)
The guy wires necessary to strengthen the frames can now be attached. Cut a number of $3 / 4$-inch lengths of small copper tubing. Take one of these, pass one end of the piano wire through it and back again, forming a lcop; bend over the free end of the wire and snip it off, leaving a small hook on the end to prevent it slipping back through the tube (Fig. 4). Pass the loop over one of the screw ends of a clamp, and run the wire to the clamp diagonally opposite,

Sm-ar

Fig. 5.-An improvised turnbackle.
securing it there in precisely the same manner. The wires running diagonally across the frame can be fastened to the clamps by passing their ends between one of the sides of the clamp and the longitudinal rods in the manner shown in Fig. 3 .
It is important that all the wires should be strained to approximately the same- extent, and, as this requires some little skill to accomplish, it may be as well for the beginner to provide means for adjusting the tension of the wires after they are placed in position. An ordinary bicycle spoke introduced into the length of each wire, in the manner shown in Fig. 5 , makes a good turnbuckle. One end of the divided wire is wrapped around the hub end of the spoke, the other end being secured to the spoke by a strip of thin sheet steel looped over the spoke nipple, as shown. The tension of the wire can then readily be adjusted by turning the spoke nipple.
The frame is now ready to receive the fabric. Three pieces of this must be prepared from the muslin, one 21 feet 3 inches by about 5 feet 2 inches, and the other two 5 feet 2 inches by 9 feet 6 inches. About 40 strips of spruce are required for the ribs. They should be about $11 / 2$ by $1 / 4$ inches and 5 feet long. Lay the ribs on the fabric parallel to each other and spaced at equal intervals of about one foot. Strips

Fig. 6.-Plan view of the complete frame.
of muslin should now be laid over them longitudinally and stitched down to the fabric, thus forming a sort of pocket, open at both ends, in which the ribs can slide. The large surface with ribs in position can
now be laid on the upper deck of the frame, and the ribs lashed to the longitudinal rods by their ends at the front edge and at the point where they cross the rear portion of the frame. They will thus overhang the rear edge by about 1 foot. These overhanging oortions are connected at their extremities by twine or piano wire, round which the rear edge of the fabric is lapped and glued. When this is dry the cloth can be strained into position, the front and end edges being glued to the main frame. If strong glue is used this should prove sufficient fastening, but, if desired, the fabric can be tacked to the frame as well, using small tacks. The two other pieces of cloth are secured to the lower deck in precisely the same manner, a space of about 2 feet being left between them at the center. Two pieces of spruce $3 / 4$ inch by $11 / 2$ inches should now be laid across this space from front to back about 18 inches apart and parallel to each other, and lashed to the frame with cord. They form the arm rests which support the operator. The glider is now complete with the exception of the tail, which is constructed in exactly the same manner as the main planes, the two sides, however, being covered with cloth in addition to the top and bottom. Its dimensions are given in Fig. 1. No ribs are required for the tail. It is connected

Fig. 7.-Clamp for' bamboo sticks.
to the main planes by the four rectangular rods of spruce $3 / 4$ inch square. The lower rods are lashed to the front and rear edges of the main plane about 2 inches apart, the rods being parallel to each other and spaced at equal distances on either side of the center of the plane. The other two rods are lashed to the rear edge of the upper plane and to the front edge of the tail. The tail is further braced to the main body by the piano wire in the manner shown in Fig. 1.
Curved surfaces, although not essential in a glider, can be produced in the following manner: Slightly taper the front portion of each rib for about $1 / 3$ of its length from the front end. If the front ends of the ribs are now lashed to the frame first, and the ribs are then pushed slightly forward by their rear ends before being fastened to the rear edge of the frame, they will assume a parabolic curve. Strong glue should be applied to all lashed joints to prevent them from working loose.
If bamboo is the material selected for the frame the following lengths will be required:

8 pieces, 11 feet 10 inches long.
12 pieces, 4 feet 11 inches long.
12 pieces, 4 feet 9 inches long.
4 pieces, 6 feet 7 inches long.
4 pieces, 2 feet $71 / 2$ inches long.
2 pieces, 18 feet long.

Fig. 8.-Lay-out of clamp for bamboo.
A ground suitable for the practice of gliding must have a gentle slope of about 1 in 10 , if possible in the direction of the prevailing wind. If due precautions are taken, there is little danger in the art of gliding provided the beginner commences cautiously and takes sufficient time to master the balancing of his machine before attempting long glides. While learning, it is best to have two ropes about 6 feet long attached to the lateral extremities of the machine, each rope being held by an assistant. The glider is thus prevented from ascending to a dangerous height above the ground, while the novice is learning to balance it. At first there is a tendency to place the weight of the body too far back, but this difficulty is soon overcome. Steering is effected by moving the legs. To turn to the right swing both legs in that direction, and vice versa. To stop the flight, move the weight of the body backward and, at the same time swing the legs forward. This will cause the machine to tilt up in front and settle down.

TOOLS FOR THE WORKSHOP.-I.

 by i.g. batlef.It is not the intention of the writer to describe in these articles all the tools necessary for a complete outfit. Such information can be obtained by studying a good tool catalogue.

details of the carpenter's clamp.
It is advisable not to take the better class of tools when called upon to do a job at a distance; for though it is commendable to make a good job of any work which may come to hand, many cases are on record where good tools have been spoiled in doing the job, which could have been done just as well with others An excellent saw is on the market, which has the reputation of cutting through iron, nails, or hard wood, without doing itself much damage. Such a tool, with others of a kindred nature, should be put in the carpenter's shoulder chest, when called upon to do general repair work.

> a Carpénter's clamp.

For holding work together while being glued or nailed, a clamp of some description is indispensable The one herewith illustrated has the advantage of being easily made by a blacksmith or the mechanic himself.
In the illustration, A, with the extension B, shows the clamp complete. The extension B is used on large work, such as door frames. It is about 20 inches in length, after the end has been turned up, as shown, $11 / 2$ inches. The first three holes are made square to bite the thumb screw L, by which it is connected to the body A. The clamp is made of $11 / 2 \times 5 / 16$-inch wrought iron. A is 30 inches long, including the threaded end, which is $3 / 4$ inch diameter by 6 inches long. The holes are made to suit the thumb screw L, $3 / 8$ inch diameter. The stops D and C are identical, except that D has the slots rounded out to pass over the threaded end of the clamp, as shown in detail at I and F. Two plates are cut out as shown at $E, 5 \times 3 \times$ $1 / 4$ inch, and four holes bored in the corners, $1 / 4$ inch diameter. A slot is cut in the center, large enough to slip easily over the body of the clamp. As already stated, in one case this slot must be rounded out in the center to pass over the threaded end of the clamp Two pieces $H, 3 \times 1 / 4 \times 9$ inches, are cut out as shown, the legs being 3 inches long, and tapered down to $1 / 4$ inch diameter. The legs are spread to suit the holes in the plates F and G, into which they are riveted, after being bent into shape as indicated in the sketch marked N.
The crank O, detailed at K, is made from a $5 / 8$-inch diameter bar, about 15 inches in length; the part forming the handle being $41 / 2^{2}$ inches long. A boss one inch long is formed at one end, and threaded to suit the end of the clamp A. A washer M, to take up the wear, and a thumb screw L, complete the list.

a steam box.

It is sometimes necessary to bend or twist wood into various shapes, to suit certain work. Long or short strips, and even planks, can be made very pliable by steaming them from half an hour to an hour in a cheaply-constructed box, like the one illustrated. The size of the box will naturally depend upon the

the steam box in dse.
class of work to be operated upon. Boxes all the way to 35 feet in length by 3 feet square have been made, for bending planks in boat building. For ordinary work, however, a box 10 to 12 inches square by 8 to 12 feet in length will be ample.
The box is made of inch boards, nailed together
with tenpenny nails, about 6 or 8 inches apart, with one end closed permanently, and the other either furnished with a hinged lid and two side catches, or left open entirely. When the latter scheme is resorted to, either an old piece of carpet, burlap, or hay can be used to close up the end. Even when the hinged lid is used, it is well to use a piece of burlap as indicated. An amplesized pot is furnished with a wooden lid, which is made to fit the opening tightly. A hole is cut in the lid of the kettle, and the bottom of the steam box, with a compass saw, large enough to take a piece of pipe, $11 / 2$ to 2 inches in diameter.
The pipe must fit very tightly. It must be of sufficient length to prevent the box from coming too near the fire; say 4 feet from the ground.
The kettle is suspended from the middle of the box by means of a strong wire or chain over a fire. The wooden lid is furnished with an opening for a funnel to supply the kettle with water. The opening is closed with a tightfitting cork when the funnel is not used. The box is generally placed outside the shop, within convenient reach, upon a couple of trestles or horses.
(To be continued.)

