RECENTLY PATENTED INVENTIONS.

 Pertaining to Apparel.REMOVABLE RUBBER HEEL.-J. H. Dempsey, Cleveland, Ohio. The purpose of the inventor is to provide a construction for a thereof to the heel of a shoe, and a removal of the rubber heel where desired, the improved features adapting the heel when mounted for service, to resist strain and prevent its acci-
dental removal if struck against an obstacle.

Of Interest to Farmers.

Planter.-E. St. Aubin, Ganeer Township, IIl. The object of this invention is to planting three rows of corn, and arranged that each of the planting devices will be at all times in engagement with the ground regardless
thereof.

ADJUSTING DEVICE FOR GRAIN-DRILLS. -W. F. Jacobs, Okawville, Ill. The inventor's more particular object is to eriable the operator co adjust the depth of the drill teeth, and consequently regulate the depth within the soil
to which the seeds are carried. The invention to which the seeds are carried. The invention parts upon the same machine may all be thus saving a multiplicity of separate movements of various parts.
HARVESTER DEVICE.-W. L. Grifrin, Scottville, Mich. The invention relates more particularly to apparatus used in the harvest-
ing of potatoes and other similar produce. It provides a device by means of which potatoes can be freed from the earth adhering to them, and by means of which the cleaned tubers can be easily
COTTON-SEED SEPARATOR.-J. T. Cox, Monticello, Ga. This separator will effectively separate the large and select cotton seed from should not be planted, as healthy plants cannot be grown from such poor seed and when it is intermingled with good seed, the good
seed usually germinates first and impairs the development of the good plants.
CULTIVATOR. - A. Brigden, Albertville, Ala. The cultivator comprises a plurality of cultivator hoes having points adapted to till the ground, the forward parts of the hoes stantially parallel and transversely of the imstantially parallel and transversely of the im-
plement. With one of this general construction there is a tendency of the teeth of the tion there is a tendency of the teeth of the
hoes to become broken at their point of attachment to the rear cross bar, which this inven tion prevents.

Of General Interest.

SYRINGE.-H. F. Ong, Portland, Ore. One purpose of this invention is to provide a compact syringe, one that can be conveniently
carried upon the person and one in which the piston is provided with a chamber adapted to contain medical ingedien
in the liquid to be injected
COLUMN, GIRDER, AND THE LIKE.J. W. Muldoon, New York, N. Y. The invention relates to improvements in reinforced con-
crete construction particularly adapted to the crete construction particularly adapted to the
formation of columns, girders, walls, etc, and more particularly to that type described and claimed in Mr. Muldoon's previous patent. In this type he utilizes a metallic reinforcement of such a character that it serves the double purpose of holding the concrete in position
while it is hardening, and serves as a rein forcement for the concrete after it has hardened.

SAFETY WINDOW CHAIR OR PLAT-FORM.-J. P. Lundeuist, Portland, Ore. The purpose of this invention is to provide a con-
struction that will perfectly guard a person struction that will perfectly guard a person
who occupies the same after sitting or standing, from falling off while at work outside of a window that is at an elevation from the ground, even if such person is faint or giddy. protector.-J. H. Marvin, Mount Ver non, N. Y. The invention relates more par and tackle can be suspended from a cornice of a building or the like, for hoisting heavg objects, the attachment being securely in posi tion at the roof of the building, and being so
formed that no injury results to the cornice in formed th
aNimal-TRAP.-W. M. Kaiser, Berkeley Cal. In this rat trap there is a receptacle as steps leading to a bait room, in which are pivoted trap doors held yieldingly substantially in horizontal position, there being an opening between the doors, and near the opening, and secured to the under side of one of the doors
is a bait receptacle, holding water or acid. is a bait receptacle, holding water or acid
The trap is hooded which darkens the bait room and run-ways. At the bottom of the
receptable there is a slide by which dead rats receptable th.
SYRINGE--J. R. Harris, Raton, New Mex The syringe is for use in irrigating and and it consists in the construction and arrange and it consists in the construction and arrange separating the two members and means for
ntroducing a double current of water and draining away the discharges.

