series of small pipes into the current of water larly if at some point the current be sent through a single pipe of quite small diameter, so that the current will have a considerable
velocity. By curving the ends or nozzles of the velocity. By curving the ends or nozzles of the
small air pipes so that they will lie in the direcsmall air pipes so that they will lie in the direc-
tion of flow of the current, air would be drawn tion of flow of the current, air would be drawn
in, and would of course mingle with the water flowing through the tank. We make this as a lowing through the
suggestion simply.
(12042) H. A. E. asks: Will you please tell me the meaning of gage in wire
and sheet metal, as 14 gage, 22 gage, etc.? and sheet metal, as 14 gage, 22 gage, e
Aliso the meaning of 10 ounces, 14 ounces, Also the meaning of 10 ounces, 14 ounces,
ounces, etc., in regard to sheet copper? ounces, etc., in regard to sheet copper?
There is in this country no uniform or stand ard gage, the same numbers representing dif can or Brown \& Sharpe (B. \& S.), the Roebling or Washburn \& Moen, the Birmingham
(B.W.G.), and the British Imperial Standard. (B.W.G.), and the British Imperial Standard.
In 1893 a United States standard gage for In 1893 a United States standard gage for
iron and steel was established by act of Coniron and steel was established by act of Con-
gress, based on the fact that a cubic foot of gress, based on the fact that a cubic foot of
iron weighs 480 pounds, a sheet 1 foot square and an inch thick weighing 40 pounds, or 640 unces, so that a sheet ounce should be $1 / 640$ of an inch thick the distinguishing numbers representing a cer tain number of ounces in weight per square foot and the same number of 640ths of an
inch in thickness. Unfortunately, however, inch in thickness. Unfortunately, however,
there is only an arbitrary relation between the gage numbers and the thicknesses; thus, No and is $40 / 640$ thick, which happens to be $1 / 16$, but No. 5 gage weighs 140 ounces to the square foot and is $140 / 640$ or $7 / 32$ inch thick, which has no relation to 5 , and No. 31 gage, elation to 31. This well-intended measure only added to the existing confusion, although it differs but little from previously existing gages, as shown by the following figures, the thickness of a sheet or wire corresponding to
the same number by the different gages being the same number by the differ
shown in decimals of an inch.

Gage. B.W.G.		B. \& S	Roebling. 0.283	$\begin{aligned} & \text { Brit- } \\ & \text { ishh } \end{aligned}$	U.S.Stan
1	0.3	0.289		0.3	
3	0.259	0.229	0.244	0.252	0.25
9	0.148	0.114	0.148	0.144	0.156
20	0.035	0.031	0.035	0.036	0.03