MILK TESTING WITHOUT APPARATUS.

by prof. gustave michaud, costa rica state college.
The following process for the detection of added water or of skimmed milk in ordinary milk is more accurate than the simple use of the lactodensimeter without the creamometer check. The whole test can be made in five minutes. The result does not show

SIMPLE METHOD OF TESTING MILK.

whether the adulteration consisted in the addition of water or in the subtraction of cream, but as a rule this matters little to the consumer. What he wants to know is whether or not he had what he paid for.
The suspected milk is stirred with a spoon, in order to disseminate into the whole liquid the cream which may have come to the surface. Then one volume of milk is poured into fifty volumes of water. (One fluid ounce to two and a half pints.) A candle is lighted in a dark room. The experimenter takes an ordinary drinking glass with a tolerably flat and even bottom; and holds it right above the candle, at a distance of about one foot from it, so as to be able to see the flame of the candle through the bottom of the glass. He then pours slowly the diluted milk into the glass. (See the accompanying figure.)
The flame becomes less and less bright as the level of the liquid rises into the glass. The flame is soon reduced to a dull white spot. A little more liquid, slowly added so as to avoid pouring an excess, and the flame becomes absolutely invisible. All that remains to be done is to measure the height of the liquid in the glass, this being most conveniently ascertained by
dipping into it a strip of pasteboard and then measuring the wet part. It should measure not over one inch if the milk is pure. With good quality milk, diluted and tested as stated, the depth will be about $7 / 8$ of an inch before the flame is lost to view. A mixture of one volume of milk and a half a volume of water should show a depth of $11 / 2$ inches. A depth of 2 inches indicates either partially skimmed milk or a mixture of one volume of good milk with one of water, and so on.
The reader has already understood that the process is based upon the close relation between the opacity of milk and the number of fatty corpuscles contained in it. Both skimming-and the adding of water work in the same direction, namely, to decrease the opacity of milk. The same cannot be said of the density. Skimming increases it, adding water decreases it; and the common test, which consists in the mere introduction of the lactodensimeter in milk, is worthless, as a skimmed milk may have a normal density if care has been taken to pour into it a certain amount of water. Density should be taken before and after skimming, and the percentage of cream should be determined with the creamometer. Thus applied, the density test requires a lactodensimeter, a thermometer, and a creamometer, and the test requires twentyfour hours, while the result is not much more accurate than the opacity test just described.

SUME INTERESTING MODELS.

An exact reproduction of the apparatus used by Oersted and Faraday in their pioneer electrical work has just been prepared by Mr. Joseph G. Branch. The models show all the fundamental principles of electricity. Faraday's disk is well known in schools and colleges, but this is probably the first time in which a complete set of exact reproductions of the original apparatus used by Faraday has been made. Mr. Branch has studied copies of the original notes of Faraday and has endeavored to make perfect copies of the apparatus. Faraday's ring is not only the exact size of the original ring, but is made of the same kind of iron and the winding is similar. With this ring all the principles of the transformer can be clearly

MODEL OF A "D" SLIDE VALVE.

shown, and it is so sensitive that it can be used with the ordinary pocket compass. As shown in the illustration the set is furnished with a compass galvanometer, and also with a millivoltmeter which reads to 50 millivolts on each side of the scale. There are seven models in the set illustrating relations between magnetism and electricity; how magnetism is converted into electricity; how electricity can be produced from magnetism; how one current induces a secondary current; how electricity can be produced by the expenditure of mechanical energy; and how mechanical energy can be produced from an electric current. In addition to these models Mr. Branch has prepared two engine-vaive models, one of which is shown herewith. These models illustrate all the leading principles of the D slide valve and the piston valve. They are dissectible, so every detail may be examined.

EXACT REPRODUCTIONS OF FARADAY'S AND OERSTED'S ELECTRICAL AND MAGNETIC APPARATUS.

RECENTLY PATENTED INVENTIONS,

Pertaining to Appare

SKirt gage and marker.-Emma Howard, Colorado Springs, Colo. The object of this invention is to provide a gage and of the intended bottom line on the skirt without assistance, and to permit of marking the skirt for folds, tucks, and trimmings. An initial row of pencil marks is laid out by the use of a specially constructed marking device on the dress, a short distance down from the waist line and while the dress is worn by the
woman for whom it is intended, and then a woman for whom it is intended, and then a
bottom line of marks and along which line the bottom line of marks and along
dress is finished as to its length.
METHOD OF OBTAINING THE CORRECT length of skirts.-Emma A. Howard, Colorado Springs, Colo. In this case the mcthod consists in first producing a row of marks on the skirt at a uniform distance from the floor while the at a uniform distance frome is supported on the wearer, and after ti:e skirt is removed, producing a second row nenr the bottom a uniform distance from the
first row. The invention relates to dressmaking, and enables a woman without assistance, to obtain the correct length of a skirt for her own use, and also permit of ma
the skirt for folds, tucks, and trimmings.
SHOE.-C. F. Helflinger, Taylor, Wash. The purpose of the inventor is to provide details of construction for a shoe, adapted to
wear by persons of either sex, which enables wear by persons of either sex, which enables
the donning of the shoe in a speedy and convenient manner, and its removal readily when at the closure joints thereof and may be quickly secured by a shoe string without tying the latter.

Electrical Devices.

UNDER-GROOVED TROLLEY-WIRE. - L. Steinberger, New York, N. Y. The contact face of the wire which is protected from
weather, has a plurality of bearing surfaces weather, has a plurality of bearing surfaces
insuring contact of considerable area. The insuring contact of considerable area. The
wire can be readily substituted for other kinds. wire can be readily substituted for other kinds. metal for the amount of contact surface. It readily suspended from clips; its shape is such that the trolley easily engages it, and the
trolley wheel cannot be readily misplaced from trolley wheel cannot be readily misplaced
the wire when once in contact therewith.

THIRD-RAIL inSUlator. - L. Steinberger, New York, N. Y. The more particular object of this inventor is to provide an insu-
lator suitable for use in connection with third lator suitable for use in connection with third
rails and in analogous relations where heavy rails and in analogous relations where heavy
conductors are employed. Among many advantages, one is in the provision of an insulated rail support presenting a relatively small rail support presenting a relatively sman
mechanical contact surface to the rail, thereby allowing the rail free movement and avoiding
the possibility of the rail binding on its supthe possibility of the rail binding on its sup-
port by rusting, freezing or otherwise, and port by rusting, freezing or
thereby bending or breaking it.
SHEAVE.-F. Jones, C. M. Brown, J. S. Fleming, and W. L. McDonald, Plymouth,
Ohio. In view in this case is a sheave provided with a grooved rim substantially centrally divided on a plane at right-angles to the axis, forming the entire rim into two separable half sections, each rim section having an internally-projecting flange, a hub portion, and
means carried by the hub portion, separable means carried by the hub portion, separable ginal openings engaging tlat against the outer surface of the flange of each rim section, forcing the inner faces of these flanges together.
TROLLEY.-A. S. Janin, New York, N. Y. frame, spring and pneumatically operated, and so designed that it will readily operate at all times, especially when used in high speed work
and with heavy traffic. The trolley is under and with heavy traffic. The trolley is under
complete control of the motorman, and will not leave the wire without being purposely
DRY-BATTERY CELL.-W. S. Doe, Jersey
City, N. J. The object here is to provide cerCity, N. J. The object here is to provide cer-
tain improvements in dry battery cells, wheretain improvements in dry battery cells, where-
by the exciting fluid usually discharged from the battery filling when the battery is in use
is stored and reused when in an effective manis stored and reused when in an effective man render the same very effective at all times.

Of Interest to Farmers,

COTTON-CLEANER.-S. Williams, Texola, Okla. There is provision here for a device in
which seed cotton in various states of cleanwhich seed cotton in various states of clean-
liness can be treated and then passed directly liness can be treated and then passed directly
into the gins. It is a well known fact that
 condition for the spinner, the better, since in apt to get broken, thereby impairing its usefulness.
CORN-HUSKER.-H. S. Blatr, Bucyrus, connect the hook with the palm plate that it may be moved from side to side and turned to varying angular positions within certain limits and secured to the plate in any position
of its adjustment within these limits, whereby it may be relatively disposed on the palm plate to suit the motion of the user.