DOOR-CATCH.-H. P. Connor, Englewood N. J. In the present patent the invention r lates to door catches, the inventor's more pa this character in which the locking of the this character in which the locking of the exerted by the door or other swinging member in opening.
SAFETY-RAZOR.-B. KIAM, New Orleans, La. One purpose of the invention is to provide aorazor having a curved, fiexible, detached blade and a guard to co-act with, the blade and arranged to be clamped against the latter
to straighten the same and thereby provide to straighten the same and thereby provide
it with sufficient rigidity, and to permit its it with sufficient rigidity, and to per
adjustment with respect to the guard.
adJustable nut-lock.-F. Young, Den ver, Colo. The object here is to provide a de vice which can be easily arranged on a bolt t hold a nut in place, and which is so con-
structed that, should it be necessary, it can be constantly adjusted as the objects that are wear.
MERCHANDISE-HANGER.-S. S. Weaver, Shelby, Ohio. The invention is adapted especially for displaying carpets, floor rugs; and
such like articles, and is provided with nine arms, each arm supporting two fioor rugs, or
twenty-four samples of carpets. By tighten-twenty-four samples of carpets. By tighten-
ing or loosening the nut the outer edges of the supports may be raised or lowered for use in adjusting them wit
and to each other.

Heating and Lighting

COMBINED LIQUID SEPARATOR AND INDICATOR FOR GAS-CONDUITS.-R. L Dezendorf, New York, N. Y. The improve-
ments are in means for use in separating liquids from gases and indicating when the liquid has collected to such an extent as to prevent the free passage of the gas. The invention is particularly applicable for use in
the delivery conduits for illuminating gas and may be utilized at any desired point along the delivery conduit
COKE-OVEN.-J. F. Donaghy, Charleroi, Pa . The invention is an improvement in coke ovens and particularly in the means for clos-
ing the ends of the oven. After the oven is charged and the doors closed, the opening bethe crown of the oven arch may be filled in a usual, the doors supporting such filling when the latter is applied.

Household Utilities.

CURTAIN-POLE.-J. B. Phinney, Tampa Fla. In this case the invention is an im-
proved curtain pole which is made telescopic and provided with a screw clamp whereby it is adapted to be secured to window frames of
different widths, without the aid of screws, different widths, without the aid of screws,
nails, or brackets, which are usually employed nails, or brackets,
for the purpose.
CURTAIN-SUPPORTER. - L. NACHMANN, New York, N. Y. The invention refers to curbeing to provide means for readily securing the curtain upon rings which may permanently encircle the curtain pole; the invention also making provision for stiffening the upper surface of the curtain so as to
posure of the pole and rings.
AIR-MOISTENER. - C. G. McKendrick Monroe, \mathbf{N}. Y. The object of this invention is to provide a moistener for use in moistening the air in the room in which the steam radiato is located, the moistener being connected with the steam chamber of the radiator and ar-
ranged to allow steam to pass into the moistener and to be diffused by the same into the ener and to be diffused by the same
surrounding air, to moisten the same.
WATER-CLOSET-SEAT PROTECTOR.F. Thompson, East Orange, N. J. The inven tion refers to means for protecting a closet
seat from soiling or other contamination, and has for its object to provide an appliance for placing and holding taut a paper coverin upon the seat, and also facilitates the substi tution of a clean paper sheet for the one that

Machines and Mechanical Devices.
bundle wiring machine.-J. Pfeffer, Spokane, Wash. This machine is to be used in fastening together by wire, bundles of small
boards, such as are used in making boxes, and for fastening together shingles into bundles, and other similar uses. It may be used in
subjecting a bundle of materials to pressure in order to get the same into compact condibeing applied.
Cabinet.-J. W. Schader, Kalispell, Mont. The object of this invention is to provide a ing for retaining articles, and which has sheanfor rotating the shelving so that the articles can be successfully brought to register with
an opening through which they can be removed, an opening through which they can be remove
whereby a small opening only is necessary.
TRANSMISSION MECHANISM.-M. Bovchet, 22 Rue Alphonse de Neuville, Paris, France. The object of the invention is a
transmission movement, automatically modifying the speed of the driven member according to the force to be overcome, and serving at
the same time to limit the transmitting force