A joint committee of the American Society of
Mechanical Engineers and the Railway Master Mechanics' Association recommends, emedy to the existing confusion, the adoption of a decimal gage in which " 0.25 gage"
mean nothing but a thickness of $25 / 1,00$ $1 / 4$ of an inch, and " 0.06 gage" nothing but already been adopted by many manufacturers.
(12043) J. S. asks: is it possible for the temperature to be twice, or any number of times, as warm or cold as any specified degree
of temperature? Can this be measured or computed? For instance, how cold is twice as cold as 0 deg. F.? A. In terms of degrees of the Fahrenheit or any other scale, reckoning from the zero point, the question has no answer and of any thermometer are not to be compared by multiplication or division, excepting those of
the absolute scale. This is reckoned from the the absolute scale. This is reckoned from the
absol ute zero, which is 459 deg. below the Fahrenheit zero. Half a
-229.5 deg. absolute F
(12044) A. T. G. A. writes: In your issue of October 3rd, 1908, T. B., No. 10867, asks why the days and nights are not equal on
the days the sun crosses the celestial equator. I have for many years been impressed with the to the many inquiries. It has been the most interesting column of the paper to me. In this one particular case, however, may I suggest crepancy? In some almanacs the time of sunise and sunset is computed for the instant the frst glimpse (or the last) of the sun's disk
would be seen on the true horizon. Allowance would be seen on the true horizon. Allowance
is made for the semi-diameter of the sun and for the refraction of the atmosphere. This earlier in the morning and to be seen a few minutes longer in the evening, making the day
(sometimes) 8 or 9 minutes longer than it would otherwise be. When this happens during the time of lengthening days (as in March) it would cause the equal days and nights to come earlier, and to come later in September. The taken into account by all almanac computers, some giving the moment when the center of
the sun would be on the horizon if there were no atmosphere. In such almanacs the equal spring and autumnal equinox, but only theo retically so. The equation of time would have the effect only of transferring the time of both might be, and so would have no effect upon the length of the time of daylight. There would,
of course, be a slight effect due to the change of course, be a slight effect due to the change
in the equation of time between sunrise and in the equation of time between sunrise and
sunset, but that would scarcety amount to as much as one minute. Pardon my "butting in" in this matter. My appreciation of the uniform causes me to feel you will understand the spirit in which this correction is sent. A. We appre
correction. Our readers will find this matte
fully discussed in Todd's New Astronomy, unde the topic "Sunrise and Sunset." We send the
book for $\$ 1.50$ postpaid. An almanac should give the moment when the last ray of the sun
is seen on the horizon as the time of sunset and the first ray as the time of sunrise. What
and all almanacs do give we are not able to say.
(12045) S. B. asks: Will you kindly inform me through the columns of tha Scien tific american what the corrosive and ele trical resistance of aluminium is, as compared
to brass, copper, and tin? A. The specific elec trical resistance of the metals you name is a follows : Aluminium 2.98, copper 1.59, tin 13.1 parts tin, is 6.3 . If you wish to have the dat more exactly, we would refer you to Foster's "Electrical Engineer's Pocket Book," pages 134 orrosive We send the book for $\$ \mathbf{l}$. If besistanc to the action of acids, etc., we would say that aluminium is acted upon more slowly than any
of the others by most chemicals, and tin would of the others by most chemicals, and tin would
be placed next $\dagger \uparrow$ aluminium, while copper would probably be acted upon more than brass cals. No feve reason by most corrosive chem cals. No figures can be given for any general
statement of this sort. Figures would differ or each chemical tested.
(12046) Dr. V. D. B. asks: Will you kindly let me know who was the first engineer
that introduced structural steel in the con that introduced structural steel in the con
struction of buildings? A. We should say that struction of buildings? A. We should say that
it would be most difficult, if possible, to answer your question positively. If you refer must be comparatively modern, but the tran sition from iron to steel in buildings must hav been as gradual as it is vaguely defined in
manufacture of the metal. There are many iron bridges in Europe more than a centur old, one of the oldest being that over the Severn, built in 1776. Possibly you do not us the term "buildings" in a sense to includ
bridges, but iron could hardly have been used for such a purpose long before its introduction in roof trusses for large spans. That use was ways, the earliest termini in Europe being so imbedded in or in conjunction with masonr would date back a century or more. An article
in one of our early Supplements, May 12th, in one of our early SUPPLEMENTS, May
1877, abstracted from a paper read before one of the engineering societles, refers to the in bedaing of iron in masonry as "too old to be
patented," even then, which means that it mirst patented," even then, which m
be more than a century old.
(12047) L. E. B. says: There seems to be a common belief among barbers that a is, the razor will not keep in condition with the care usually given it. After it is laid away to rest it seems to become all right again. If this is true, what are the causes, and is there
any remedy besides the rest cure? A. The only scientific explanation of the benefit "rest cure" for razors is that honing, and
more particularly constant stropping, tend to increase the smoothness of the edge; and limits, the best cutting edge of a razor looks steel and the edge the more reculer the "teeth," and in correct shaving the operation is that of sawing and not slicing off the hairs However carefully a razor may be dried befor putting it away, a certain amount of oxidation
takes place, and this in the case of a good takes place, and this in the case of a good
razor of homogeneous steel should tend to deepen the "teeth," just as a barrel hoop with an edge one-eighth of an inch thick may by ex posure to the weather become so sharpened as
to saw wood. This natural process could probably be imitated more rapially by the action of acids.
(12048) E. K. asks: Would you please inform me which wheels have the tenbile is to rise off the ground when an automo-