Of General Interest.
AUtomatic PIANO.-F. R. Goolman, Binghamton, N. Y. The purpose of the inven
tion is to provide a piano, and means elec trically operated or operated by a coin, whereby to set the instrument in action, the piano acting automatically to complete any
tune commenced. Further, to provide a de vice attachable to any piano of any type,
which will render the action of the piano automatic.
DRY MEASURE.-G. W. Lyons, Grand Rapids, Wis. This measure is for use for
measuring vegetables, cereals, and like goods and permits convenient filling of the measure
from the top with goods, and at the same from the top with goods, and at the same
time the measure is hung from a barrel or like filling the dry measure from the bottom when measuring cereals contained in a bin, barrel
etc., and convenient discharge of contents of the measure by way of the bottom.
SHEET-METAL VESSEL.-J. HÖILAND and invention is an improvement in sheet meta vessels more especially constructed for containing preserved foods, and has in view the povision of a seam between the can body and can head such that the can will be her-
metically sealed without the use of solder and along which seam the can head and body ar adily separable
METHOD OF EXTRACTING TREES AND TUMPS FROM THE SOIL BY MEANS OF EXPLOSIVES.-G. Hunter, Victoria, British
Columbia, Canada. The object of the invenColumbia, Canada. The object of the inven an explosive is used for its removal in the ordinary way, by putting it into a hole under the tree or stump, it will direct the ex-
panding gases downwardly to expend their panding on and about the roots, thereby extract
energ ing them in their entirety without unneces sarily tearing the tree apart.
PIPETTE ATTACHMENT.-A. E. Hutchin son, Victor, Colo. This invention is directed
o improvements in pipette attachments, emto improvements in pipette attachments, embodying a construction easily operable to draw into the pipette when applied thereto, an when desired. The operation is such that the admission of the liquid to the pipette can be pared with minuteness, making the invention particul
quired.
SELF-PROPELLED TORPEDO. - A. E. his this instance is improvements in torpedoes,
and relates more particularly to the auto matic expulsion of the leakage waterb by utilizing the sinking valve itself, and also the protection of the gyroscope and its accessory
parts from the harmful action of the said parts from the
CONTROLLING-VALVE.-E. Engrebretson Devil's Lake, N. D. The valve is adapted for operation in a substantially automatic manne and the object of the inventor is to provide a valve having adjusting means whereby its posi independently of the parts in connection with which the valve is used.

Hardware.

SHUTTER-HINGE.-J. B. Wright, Greensboro, \mathbf{N}. C. In this hinge the leaves are remitting the hinge to be applied at either sid of the blind or shutter. In opening a shutter provided with this hinge, it is not necessary to lift the former, and the shutter is securely locked in its open position. To close the
shutter the yoke connected with the hinge is shutter the yoke connected with the hinge is
lifted, thus freeing the shutter and permitting it to swing in closed position.
SAFETY-RaZOR.-C. Grabhorn, Hoboken . J. The intention of the improvement is t folding the parts into an exceedingly smal space when the razor is not in use, and when folded the razor can be conveniently and safely carried in a vest or other pocket, and when extended
LOCK.-A. M. H. De Bruyceer, New York, N. Y. The object of the invention is to probers, capable of being moved in the direction of their length and adapted to be spread apart to engage the keeper with the hook ends, thus holding the
unless actuated by the proper key.

Heating and Lighting.

OIL AND GAS FURNACE.-J. W. Russell and T. E. Neylon, Renovo, Pa. The furnace
is adapted for using oil or gas as a fuel for heating bars, frames, or other parts of iron construction, and particularly for welding en-
gine frames. The chief object in gine frames. The chief object in view is the
production of a furnace distinguished by strength and economy of construction, and in which refuse oil may be burned with efficient result.
GAS-FIXTURE. - A. Jarmolowsiy, New tubular gas lighter in communication with the valve casing and revoluble and vertically movable around the several lights fed from the
casing, the lighter having a valve within the
casing adapted to seat on the gas inlet and
thus operate to simultaneously extinguish all hus operate to simultaneously extinguish al
lights. It has reference to improvements for which Letters Pate

Household Utilities.

INDICATOR.-W. Schnitzspan, New York, . Y. In this patent the object primarily is to improve and simplify the construction of
the present form of indicator, especially the the present form of indicator, especially the of springy sheet metal and bent into a novel hape insuring against any accidental di

Machines and Mechanical Devices.
tanning-machine.-F. h. Yocum, London, Ontario, Canada. The tanning is attained by alternately dipping the hides into and removing them from a vat of liquor, and through and emerge from the liquor in a separated condition, but while out will be in a packed condition, which assists in expressing the liquor from the hides, thus subjecting them to an alternate injection and expression, to
cause the liquor to more easily enter their cause the liquor to more easily enter_their
pores, and to change the liquor at frequent intervals.
CONTROLLING DEVICE FOR ELEVATOR-BRAKES.-W. H. C. Brenner, Poughkeepsie,
N. Y. The purpose of this improvement is to N. Y. The purpose of this improvement is to
provide details of construction for a brake provide details of construction for a brake
ope controller, whereby the rope will be pulled upon by the upward travel of the elevator t a desired point that will render the plat orm level with the floor of the building in which the elevator is installed.
TRIMMER FOR LOOPERS.-W. J. Steere Rockwood, Tenn. The object of the invention is to provide a trimmer forming a permanent
attachment for a looper and arranged to accurately cut off the surplus material above the loops held on the looper points, to direct the surplus material from the machine, and to re-
move all lint or other extraneous matter from the seam of the knit fabric.
MACHINE FOR CALKING
MACHINE FOR CALKING HORSESHOES G. H. Smith, Great Falls, Mont. The in which can be operated so as to effect the operation of inserting calks in horseshoes, threading the shoes, and also providing mean
for holding the shoes, while the machine operating upon them. It can be also used to remove \mathbf{w}
repaired.
TREADLE MECHANISM.-H. W. Loder, ew York, N. Y. The aim of this inventor is to provide a mechanism for use on sewing
machines and the like, and arranged to permit convenient and quick adjustment of the reade, to suit the same to pactuate with a chine with the least physical exertion and with the greatest comfort.
KNOTTER FOR COP-WINDING MAloth factories where cop, Saltillo, Mexico. In employed, it is necessary to join the ends of the thread to be wound on the cops, which
operation is usually performed by hand by operation is usually performed by hand by
tying the ends together. This is a slow and edious operation, the knots frequently coming knot are not of uniform length. The attachment ties the knots in a safe and rapid manAUT
aUTOMATIC SCALE.-A. H. Austin, New
ochelle, N. Y. The device is so constructe hochelle, N. Y. The device is so constructed feed mechanism interposed between the hopper and the scale pan has been adjusted, the mapau until the required weight has been the ained, whereupon the supply of material from he feed mechanism is automatically reduced until when the weight has been obtained the
feed mechanism is automatically completely cut off, the controlling factor being elec tricity.

Railways and Their Accessories, SAFETY APPLIANCE FOR RAILWAY CARS.-R. BELDEN, Spanish Ranch, Cal. On pliance for use for railway cars, or trains of cars, that will act to effectually prevent the curves, and will track, particularly arent the flanges of the car wheels from having undue frictional engagement with the rails.

Pertaining to Recreation.

ROLLER-SKATE.-T. S. Pacie, Chicago, IIl The present invention has for its purpose to
provide for a movement between the foot plate and rollers with greater ease, and also for cushion, as well as produce a stronger the struction. This is accomplished by placing the cushion between the foot plate and roller spin such that the opposite ends of the spindle are adapted to swing to and from the foot plate against the action of the cushion.
Nore.-Copies of any of these patents wil be furnished by Munn \& Co. for ten cents each
Please state the name of the patentee, title of the invention, and date of this paper.

Kindly write queries on separate sheets when writing bout other matters, such as patents, subscriptions, tions. Be sure and give full name and address on every

Full hints to correspondents were printed at the head of this column in the issue of March 13th or will be
(12067) H. D. R. asks: My friend claims that when ice is freezing in a river ice", down in the water near the bottom, and then rises up to the surface and freezes solid and I claim that it does not. Who is correct? A. Ice does not form below the surface of
water and rise to the surface. Water at 39 deg. is heavier than at any other temperature. As' water cools below 39 deg. it remains on the top, and the water at the surface is colder than anywhere under the surface after 39
deg. is reached. Hence water first reaches 32 deg. at the surface, and ice forms there.
(12068) J. A. B. asks: In carefully reading "The Forms of Water," by John Tyn (Sec. 56, page 153): "Hence to convert one pound of tropical ocean (water) into vapor the sun must expend 10,000 times as much heat as would raise one pound of iron one de-
gree in temperature. This quantity of heat would raise the temperature of 5 pounds of iron 2,000 degrees, which is the fusing point would not only be white hot, but would pass into the molten condition." Can this be actually true? If so, would it not be safe to say the quantity of heat generated in the kitchen stove to thoroughly cook a 7 -pound potroast, where more than a pound of water is converted into the form of vapor, would be sumcient to melt 5 pounds of cast iron?
Would any rational person believe you? Why would not this enormous quantity of heat melt down the top of the stove? A. The
statement you quote from Tyndall's book is statement you quote from Tyndalls book is
undoubtedly true. It is explained by the wellknown phenomenon of the latent heat of a pound of water at 212 deg. into steam at the same temperature. The amount of heat re-
quired to boil your pot would undoubtedly burn to boil your pot would undould be burn up the top of the stove if it could be
sufficiently condensed both as regards time and sace, i. e., if it were not being constantly radiused up in boiling the water, etc. 2. Again, in a recent article on the Panama Canal in the Scientific American, one objection made to a sea-level canal was that the rush or flow of water caused by the 10 -foot difference in taken of the two oceans would have to be old "difference in level" doctrine had long
been disposed of, and that the mean sea level been disposed of, and that the mean sea level
was the same on both sides of the Isthmus of Panama. No doubt the writer referred to the tide, but he did not say so, neither would his of the difference in level. What is the maximum of high tide at Panama or Colon? And which direction would the tide take through the canal, were a sea-level between the oceans at Panama has not ye dispose "fisposed of." It is a little difficult to square miles physical fact of a few million higher than that at the other end of the canal. by tide erence of level referred to is caused by tide; it does not cease to be a difference
of level on that account. The current through the canal would be nothing very serious; 9
feet head in 42 miles is not much; but in conjunction with a number of other conditions, the filling up of a sea-level canal by detritus from the Chagres River, etc., the daily reversal of a flow of that extent is a matter
for serious consideration. The mean sea level is approximately the same at both ends of the canal, but the amplitude of the tide has a
maximum of 2 feet at Colon and of 20 feet at Panama. That is to say, supposing the tides to synchronize, low-tide level at Colon and high tide at Panama 9 feet higher than high tide at Colon. The flow from one end to the other of a sea-level canal would be reversed with each mean tide.
(12069) E. G. de C. asks: I beg to refer to you for elucidation a certain point in engineering, feeling certain that you will
help me with your kind assistance. Two eccentrics are hitched on to a slowly-revolving $\begin{array}{llll}\text { shaft, } & 2 & \text { r. } & \mathrm{p} . \mathrm{m} \text {. The eccentrics are re- } \\ \text { spectively } & 4 & \text { inches and } 8 \text { inches in diameter. }\end{array}$ To each is attached a rod, connected at the opposite end to a sliding plate, which moves in a horizontal plane. Each plate is perforated
with a slot, 4 inches long and $1 /$ inch wide. with a slot, 4 inches long and $1 / 4$. inch wide. plane of motion. shot is at right angles to the that at the end of each stroke of the eccentric, each slot is exactly under a corcentric, each slot is exactly under a cor-
responding slot of the same size, which opens
the tapering end of a hopper full of sand
placed vertically above the sliding plate. Suposing each hopper to be alike, and filled with what will be the proportion in the rate of what will be the proportion in the rate of
How from the two hoppers? In other words will the two hoppers be emptied in the same length of time, or in the inverse ratio of the diameter of the eccentrics? I trust that I am not imposing too much upon your kind ness, and thank you beforehand. A. As the slots in the sliding plates coincide with those at the bottom of the hopper at the end of the troke of the former, the time during which the sliding slot coincides with the fixed one
will be practically the same for both slots in spite of the difference of diameter of the eccentrics. Were the points at which the slots register in the middle of the strokes of the sliding plate, the plate operated by the 8 -inch eccentric would be traveling twice as fast as that of the 4 -inch, and the slot would there-
fore be open half the time and half the ore be open half the time and half the quantity of sand would be discharged; but as the speed of the sliding plate is variable, due to the conversion of rotary to sliding motion end of their strokes, the period during which each is at rest will not be measurably different t is probable that in a long continuous run a little more sand would be found discharged through the plate operated by the 4 -inch than by the 8 -inch eccentric, but the quantities dis hargęd would not differ by an amount ap proaching the inverse ratio of the strokes.

NEW BOOKS, ETC.

Rugs Oriental and Occidental, Antique and Modern. A Hand Book for
Ready Reference. By Rosa Belle Holt. Chicago: A. C. McClurg \& Co.
 Since the first edition of this book was pub-
ished, circumstances connected with the buyished, circumstances connected with the buy and the number of reliable authorities has in creased considerably. The illustrations are o the highest possible order. They are some of the finest examples of color printing which have been brought out in years. The frontispiece is a magnificent reproduction of a beautiful antique Tabriz silk rug. The other plates are equally fine, and will be a great treat to al tory and details of rug weaving, then the subect of rug weaving in Egypt, Persia, and f rug weaving as conducted in India, Afghanis tan, Beluchistan, Central Asia, and the Caucasus region. Then miscellaneous Oriental rugs
are treated, such as rugs of the Holy Land Cbinese rugs, Japanese rugs, Polish rugs, silk ugs, felt rugs, prayer rugs, weaving in Europe and the United States is
treated separately, the European countries being Greece, Morocco, Spain, Bosnia, Servia Roumania, Bulgaria, England, and France. The ast chapter, giving miscellaneous information takes up the question of inscriptions on rugs, Oriental symbols, Chinese symbols, Japanese symbols, Persian symbols, Turkish symbols, mis ellaneous symbols, and the meanings of som of the place names associated with rugs. There
is also some valuable geographical data and an is also some valuable geogra

The Ocean Carrier. By J. Russell Smith, Ph.D. New York: G. P. Putnam's
Sons, 1908. 12mo.; 344 pp. Price $\$ 1.50$ net.

At last we have a history and analysis of ocean transportation with a discussion of its rates. This book fills a very much neglected niche in the history of transportation. It is
the outgrowth of the study of three questions: the outgrowth of the study of three questions: tion among carriers to control rates, and the combination of steamship lines and railways Numerous writers have dealt with the activi ties of the ocean, which is a fascinating sub ject. Biographies of men and of ships, tech nical details of ships, appear to have been th interesting things. Who built the ship; just when; just where; how long she was to an inch; how wide; how deep; the material; the tonnage; the exact size of her engines best voyage-record; who captained her, Such information can be collected by the vol ume, but there is an astonishing silence in the pages of the past as to what these wonderfu ships actually did and how much they paid what they carried; where they carried it; for whom; under what method of management, ar things rarely, if ever, told by writers of mari time topics. Such records do, however, exist documents, and the present work takes up thi information in the most painstaking manner From the immense mass of materials available the author traces out the main lines of pas development and detects the dominant factors in the present situation. The book is well illus trated by carefully chosen engravings of ves sels, and by excellent maps dealing with the great trade routes and the activities of th
great steamship companies.

The Wonder Book of Magnetism. B Edwin J. Houston, Ph.D. New York: Frederick A. Stokes Company, 1908
12 mo .; 325 pp . Price, $\$ 1.50$ net. 12 mo .; 325 pp . Price, $\$ 1.50$ net. The purpose of "The Wonder Books of
Science" is to bring home to the young reader Science" is to bring home to the young reader

The author is singularly happy in getting the
point of view of the youthful reader. Having been, during his life, a practical scientist and successful teacher of boys, he combines the most desirable forms of experience. In this book the author tells of magnetic batteries and magnetic currents; lodestones; magnets that remember and magnets that forget; the com ass, the curious causes of its variations and of the earth's magnetism; the Auroral Lights ; the earth's magnetism; the Auroral. any other marvels.
lass Manufacture. By Walter Rosenban, B.A., B.C.E. New York: Van
Nostrand Company, 1908. 12mo.; 264 pp. Price, \$2 net.
The present volume on glass manufacturing as been written chiefly for the benefit of those ho are users of glass, and therefore makes no ngaged in glass manufacture itself. For this reason, the account of manufacturing processes as been kept as non-technical as possible; no iagrams have been introduced for the purpose of avoiding lengthy verbal descriptions. There re fex industries where the processes of manuacturing are kept more secret, so that the ath of the author who would give an accurate ccount of the best modern processes used in any given department of the industry, is beset with great difficulties. The author has endeavored to steer the best course open to him he paucity of glass literature in the English anguage as evidence of the difficulty to which e refers. The physical and mechanical proprties of glass are first taken up, then the raw materials of glass manufacture are treated, which is followed by a chapter on crucibles and urnaces for the fusion of glass, the process of usion, processes used in the wrass, sheet and ttle glass, rolled or plate glass, sheet and iscellaneous products

The Design of Highway Bridges and
the Calculation of Stresses in
Bridge Trusses. By Milo S. Ketch-
Bridge Trusses. By Milo S. Ketch-
um, C.E. New York: Tne Engi-
neering News Publishing Company
1908. 8vo. 544 pp. Price, \$

The aim in writing this book has been to ive a brief course in the calculation of the resses in bridge trusses, followed by a sys ematic highus bridges while there are many xcellent books in which the different types of railway bridges are discussed in detail, little attention has heretofore been given to the deign of highway bridges. As a consequence of his neglect, many of our high way bridges have been very badly designed, the design of these
structures being ordinarily left to an engineer ithout experience or the agent of some bridge ompany who was more interested in the re The calculation of the stresses in highway and rarlway bridges is similar, but the problems in the design of the two types are very different, ue to the different requirements and conditions. The problem of the design of a highway bridge includes the design of both the super structure and the substructure. Most of the reatises on bridge design deal with the super tructure only, but in this book, due attention ure and substructure, and to the effect of the design of one on the other. The author disusses in detail the costs of the different parts highway bridges. These costs are of value principally to the student and to the experi nced engineer who is familiar with. the cond
ions of the particular piece of work. The book is freely illustrated with drawings, diagrams, photo-engravings, and tables.