a curve at high speed? The principle is the same on trains, carriages, and trolley cars, is it not? A. When an automo-
bile or any other vehicle is turned sharply in one direction, its momentum tends to carry it straight on. If its speed is sufficient and its
front wheels are turned sufficiently sharply, it front wheels are turned sufficiently sharply,
will turn over on its right side in rounding
curve to the left, the left or inside wheels readily demonstrated by the fact that the tendency to go straight on or turn over in rail road trains is corrected by the super-elevation ity neater rail, throwing the center of gravdown and to the inner wheels, to keep the
(12049) R. A. asks: Will you be so number to furnish the information as to what the surrounding temperature to cause ice to melt? A. Ice begins to melt the moment the
temperature of the surrounding atmosphere rises above 32 deg. F. The reason ice melts so slowly is that it requires more heat units
(transferred from the surrounding atmosphere or somehow) to melt ice at 32 deg. to water at 32 deg. than it does to raise the same quan
tity of water through 1 deg. of temperature on account of what is called the tatent heat of fusion, but that does not uffert
perature at which fusion commences.
(12050) F. A. J. asks: In a Supple-
small alternating current motor, and I hav
found it very simple in all but one thin which is the inductors for the rotor core plate I do not quite understand if the No. 4 wir peeled of the entire insulation and laid in without insulation or with the insulation lef on the wire. Kindly let me know which is the the motor of SUPPLEMENT No. 1688 are not made of insulated wire. The holes into which inch in diameter, and the No. 4 wire is 0.20 nch in diameter. There is no room for insu lation unless, as the article says, thin paper is used and glued upon the wire. The wire is in a long article like this, you should do so by page and column and part of column, so as to e come to the part ing question. It is a mis take to suppose that the editor knows all th articles which have been in the paper in all the past. He must find the matter of the in quiry and consider it before he can answer the
inquiry. This often takes much time; and it correspondents can save us time they ought
surely to do so, since our work is entirely in their interest and is not directly a source o (12051) B.
(12051) B. B. M. asks: Will you please inform me what purpose the brushes That is, whether the brushes cause friction o at as inductors to carry the electricity. . The rods with brushes at their ends upon the Wimshurst machine act by induction. Suppose a charge upon one of the tinfoil sector plate, which hapen to be opposite the othe moment and in contact with one of the brushes. That sector and the brush in contact with it will become charged oppositely to the other end of the rod, its brush, and the secto in contact with it will become charged. simi action takes place upon each pair of opposite sectors of both plates as they rapidly pass each other. Thus the charge upon the sectors description of the action of the influence machines in Carhart's "University Physics," vol
(12052) R. H. T. asks: Can you tell me to what extent common water has ever been compressed? A. Pure water is compressed the temperature of its freezing point 0.0000503 of its volume. The amount of its compression at various temperatures is given in a table i_{n}
the book called "Smithsonian Physical Tables," page 83, to which we would refer you. It
can doubtless be found in the library of the
12053) M. M. asks
a London firm which offers Do you know ny one who will invent a method dispe ling fogs? A. We do not know any offer of a prize for a fog-dispelling device. The elec-
trical apparatus of Sir Oliver Lodge has been entirely successful in dispelling fog over smal has prevented its general adoption for larger reas hitherto. 2. I have an idea on which X-ray will show objects through opaque flesh, why cannot it be made powerful enough to show objects through opaque fog? A. The statethe flesh is not quite correct. X-rays cast the shadows of bones, etc., upon a substance which shadows are thus to glow with light. Thes shadows are thus made visible by the light
around them. The eyes are in the dark box of the fluoroscope, and do not see any object but the luminous fuorescent surface of the screen. People commonly say they see the
bones, but they do not see anything but a hadow of a bone cast upon the screen. Our eyes cannot see X-rays. They do not affect
the optice nerve, and do not excite the sense fision in any manner whatever
(12054) J. C. asks: I. If a disk of iron or steel be magnetized, how will the poles
be located? The disk is $1 / / 8$ of an inch thick and 4 inches in diameter. A. If a steel disk is magnetized, drawing it over a magnet, its
poles will be at the opposite ends of a diampoles will be at the opposite ends of a diam-
eter of the disk, near the edges of the disk. If the opposite poles of a pair of magnets, it may be magnetized so that one face of the disk 2. Also which will make the most powerful magnet-an iron or a steel disk? A. An iron qk cannot be made into a permanent magnet
any degree of strength. Only steel can be trongly magnetized permanently. 3. I suppose that in an ordinary compass the end of the
needle which points north is the south pole of the magnetic noedle of the compass. Is this names of the poles of magnets. In America it is well-nigh universal to call the end of a compass needle which points north, the north pole pole. This has nothing to do with the kind of magnetism which is resident in the poles; needle assume when it comes to rest. We also name the ends of all the magnets in the same
power located in the north direction which attracts one end of the needle of the compass. direction which attracts the other end? A. The earth acts as if it were a huge magnet,
with a pole in the northern hemisphere, and ne of opposite nature in the southern hemisform a general statement. It is impossible
fagnet pole. The having of form a single magnet pole. The having of positive pole involves the necessity of hav-
ing an equal negative pole. One pole cannot xist alone, so far as we are able to control the matter on the earth. The nature of the magnetism in the north magnetic pole of the earth is the opposite of that of a compass
needle which is directed toward the north on the earth. That is all it is necessary to say. we call the north pole of a bar magnet or compass needle plus, as we do call it, we
must say that the magnetism of the earth is negative at its north pole, and positive at its south magnetic pole.