General Lectures on Electrical Engi
Neering. By Charles Proteus Joseph
Le Roy Hayden. Schenectadẏ, N. Y.:
Robson \& Adee. 8vo.; pp. 284. Price, $\$ 2$.
The book contains a collection of seventeen ectares of a general nature, dealing with prob-
ems of generation, control, transmission, disribution, and utilization of electric energy. The work is largely descriptive and not mathematical. An appendix on light and illum protection, are also included in the volume

Shop Tests on Electric Car Equipment
By Eugene C. Parham, M.E., and
McGraw Publishing Company. 12mo.
55 illustrations; pp. 121. Price, $\$ 1$.
This is a small practical handbook adapted or the use of inspectors and foremen in the re of such a character that they may be per rmed with the instruments and facilities rules and tests in the minds of the readers many examples are given and a set of questions is provided at the end of the book.
Memories of My Life. By Francis Gal-
on, F.R.S. With eight illustrations
pp. 339. Octavo. Price, $\$ 3.50$
Francis Galton is probably the hardes
reason that he was never a specialist for an
great length of time, but has been what may be called a good "all-around" man of science He has been an able statistician, a meteorolo
gist, a "finger-print" classifier, a founder o anthropometrical and psychological laboratorie an explorer, a pedagogue, an authority on These pleasantly written memoirs of his tell the story of his manifold activities in a sim ple, unaffected way, and give one many a rar closing half of the nineteenth who made the the most remarkable periods in the history o has such strong notions on the subject of heredity should open his memoirs with a fairl exhaustive statement of his family stock.

Legal Notices

PATENTS

INVENTORS are invited to communicate with Munn \& Co., 361 Broadway, New York. or
6225 F Street, Washington, D. C., in regard 625 F Street, Washington, D. C., in regard ventions. Trade-Marks and Copyrights registered. Design Patents and Foreign

We undertake all Patent, Trade-Mark and Copyright Practice, both before the Patent ties for handing Infringement and other suits in Federal and state jurisdictions.
A Free Opinion as to the probable patentability of an invenion will be readily given to any inventor furnishing us with a model or sketch and
a brief description of the device in question. All communicatious are strictly confidential. Our Hand-Book on Patents will be sent free on Every patent secured through us receives special notice in the Scientifc American.
Ours is the Oldest agency for securing patents

MUNN \& CO., 361 Broadway, New York

Branch Office, 625 F St., Washingtọ, D. C,

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending April 13, 1909,

EACH beARING That date

Am

177,812
918,247
:---:
9988,386
and

 918,238
917,891
 tandic
 R

 ${ }_{9.918,244}^{98}$

918,233
918,200

 ${ }_{9}^{917,8227}$

AERMOTOR PUMPING DEVICES

Are known and used the world. over. Hundreds of thousands of AERMOTORS in use. Thousands of GASOLINE PUMPS in use.

The Aermotor Gasoline Pump is easily attached to "any old pump" in 30 minutes. The engine and pumping gears are assembled in one simple, compact and durable machine which is complete in every detail and ready to set up and go to work. It will pump as much water as an 8-ft. windmill and will run as many hours a day as you desire.

We make so
many of these engines that we have put in the facilities for building them perfectly.

We are almost
price on an engine so well designed and so well built, but we are
proud of the engine.

It occupies very little room, requires little attention, and gives a large amount of service. The supporting frame is clamped to the pump stand ard, making a very solid and compact arrangement.

No other pumping device ever gained such great popularity or reached such great salesinso short a time

AERMOTOR CO., Camphell Avenue and 12th Street, CHICAGO

Engine and Foot Lathes
 SEBASTIAN LATHE CO.. 120 CuIvert St., Cincinnati.

m=Uillitight Drills 10 to 50 -inch S Send for Drill Catalogue.
W, F F. \& JNO. BARNES $1999 \begin{aligned} & \text { (Estabished }{ }^{2} \text { Ruby St., Rockiord, }\end{aligned}$

$\$ 54.00$ per day The Record
of the CAMERA-SCOPE And we can prive it. Any one ean operate
ind Makest inished button photographas a
minute.

 W. S. MOUNTFORD, 100 Maiden Lane, New Yorki, M. Y. WELL $\underset{\text { mactillics }}{\text { pill }}$ Over 70 sizes and styles, for drilling eitber deep or
shallow wells in any kind of soil or rock. Mounted on (trong, sinuple and durable. Any mechanic can operate them easily. send for catalog.
WILUAMS BROS., \qquad Y.

A Home=Made 100=Mile Wireless Telegraph Set

MUNN \& CO., 361 broadway, New 4 ort

 Lantern, Dickinson \& Tyler
Lantern, c. K Schade Last. J. H. Jones. Latue. portable turning. w. W. versciovie.
Laundry drier. wet wasb. w. W. Anderson
 eather shrinking machine. A. Faiff Letter clamp, W. L. King.....
Lifting jack, w.
Lifting jack,
H.
H.
Oliver....
Jobnson

 Locomotive, articuiated..................iaiain.
Locomotive engives and tenders, draft ge
for westlate

 Macaroni, drying, K. Gammel....
Machine nart biving bearing slee
Uebhing

WE WILL MAKE בay modela manuiacure of any metal novelty. Automatic ma.
 CONCRETE HOUSES Cost Lees Than Wood Hint hasem tane wood pury

THE PETTYJOHN CO., 615 N. Sixth Street, Terre Haute, Ind.

"The Tool-Monger"

Name given to a booklet of 288 pages which we shall be pleased to mail on request. Valuable to
all users of Mechanics Tools.

Montgomery \& Co., 105-107 Fulton Street, New York City Incorporate
Laws the most liberal. Expense the least. Hold meetings. transact
business anywhere. Blanks, By-Laws and forms for making stock business anywhere. Blanks. By-Laws and forms for making stock
full-paid for cash. property or services. free. President Stoddard,
FORMER SECRETARY OF ARIZNA.
resident agent for STODDARD INCORPORATING COMPANY, Box 8000 HOENIX, ARIZONA

Gas, Gasoline and

 Oil Engines
Including Producer Gas Plants

 By GARDNER D. HISCOX, M.E.Sixteenth Edition, Revised, Enlarged and Reset
Size $6^{1 / 2} \times{ }^{1 / 2}$ inches.
442 pages.
351 Size $6^{1 / 2} \times 911 / 2$ inches.
illustrations. Price $\$ 2.50$ pages. 351
 HIS new revised and enlarged edition is a com-
plete, comprehensive and thoroughly up.to-
date work, treating f date. work, treating fully on the construction,
installation, operation and maintenance of gas, gasoline, kerosene and crude petrolelim engines.
It treats on the theory of It treats on the theory of gas, gasoline and oni
engines as designed and manuactured in the
United States, for stationary. marine and vehicle Electricignition by induction coil and jump. are fully explained and illustrated. Valuable inormation on the testing for economy and power
nd the erection of power plants is also included and the erection of power plants is also included.
The special information on producer and suction gases cannot fail to prove of value to all interested
in the generation of producer gas and its utilization in gas engines. A list of the leading gas and oil
engine manufacturers in the United States and Canada. with their addresses, is included, as well as
a list of United States patents issued on gas, gaso-
line and oil engines and their adjuncts from 1875 ine and oil engines and their adjuncts from
odate.

MUNN \& COMPANY, Publishers

A World Beater at the Price

T, E 1909 automobile market offers no other thirty" that compares with the Lambert " 30 " at the price. If you want a good car at about this price, it makes no difference how many other cars you may look at. If you see and drive the easy-riding, powerful on steep hills and muddy roads, speedy on good roads, graceful, well madewe will get your order.
Each of our six Lambert models, from the snappy $\$ 800$ runabout up to the big roomy 7-
passenger Lambert at $\$ 2000$, is a car of full value -the choice of people who "find out" before The the buy.
Write for fully illustrated descriptive catalog. BUCKEYE MANUFACTURING CO. 1814 COLUMBUS AVE., ANDERSON, IND.

ROTARY PUMPS AND ENGINES papers giving a bistarical resume of the rotary pum
and engine from 1588 and 11 ustrated with clear draw ings showing the construction of various forms o

 A simple, compact motor of strong,
rigid construction,
comprising the igid construction, comprising the
latetst desiable features in gas en-
anneering. $21 / 2$ to 15 . 145 Housatonic Ave., Bridgeport, Conn.
Free

[^0]Mail bag catcher, J. M. Carver
Mail bag delivering and receiving apparatus. Mail box fastening device, o H. Smith
Manure carrier, Schemmel \& Besler... Manure speader, Weber \& Brown.....
Match receptacle, W. W. T. McDonali..
Match safe G. E. .