NEW BOOKS, ETC.

Accurate Tool Work. By C. L. Goodrich and F. A. Stanley. New York:
Hill Publishing Company, 1908. Pp. 200; fully illustrated with photo200; ful
graphs.
This work produced in the excellent style of the Hill Publishing Company, is conformable with the Hill Kink Books except in the matter of size and arranging the same sort of useful reatise. The developments referred to in a receding review have increased the importance of the tool-maker's art and also caused the apolication to many industrial machine shops in rder to obtain interchangeability of parts the streme accuracy, delicacy of inish, and the rly used only in watchmaking Jigs, formlates, and refined test indicators are more and gore commonly used, and even the compound microscope with the adjustable cross-hairs aranged as a profile gage for screw threads. The uses of all of these are carefully described and the book, which is admirably illustrated with clear photographs and diagrams, should e as valuable to the practical man as it is ineresting to the amateur, the development of rapid that there is practically no literature on
 the subject. A chapter on the tool mathematical workman by the claim that it contains neither equation nor Greek letter, and the practical nature of the work is assured by the fact that the first-named of the authors is a department foreman for the Pratt \& Whitney Company.
Modern Power Gas Producer Practice
New York: D. Van Nostrand Com-
pany, 1908. Pp. 326; 136 illustrations. Price, $\$ 2.50$.
The author's aim has been to describe the practical commercial types of products and eloped while defining briefiy the ruling priniples of the gasification of fuel which govern ork of reference for the invact and complete ork of reference for the investigator and the perhaps, a little condensed at the expense of learness in places for the interested amateur. Many of the economies shown by the substitutions of producer gas for steam plants in industrial works are very remarkable. The fig-
ures given for corresponding economies in wight and space occupied per horse-power for marine engines are not so large as some recent laims have contended, but in fuel economy aiven quantity of fuel, the results more than arrant the growing attention to this method of hemical analysis of fuel and gas necessary for intelligent study of the operation of gas plants and of the direct determination of the heating value of fuels by calorimeter tests. A all the chapter is also added describing briefiy ories from which investigators can see in how
awing. By
H. E. Everett and W. H. Lawrence.
respondence, 1909. 8vo.; pp. 125; ill. Price, $\$ 1$.
This volume, like the rest of the series of the Correspondence School, is intended espe-
cially for self-instruction and home study, and it appears on the whole to fulfill this requirement although its corewor applies rather this work in particular. The opening parathis on in no way too technical, are probably a little beyond the depth of the class of students for which the correspondence school is primarily intended, but the instruction itself is perfectly clear and sound, and also has the merit of being original. The author of the first part has wisely adopted the freehand perspective exrcises of A. R. Cross, which could hardly be improved upon. The explanations of perspective
are as clear as possible to anyone who is are as clear as possible to anyone who is
familiar with descriptive geometry, but might perhaps have been expressed in terms a little simpler for the benefit of those who are not. To the careful student there is, however, in
this volume all the material necessary for the obtaining of a working knowledge of freehand and perspective drawing.
The Commercial Handbook of Canada. Heaton's Annual. Heaton's Agency, 1909. 12 mo . pp. 400 . Price, $\$ 1$.