 Metal locker, R. W. Je.ereris
 Metal working machine, D. M. Watioins
 Meter.
Silking
machine, J. J. Nielsen
Milkivg machine, J. Nielsen
Milking maching
Miler

L. M. Hartwick

Music desk banger, piano, T. H. Lunde....
Music shets apparatus for perforating mas
ter
ter, H. M. Salyer
Musical instrument. duplex tracker bar fo

 Nut locking washer. A. C. L'g
ol gate, Smith \& M M.Greor
Ore separator, F. M. Mott
Oren, coke, J. Armstrong \ldots
Oy
Oyster carrier, R. C. Bender

 Paper feed mecbanism, Conger \& Pe
Paper filing device, P . H. Yawmat
Pa Paper filing device, P. H. Yawma
Paper rack, D. E. Price
 Pelorus, Elliott \& Ferber......
Pencil holer, c. T. Carsson.
Pencil, lead, J. v. H. Nott.
Perforating apparatus, H. M. Nai.3
Phonograph attacment, H. E. Woods
Whoter

notographic holder and exhibito
pern
iano agraffe, L. Avisus, reissue.

Phes, making, G. A. Be
Plilow, C. Tarud
Pipe clamp. J. H. wiest

 Pistol, automatic, W. W. Whiting.
Pitman connection, c.
Citane Plane, bench, W. H. J. Vander To.....
Planter, S. R. Hammitt
 ing, L. L. Burtan.......
 Plow fender, corn, E. F. K
Plow, gang, A. Mecha $\begin{aligned} & \text {. } \\ & \text { Plow, motor, A. E. Cook. }\end{aligned}$.

 ower transmission mechanism, Seddon
Donglas
Printing and developing photographs on Printing and developing photorap
ver chorid paper. H. . Mallal Printing
Printing
device,
apparatus.
G. W. WM Merrill
 Printing press, fat bed. H. F. Bechmain...
Printing hop counter check books, etc., ma
chine for, F. Waite Propelner for, foat, $\dot{\text { F. Water }}$
Protractor or
unley, band, o...................

Rack. See Display rack.
Rack and car, combination, J. S. Winter
Rail hond terminals, mold for casting, w.
 Rail tie and fastener. T. Jobnson
Railway crossing gate. P . Hamer
Rall
railway electric signaling syste
Holiday

Railway tie and rail fastening, W, metallic, M1. M. Riley. Railway tie, metal. W. H. Wood. Railw the

Cornish Range finder, depression, D.................. Nagy, 918,190

Range, gas. A. C. Arthur
Razor. safetr. 0. A. Clark

Recording instrument. W. H. B
Rela, polarized. P. Ribe . Pat.
Resilient wheel. G. M. Eaton.
Rice huller. D. J. Hayes
Rivet, Farnell \& Barron
Riveter, portable hand, P. s. Moe
Road bed, G. W. R. Cubertson.
Road constrict.

Rubber stam.....ipi-inking. I
Runing machine. TT. Munzert
Sack holder

Sash fastener. W. C. Robinson
 Sai

917,922 | 918.136 |
| :--- |
| 918.385 |
| 9818 |

are the ripest fruit of Remington experience, the highest achievement of Remington skill and the perfect evidence of Remington leadership.

Some of the New Features:
New Single Dog Escapement New Column Selector (Model 10) New Built-in Decimal Tabulator (Model 11)
New Two-Color Dial New Back-Space Key New Variable Line Spacing Lock New Shift Lock New Paper Feed

Remington Typewriter Company

Roberts' Motors Are Trouble Proof

 explosions" or "back fre," and tested in the BEST TESTING ROOM in the
WRITE FOR OUR CATALOGUE and Book of Test ROBERTS MOTOR CO., 1411 Columbus Ave., Sandusky, Ohio, U. S. A.

Engineering
 News
 The Leading Engineering Paper of the World. For Civil, Mechanical, Mining and Electrical Engineers

 If you cannot locate desired engineering equipment write our "Readers Want" department. the engineering news publishing co.214 Broadway, New York

READY MAY 1st

The Design and Construction of Induction Coils. By A. rrederick coluns

We take pleasure in announcing that our new book on
"Induction Coils," by A. Frederick Collins, is now
'Induction Coils," by A. Frederick Collins, is now
nearly ready, and will be published about May 1st

THIS work gives in minute details full practical directions for making eişht different sizes of coils, varying from a small one giving a $1 / 2$-inch spark to a large one giving 12 -inch sparks. The dimensions of each and every part down to the smallest screw are given and the descriptions are written in language easily comprehended.

Much of the matter in this book has never before been published, as, for instance, the vacuum, drying and impregnating processes, the makins of adjustable mica condensers, the construction of interlockins reversing switches, the set of complete wiring diagrams, the cost and purchase of materials, etc. It also contains a large number of valuable tables, many of which have never before been published.

It is the most complete and authoritative work on the subject, and contains 295 pages and 155 illustrations from original drawings made specially for this book. The price is $\$ 3.00$ postpaid.

Send us your order at once and a copy of the book will be mailed to you just as soon as published.
MUNN \& COMPANY, Publishers, 361 Broadway, New York

For over 12 ycars the name＂Strelinger＂has stood as the best in

 STRELINGER MARINE ENGINE CO－．
56 Congress East，Detroit，Mich．

CRESCENT

$\begin{array}{ll}\text { Band Saws } & \text { SWing Saws } \\ \text { Saw Tables } \\ \text { Disk Grinders }\end{array}$ | Jointers |
| :--- |
| $\begin{array}{l}\text { Planers } \\ \text { Shapers } \\ \text { Borers }\end{array} \quad \begin{array}{c}\text { Planer and Matcher } \\ \text { Band Saw Blades }\end{array}$ | Band saw Blades The Crescent Machine Co．

230 Maln Street Leetonia，obio，U．S．A．

Minininit For Pump ENGINE
 GILSON MFG．CO． 308 Parie Sit．Port Wauhiggtoon，Wia．

SPARK COILS

Their Construction Simply Explained 160 Scientific American Supplement coil and condenser． 1514 tells you how to make a coilfor gas－
engine ignition． Scientilic American Supplement
1522 explains fully the construction of a ji．gmp－spark coil and condenser for gas－engine ignition．
Scientific American Supplement
Sidestion spark coil． $108^{\circ} 7$ gives a full account of supplement an alternating current coil giving a 5 －inch sparki Scientific American Supplement
1527 describes a 4－inch spark coil and con－ denser．
1402 givives data American Supplement the construction of coils of a defloite length of spark．
above－mentioned set of seven papers
will be supplied for 70 cents Any single copy will be mailed for 10 cts ． MUNN Q COMPANY，Publishers

 Spring．See Vehicle spring．
Sring，coil，J．B．Knudsen
Sring fill

Starcbing macbine，W．W．Sitraszer
Station indicator，J．G．Harris ．．．

 Sweat band，E．M．Johnson．
SWingletree clip，S．Regers
Switch，G．W．Harl
Switcb．L．H．Moulthrop．．．．
Switch，Gaglio．

Tie tamper，F．J．Gilroy \ldots.
Time recorder，workman，
Time relay for selective signaling，H．H．

 Transformer system，K．C．Randail
Transmitting apparatus．Hif Shoema
Trolley guad，G．W ．Sandiford
Truck，bagaage，Allen \＆Reed

 Tubes，apparatus for producing corrugat
Pogany \＆Lahman
Tumbler washer，J．S．Nash
Tuneling
 Tying machine，mantle，S．Coun．．．．．．．．i8．011
Type casting machine，J．S．Thompson．．．
 TYpewriting c．Machine，W．J．Barron．
Typewriting macbine，B．C．Stickney
Typewriting machine，R．E．Martin Typewriting macbine，B．E．Martin．．
Typewriting machine，品．W．Waner
Typewriting machine，
 Valve，F．T．Reid．．Ren
Vave，D．T．Williams

Valve cover Ming Bianciard
Valve，float，J．S．Brenan．．．
Valve，float，G．J．Grifinn alve for hot water heating systems，
Tbomas one griple，c．H．Hughes

CALORIS is as indis－ pensable as ice or fuel and saves its cost many times in a year．
There are so many dif－ ferent，distinct，convincing and self－evident facts－so many economical，practica－ CALORIS－that it requires CALORIS－that it requires a little hooklet to t
all．Send for it．
All dealers will even taally sell CALORIS be－ cause of merit．If your dealer offers a substi－ tate，order direct－we
will prepay delivery to your home on receipt of price．

CALORISMEGCO New York office 503 5世 Ave

	＋

THE MOTORCYCLE

has＂arrived．＂It is perfectly practicable cycle and will carry a sinsle passenser
The Greyhound is as sood as the best in material，workmanship
and reliability，and is absolutely the simplest
and most comfortable motorcycle in the world． and most comfortable motorcy cle in the world． Correspond with us about any motorcycle
matter that interests you，either as rider or
dealer dealer．Catalosue free THE AUTO－BI CO．， 1450 Niagara St．，Buffalo，N．Y．

＂POROX＂
 Storage Bateries

 The best for ignition and lightNo
Noss of
current．
 145 West 49th Street，New Yor

${ }^{5} 3.50$ A Backus

The Man Who Pays For the Motor
Showld get Good Material
asd Workmanship．
Cushman Maine
Cusrman Manip．
Mave ground cylinders，piston
hat

 engines from 2 to $15 \mathrm{H} . \mathrm{P}$ ． CUSHMAN MOTOR CO．

METAL POLISHES．－FORMULAS FOR Putz Pomades，Pastes．Liquids，Powdersand soaps，for
 Water Motor
For Polishing，Grinding and Power BACKUS WATER MOTOR CO．，Newark，N．J

空 \％ 0

BE TIME－WISE－

How to Build a 5 H．P． Gas Engine at Home In Scientific American Supplements
I64i and 1642，E．F．Lake describes simphy and thoroughly how a five horse powe gas engine can be built at home．Com
plete working drawings are published plete working drawings are published，
with exact dimensionsof each part．Pric by mailfor the two Supplements，zocents．
Order from your

$\begin{array}{c}\text { Order from your } \\ \text { newsdealer or from }\end{array}$	$\begin{array}{c}\text { MUNN \＆COMPANY } \\ \text { Publishers } \\ 361 \text { Broadway，New York }\end{array}$

Classified Advertisements Advertising in this column is 75 cents a line. No less
than four nor more than ten lines accepted. Count
seven words to the line. All orders must be accomseven words to the line. All orders must be accom-
panied by a remittance. Further information sent on READ THIS COLUMN CAREFCLLY.-You will fnd inquiries for certain classea of articles numbered in
consecutive order. If you manufacture these goods write us at once and we will send you the name and is no charge for this service. In every case it is is no coarge for chive she number of the inquiry.
necessary to gition
Where manufacturers do not respond promptly the Where manufacturers do aot respond promptly the
inquiry may be repeated. MUNN \& CO.

BUSINESS OPPORTUNITIES

 WANTED.-Quick selling specialties for afents. Wehave one of the lare the selling organizations in the
world but, need new salable goods. Manufacturers world but, need new, salable goods. Manufacturers
having such an article, but tacking organization to push
it properiy. should write us immediately. Established over 25 years. Our salesmen cover U. S., Canadd and
several Europan countrie Exclusive ris only con-
sidered. The scarborough Company, Indianapolis, Ind. buttons. A RESPONSIBLE PFiOEESSIONAL MAN and labaratory worker invites attention to a naw athicilal
material, analogous to celluloid. zylonite and the like.
and which would seem to be adapted to variety of in dustrial uses, Sampo les, both fished and un finished,
will be submitted tointereated persons, Cor respondence will be submitter toi nitereated persons, Cor resp
is invited. Address Box 233, Higganum, Conn. Inquiry
glass for pictures.
88
MY BOOK, Building a Business," tells how mail
order agency busines can be started with capitan
ofor
ond
 Inquiry NO. N885. - For manufacturers of the
a ball
MIt PARTNER WANTED.-Will give any State in union,
one-haif profts of others, for placing Car Brake No. one-hat profts of others, for placing Car Brake No.
soctajo the macket. For further informationad dress
J. G. Kerr, Ionia. Kans. Inquiry No. NXB9.-Wanted to buy a machine
which breaks and divides apricot stones. CAPITAL OR MANUFACTURER DESIRED.- Pat-
ented window frame, ete., for movabes shade roller. Inquiry No. 8894.- For manufacturers of an auto-
matic camera for making photographs on pin trays, etc. HALLAS.-Oev Tyiauw Bi in Bandoeng, Java, desires
to become agent for manufrs. of auto cars ana wagons.

PATENTS FOR SALE.

 sible and expansible, of freat merit, cheap and durable.
Schrag \& Murray, 22 Macdonell Ave., Toronto, Canada.

rat rap springs and wire parts, singie mathit
outit.
FOR SALE -Patent No. 904.273 . Bullet mould. Practical and efrective. its interchangeability, will make it a
peassure to cast bulues. for every pistol or rifleman.
lell reasonable. A.J. Mundt, Ontonagun, Mich.

lnquiry No. 890

FOR SALE.- Patent No. 68,450. "Den Dron." Na-
turess remedy used both internally as well as exter nally. For further particulars address E. Wiyick; 1030 Tremont Street, hoxbury, Mass.

lnquiry No. 8909.-For a machine to paint shade or blind rollers.

 wears our. Manufacturers and players pet the tip
that wins the game. AB for sample. For turther
particulars and fall informaion address William M. Dunn, Bux 214, Atlanta, Ind.
lnquiry No. 8918. - For manufacturers of " W ydt's
Electro-Catalytic Sparking Plug." FOR SALF.-French, Austrian. Belpian and Spanish and public in America. For further particulars address paper
FOR SALE.-Patent T70,716. Most scientifc onger
cramp preventer, easy writer and inger-rest penholder. Hrite witt it all day and your hand never tires. Ad Inquiry No. 89\%2. - Wanted the address of Worth-
ington Boiler Co. THEE PATENT RIGHTS in U. S. of "Locke's Wire ufacturers to make on royalt
Duncombe, Hobart, Tasmanaia.
WANTED at once offers from reliable firms in
Canadato manufature in Canad Locke's Patent Wire Strainer, No. 125759, to preser Me patent rights in tha
country. Duncombe. Hobart, Tasmania. Inquiry No. 89928.-For the manufacturers of a
steam roary excavator as dezeribed in the Scientific
American of December 12, 1108, page

HELP WANTED.
LOCAL REPREEENTATIVE WANTED.-Splendic after learning our business thoroughly by maii. Former
experience unnecessary. Aul we require is honesty

 Co-operative resi Estate Company, Pres., The Nationa
Building, Washington, D. C.

LISTS OF MANUFACTURERS. COMPLEETE LISTS of manufacturers in all lines sup.
 Inquiry No. 8936.-Wanted machinery used to
spin or wrap paper pencils in the manner that paper
pencils are made.

A LIST OF 1,500 mining and consulting engineers on
ards.
rice $\$ 15.00$ very aranable list for
Adress Munu \& Co Price :15.00. Addre
Box $\pi 3$, New York.

MISCELLANEOUS

 \because HOW TO SUCCEED AS AN INVENTOR", 100page book writuen by an expert, sent for two stamp
Address Goodwin B. Smith, No. 00 Stafford Building
Phild Address Goodwin B. Smith, No. $\mathbf{v o o}$ Stafford Building
Philadelphia, Pa. Inquiry Na. 8941.-For
Inquiry No. D943.-Wanted a partable hand ma-
chinge for beaking stores for installing road surface
To be worked by to or threu men
Inquiry
facturers of the Kiug or lever collar button. Inquiry No. N948. - Fior manufact urers of gearing,
noisqeess or otherwise.

1. p. mitabe for for speed of 3,000 to 4,000 . Inquir 8950 - - or manufacturers of m fnquiry No. 89J0.- For manufacturers of ma
chinery for the prodection of Coquito, Palm, Babosa
and Mame sed or nuts. lnquiry
chinery for making milk bottle sanitary tiber caps. forquiry No. 8932.-Yor irms making apparatus Inquiry No. 8953.-For manufacturers of water
turbines. facturing collar button. $\mathbf{8 9 5 4}$. For machinery used in manu-

Inquiry No. 8956. - For makers of wood distilling
machinery, also makers of philosophical instrument machinery, also makers
Inquiry No. S958. - Wanted manufacturers of Inquiry No. 8960.- For the address of the Wind
sorMf. imitation pearls. $\mathbf{\text { land. }}$-For the manufacturers of Inquiry No. 8962.-For the manufacture of the
different parts of vacuum systems sucn as electric
motor and pumps
Inquiry No. 8963.-Wanted a machine for wrap-
ping coin. Inquiry No. 8964. - For address of parties making
imitation horse halr. Inquiry No. 8965.-Wanted the address of the Iaquiry No. d966. Wanted the address of the
Cohendet Motor C. Inquiry No. 896. -Wanted to buy cheap grade of Inquiry No. d968.- Wanted to buy a machine for
crushing and grinding tobaco stems to a powder. Inquiry No. S969.-Wanted
accordion dress plaiting (steam).
Inquiry No. 8970.- For manufacturers of equip-
ment for denatured alcohol. Inquiry Nu. 89\%1.-For manutacturers of a metal
placket fastener for,
for the mens skirts or a metal fastener por the front of men's trousers.
Inquiry No. 89y2.- Wanted to buy complete outfit
for making meat hooks.

 Inquiry
buiders of
moving stair cases.

\section*{| \mathbf{V} |
| :--- |
| \mathbf{V} |
 }

Wagon body, Melrose \& Overshi
Wagon brake, J. H. Huehn
Wagon, composite road R Jons
Wagon, hand

Wat
Wat
Wat
Wat
Wat
Wat

Weighing machine...... \mathfrak{W}.............
 Window opening and ciosing
matic., L. . Kemp $\cdots \cdots$
Wire stretcher, G. A. Linn
Wool washing machine

DESIGNS.
Cabinet, sewing, H. R. Miller.
Card, menu, M. Altman

Paper, box, c. H. Bowma
aper, box, \mathbf{M}.