Without an inch of wasted space and with no pretensions to being literary or entertajning, this volume makes its fifth annual appearance
more complete than ever, packed with useful more complete than ever, packed with useful
information from cover to cover and in the information from cover to cover and in the
most condensed form consistent with clearness. It gives particulars of all branches of the the Senate, House of Commons, and local legis latures, lists of banks and branches, insurance and trust companies, railway and steamship lines, patent and trade-mark regulations, regulations affecting foreign corporations, weights, measures, and money values and their corresponding values in the systems of all for-
eign countries. Nothing could be more complete than the information as to customs regulations and tariffs, and the proportionate imports and exports of all commodities, which
should be invaluable to export merchants in the should be invaluable to export merchants in the
United States having dealings with Canada. The handbook also gives full but concise information compiled from official reports on agriculture, commerce, finance, fisheries, forests, manufactures, and mines, and a gazetteer of all towns of over 1,500 population, their existing industries, shipping facilities, power rates, and inducements offered to or especial opportunities for new industries.
The Flute and Flute-Playina in Acous-
Aspects. By Theobald Boehm. Trans-
lated and annotated by Dayton C
Miller, D.Sc. Cleveland: Published
by Dayton C. Miller, 1908. Pp. 100. by Dayton C
Price, $\$ 1.50$.
While much has been written about the flute, the writings of Boehm, the inventor of the
modern fute, are not well known; this is espemodern fute, are not well known; this is espe-
cially true of his second book, which is here presented. There is need, therefore, of this work, in which is given as complete a description as is possible of his flutes and instructions
for handling them, and instructions upon the for handling them, and instructions upon the
art of playing the flute with a pure tone and a good style. Boehm urged that an English translation be made, for "then all that I have done in sixty years will be known." For the the permission and hearty approval of Theobald Boehm and his sisters, of Munich, grandchildren of the inventor of the flute.
Mars as the Abode of Life. By Percival
Lowell, New York: The Macmillan Price, $\$ 2.50$.
The Mars of Prof. Lowell is not as yet the Mars of most astronomers, partly because Prof he better part of his life to a careful study of the ruddy planet, and is therefore a par tisan specialist, and partly because his an tagonists are not willing to accept his in genious deductions. Prof. Lowell's argument is briefly this: Mars is a planet which is fast drying up. The only water there to be found is gathered at the poles in the form of ice and
snow. If the planet be inhabited, the chief concern of the inhabitants must necessarily be o conduct this polar water to those arid regions which could be made to. blossom if they were irrigated. Hence the "canals" which Prof. Schiaparelli originally discovered, and the number of which has grown astonishingly under Prof. Lowell's eye. Lowell's arguments in favor of the artificial origin of the canals are their remarkable straightness and the fact in well-defined spots. His theory intention falls with the artificiality of the canals, and it is just here where most astronomers differ with him. His reasoning is reasoning by analogy because he constantly compares the conditions on Mars with conditions on the earth. Whether or not Prof. Lowell's views be accepted, it imply than any other theory explain more our nany other theory the phenomena of much adverse planetary neighbor. In spite swervingly to his views. Prof. Lowell has a happy gift of presenting his discoveries in critic must admire the skill with which he has prepared this book. The astronomical reade will find some sixty pages of notes of a mathe matical nature, which will enlighten him on those phases of the subject that could not be discussed in the body of the work because of ts
Handbuch für Heer und Flotte. Enzy
klopädie der Kriegswissenschaften u
verwandter Gebiete. Unter Mitwir
kung von zahlreichen Offizieren
kung von zahlreichen Offizieren
Sanitätsoffizieren, Beamten, Gelehr
ten, Technikern herausgegeben von
Georg von Alten, Generalleutenant z
D. Berlin und. Leipzig: Deutsches

Verlagshaus Bong \& Co., 1909.
This is the first installment of what promises to be an excellent military and naval ency
clopedia. Many of the standard works on clopedia. Many of the standard works on
military science are antiquated, for which rea military science are antiquated, for which reason an attempt to publish a book abreast of
the times should meet with a favorable recep tion. From this first installment we judge that the complete work will discuss in alpha
betical order subjects relating to the training betical order subjects relating to the training
and use of troops according to modern tactics,
transportation and commissary facilities, mili-
tary hygiene, military medicine, naval affairs, co-operation of army and nave, and the latest advances in military science in general. An
admirable feature of the articles is the brief admirable feature of the articles is the brief bibliographies by which they are concluded, t- original render it possible for one know edge. Naturally, a very large portion of the Nork waturally, a very large portion of the
work devoted to the technical advances that have been made in recent years. The history of the art of war will be discussed in
illuminating articles. The "Hand Book" is to appear in nine volumes, of 900 pages all told, and is issued periodically.

Legal Notices

PATENTS
INVENTORS are invited to communicate with Munn \& Co., 361 Broadway, new York. ur to securing valid patent protection for their inventions, Trade-Marks and Copyrights registered. Design Patents and Foreign
Patents secured. We undertake all Patent, Trade-Mark and Office and the Courts. and we have special facill ties for handling Infringement and other suits in Federal and State jurisdictions.
A Free Opinion as to the probable patenta-
bllity of an invention will be readily given to any inventor fornishing us with a model or given to any inventor farnishing us with a model or sketch and
a brief description of the device in question. All communications are strictly confldential. Our Hand-Book on Patents will be sent free on 2
Every patent secured through ns receive
special notice in the Scientific American. special notice in the Scientific American.
Ours is the Oldest agency for securing patents

MUNN \& CO., 361 Broadway, New York Branch Office, 625 F St., Washington, D. C,

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending March 16, 1909,

AND EACH BEARINGTHAT DATE

	Desiccating apparatus, M Desk stand, W. W. Dean
	Dis
Air brake apparatus, H. F. Bickel \ldots...... 915	Door ha
	Door ${ }^{\text {Door }}$
Alloys of silicon, manufacture	Do
s of higher	
hor, т. Bloomer 915	
rail, B. B. Betts $\ldots \ldots \ldots \ldots \ldots \ldots$ 915,655	
mal attachment, ${ }^{\text {a }}$. . Blackilurn \ldots	
Anticreeper, D. ${ }^{\text {d. }}$ E. Shea	Drill steel water attachment,
	Dumping de
	Dye and ma
Bag tie, J. M. Stryker 915,503	Dye an
Bait casting hook, weedless ta Sheward ….................	${ }_{\text {Egg }}{ }^{\text {Eg }}$
Bait, glass, R. L. Frink …............. 915	El
Balancing machine, N. C. Bassett 915,718	
e tie ma	
	Ele
915	El
check, money order, etc., J. J. Clark. 915,	El
Barge, A. M. Bowman 915,	Electric signaling
rrei chamfering and	Electrothermostatic regul
	Elevator for bet
tery jars, vent	
	Engine
g, roller, L. P. Alford 915,649	Engine circuit contr
Bed, couch, F. S. Sprague 915	Engine
	Engine ignition s
der, temporary, J. J. Di	
Binders and compositions, produc	
Blade fastening, N. O. B	
Blast furnace,	Env
Blue flame burner, A. J. Blackford Board .	Envelop, articicial iy, F. ${ }^{\text {Explosives, }}$ manufacture
davit, Sanborn \& Hesse 91	
at or vessel,	
Boiler,	ic folding
	Fabric inspecting and markin
Bone and vegetable matter,	
Book holder	Fan, ${ }^{\text {Fir }}$ F. Dprea
Book, manifolding account, E. J. Carter.... 9	
Boring machine and c	fruits, mo
tle, non-refillable,	filter, c. m
ttle, non-refillable, A. A. Johnson...... 915	mechan
Box opener, E. S. Savage.................. 915	Felt brushing mach
Box shell manufacturing machine, G. Primbs 915	Fence, baby, R. H
Brake shoe, c. , ${ }^{\text {c }}$. Shallenberger.............. 915,	Fertilizer distribu
Brewing, distilling, etc., S. Armstrong..... 915	Fiber cleaning mac
Brick Eiln, L. H. Reppell ${ }^{\text {a }}$ 915,3	
idge construction, concrete, W.	Dowline \& Squires ...
Briquet machine, F. Burnes 91	Filing folder, J. Cha
	Film pack, daylight
${ }^{\text {Broom, }}$ Brush,	er, G. J. Ke
zet support, paint, m. Kıapsch 91	, ${ }^{\text {a }}$ d
Building bl	Filter, oil, F. B. Ande
ilding blocks or briciss and glass facings	Fire and for destroying vermin,
ldings, construction of, T. ${ }^{\text {a }}$ - Kisen...... 915	Fire lighter, G. He
硡	Fi
ts, transforming existing metal coated,	Flask
	${ }_{\text {Flor }}$
915	Floor surfacing and sandpapering ma
ers, double selr reporting, J. A. Petit. 915	stand or bookcase, E. D. M
flling machine, T. P. Curry........ 915	