POWER REQQUISITES is a dependable e starter.
The simple, powerfol

international harvester co. of america 15 Harvester Bldg., Chicago, U. S. A.
Send for our free Boat Book
Do not think of buying a launch until you
${ }^{\text {see our }}$ Four Launch
Over a hundred ideas of successful business men and accountants, proved out by many progressive and accountants, proved out by many
firms, are contained in our new book,
Though these systems have been evolved by users of
BUROBUGMS Adding and
you will find they will save time and expense in

What
Collier's

Controls

 and What Collier's OffersAdvertisers

IN no other magazine during 1909 will be found the Drawings of Charles Dana Gibson, Maxfield Parrish, and Frederic Remington, the Sherlock Holmes Stories of Conan Doyle, the Poems of Rudyard Kipling, the Commentary on Outdoor Life of Caspar Whitney. The work of these masters in widely separated fields will be read and enjoyed exclusively in the halfmillion families to which Collier's goes every week.

The story told in your advertisement goes to this same half-million familiesfamilies where good things in literature, art, and MERCHANDISE are appreciated to the point of possessing.

E. C. PATTERSON

Manager Advertising Department

Dontlet your patent lie idle. We'll make

Gateremperex
 E. V. BAILLARD CO.. 24 frankiort Street. New York.

RUBBERE $\begin{gathered}\text { Expert Manfacturers } \\ \text { Fine } J \text { jobbing } \\ \text { work }\end{gathered}$
Parker, STEARNS \& Co.. 228.229 South Street, New York
 DIJ MODSLS SPJCIAL
WORK TOOLS MACHINSRY
NATIONAL STAMPIGG AND ELECTRIC WORKS

New York Model and Experimental Works 442 East 166th Street \quad New York, N. Y.

MODELS WEEXPERIMENTAL WORK
MOVELTIES $\&$ PATENTED ARTICLES

Print Your Own

ies, Models, Experimental W irk; : Sbeet MetalStamp Dies. Mod
inger
forti Cond.

LEARN HOW TO INVENT

Our scientif HOW TO INVENT
Scientific School of flor frention, Prookl
LEARN WATCHMAKING
 t Locis watcimagivg echeol

SENSITIVE LABORATORY BALANCE By N. Monroe Hopkins. This " built-up, laborator alance will weigh up to one pound and will turn with
quarter of potage tamp. The balave can be made

m Broom 73,309 ,

 Co.

 Bater
Liniments, \ldots....... 1 iail
Liniments for

 Powder. trooth. C. E. Tuttly
Raizors and henis. E. IInnoid
Remedy for certain diseises,

Thread. sewing. Cipham Bros. © co............
Thresbing machiners. w. Butterworth
 Toilet preparation, oshorice, Bauer \& cheese
man

LABELS.
Ceres Flour," for flour, Boonville Milling "Crawf fri," for peache., J . H. Teats. Sois.
"Ellerbes. Dandufuge," for hair tonic,
Cllerbe

 Bunttle, Stomper
Three
Bor
 sorghum Farell ci Co. ©...............
"Te Hermit," for cigars, c.

PRINTS.

A printed copy of the specifcation and drawins
of any patent in the foregoing list, or ans patent in print issued since 1863 winl be fornished fom
this office for 10 cents, provided the name and number of the patents, desired and the date be
ziven. Adress Munn \& Co., 361 Broadway, New
Yort.
Canadian patents may now be obtained by the in-
ventors for any of the inventions named in the

\section*{MARK TWAIN'S Complete Works

titles of the

titles of the

 25 volumes The Innocents Abroad The Innocents Abroad A. Tramp Abroad A Tramp Abroad ${ }^{\text {(Vol. II.) }}$ (Vol I.)!Following the Equator Roughing It

Roughing It

Life on the Mississippi The Gilded Age The Gilded Age The Adventures of Iom Sawyer

titles of the
25 volumes Huckleberry Finn Pudd'nbead Wilson The Prince and the Pauper
A Connecticut Yankee in King Arthur's Court Joan of Arc Joan of Arc Sketches New and Old Tom Sawyer Abroad, American Claimant, Etc. Literary Essays
The Man that Corrupted Hadkeyburg
The $\mathbf{\$ 5 0 , 0 0 0}$ Bequest Christian Science

WHEN you realize that all Mark Twain's books are new books, you see the great advantage of owning them-of always having new books. They never age, because humor and kindliness and Harpor \mathcal{A} Brothers truth never grow old. The newest, most interesting

Please send, absolutely books you can buy today.
HARPER Ω BROTHERS
Franklin Sq., Now York
Addres.

$00(0) 000020000000200200000000100$

New Pocket Edition-Gillette Safety Razor

HERE is news indeed-for the two million men who shave themselves every morning with the Gillette Safety Razor.

Our first announcement of the lates Gillette achievement-the New Pocket Edition-the Gillette Safety Razor in such compact form that it can be carried like a card case in the waistcoat pocket, or slipped into the side of a travelling bag

Same size blade as before, same principle; but neater, more workmanlike, the most perfect shaving implement in the world-as compact and as beautifully finished as a piece of jewelry -and the blades are fine.

If you are a Gillette user call on some progressive dealer at once and examine this new razor.

If you have never used the Gillette now is the time to get acquainted.

You can shave vourself in from two to five minutes with the Gillette-a clean, satisfying shave. No stropping, no honing.

The pocket-case is of gold, silver or gun metal. Plain polished or richly engraved in floral and Empire designs. Inside the pocketcase are handle and btade box-triple silver-plated or $14-\mathrm{K}$. goldplated. Prices $\$ 5$ to $\$ 7.50$, on sale everywhere.
 $17 \begin{gathered}\text { Lobordon } \\ \text { Hoficace }\end{gathered}$
$\mathrm{E}_{\mathrm{F}} \mathrm{C}$. 507 Kimball Builidiaga, Botoron Mont Mortad
Factories: Boston, Montreal. London, Berlin, Paris

You should know Gillette Shaving Brusha new brush of Gillette quality-bristles gripped in hard rubber: and Gillette Shaving Stick-a shaving soap worthy of the Gillette Safety Razor.

THE BRISTOL CO., Waterbary, Conn.

TUFKTN
 TAPES AND RULES

For sale everymbere. Send for
Catalog No. 16 .
LUFKIN RULEECO.

\$2250
 Car Sells for $\$ 2250$
and Represents $\$ 2250$ of Automobile Value
of Automobite Value
IF youare willing to be doine, any machinewilldo 0 .
And that is just as true of an autonnobileas F you are willing to be done, any machinewilldo.
is of any that is just astrue of an autonnobileasit
an is of any machinery you use in your business.
-Sometimes in the manufacturing business. it -Sometimes in the manuracturing business. it
seens wise. for reasons of expediency, to buy
cheaply. But there is too much demanded from cheaply. But there is too much demanded from
an autonnobile to expect a cheaply bought car to give satisfaction expen temporarily.
-As is the case with other car to
giner -As is the case with other machinery, when
you are eready to part with it, you will find your you are readyobile nothing but a p ile of junds and
chear antor pocketbook suffers by a many times multi-
your your pocketbook suffers by a many
plied percentage of depreciation.
-You should exercise the samie common sense
and business judgutnt in buy ing an automobile and business judgment in buying an automobile
that you would use in any business investment. -Don't be misled by the extravagant claims
made for very low-priced cars-nor the claims made for very low-piced cars-nor the claims
made for a very high-priced car.

- The features of the GIIDEare revolutionary -The features of the GILIDEare revolutionary
and distinctive when the price is considered.
They are built in.madean integral partof the -None of them are found in very of the car.
cars. But few of them are found in very highcars. But few of them are found in very high-
priced cars. But Read and See-Then Ride and Know

 - A dooble set of brakes-distinct from the axle-in-
tennal epanding and external contracting-will hold
the car on and ternal expanding and external contracting-will hold
the car on any rade.
-36×4 tires all around-Wheel base-
 be a Glide if it didn't have them alll.
Burle. Its appearance is no more graceful carmade.

THE BARTHOLONEW COMPANY
Standard Manufacturers A M CA. 603 Glide St., Peoria. III.

Can You Tell a Nut From a Bolt? IF SO $\begin{gathered}\text { S350 BUYS THIS GRADE RUNABOUT } \\ \text { HIG }\end{gathered}$

This "Plan" will appeal to you. Send for Book " s " C. H. METZ, Waltham, Mass.

NEW
CATALOG
We have iust issuec our
9th Catalos and the 9th Catalos and the
pocket size is now ready This distribution. contains 272 pases and shows many tools not included in the earlier editions.
Just say that you would like one

GOODELL-PRATT COMPANY
Rider Agents Wamted A in each toom to ride and exibit smple

 Gersh fiaition ciearinf sime

The Ball Transmission

[^0]: We have just issued a new edition of our Catalogue of Scientific and
 Technical Books, which contains 144 pages, and a copy will be mailed free to any address on application.