The device is applicable to automobiles, and
n an automobile provided with the device, thé peed of the vehicle will be inversely propor ioned to the resistance to be overcome
BALING-PRESS.-J. C. DAMRON, Roanoke, Va. The present invention provides a machine adapted to be operated by power, such
as horse-power or the like and to furnish ripping devices for automatically releasing the shifting and locking devices for the gear
mechanism when the plunger reaches the end mechanism when the plunger reaches the end
of its pressing stroke. It is an improvement BALING-MACHINE.-C. E. McLin and J. S chanan, Rome, Ga. Guides are disposed on top by operating mechanism, a core being dis osed in the ties, which are then doubled on themselves, transverse pins being secured to the upper terminals of some of the guides, between which the ties are disposed and by means of levers and links the guides disposed through the table top, are forced downwardly, pressing the ties between the pins and the
table. The guides are held yieldingly upward, and held down independently of the levers

Prime Movers and Their Accessories. STEERING DEVICE FOR TRACTION-EN gines.-A. Harrold, Lima, Ohio. Mr. Har ing devices for use on traction engines. When the plate is swung in one direction, the fric tion wheel on one side will engage the rim,
thus rotating the drum in one direction, while reverse movement of the plate will rotat the drum in the other direction. The shaft on which the wheels are mounted is provided
with a cranked portion to which are attached the piston rods of the engine in the usual the pisto
manner.

Rallways and Their Accessories.
TIE-BAR FOR RAILWAY-RAILS.--J. H Crowley, Duluth, Minn. This bar is prefer wise of the track with its face turned upward y and abutting underneath the base flange of the rails, and at each side of each rail it is provided with one or more fingers engaging iner the rail flanges. These fingers on the
inside of the rails prevent the rails from turn ing outwardly and the other pins insure tha DROP-DOOR STRUCTURE FOR CARS.F. W. Bradlety, McKees Rocks, Pa. The more particular object here is to provide a car
body with swinging doors, that under certain conditions, when closed, the doors are by their own weight and by the weight and thus prevented from opening, said doors being locked in this position to prevent their receding from each other in order to open,
and also being locked independently of their pressure against each other.

Pertaining to Recreation.

amusement-steps.-J. H. Cross, Philadelphia, Pa. The apparatus is in the nature tain the weight of a person, and others de tain the weight of a person, and others de
signed to sink under slight pressure. These two types of steps, which are termed firm steps and yielding steps, are arranged in sections, and so distributed in a stairway that the same cannot be traversed or climbed over without taking a circuitous route, which rout is adapted to be changed by the unlocking
locking of certain of the yielding steps. FISH-HOOK. -C. M. Willis, Austin, Texas The invention refers to a hook wherein dupli cate hooks are provided that are spaced apart by the pull of a ish on the hne. The imand positively insures the divergence of the strain.
AMUSEMENI APPARATUS.-B. J. SAGEbe defined as consisting of tracks, each track composed of a series of reverse curves regularly arranged about a common central axis, with the tracks intersecting at the points of change of curvature, and the sets of cars
simultaneously movable over the tracks in op simultaneously m
posite directions.

Pertaining to Vehicles

Sleigh-RUNNER.-W. E. Turner, Es canaba, Mich. The runners are in the natur I-beams, each having a knee applied thereto provided with opposed jaws, with the beam
of the sleigh provided with approximately semi-circular grooves near each end and at knees, which admit of a slight relative endwise movement of the runners and thus relieve th movement of the runners and thus reliev
connections of the bench of undue shock.

Dosigns.

DESIGN FOR A PLATE OR PLATTER. . Rouquart, New York, N. Y. This orna mental design shows a circular form of plate. The rim rises from the bottom of the plate lightly fiuted up to near the edge which latter ful design.
Notr.-Copies of any of these patents will please state by Munn \& Co. for ten cents eacb the invention. and date of this paper.

paper what meerschaum is ande in was ever sea foam in any form? A. Meerschaum is a hydrated silicate of magnesia which occurs in veins and nodules, principally in Asia Minor. It has nothing whatever to do with the sea as regards its formation, and Wes its name to an imaginary resemblance of some of the nodules in which it occurs to sea
foam. It is occasionally found fioating in the Black Sea, freed from its matrix, being the Black Sea, freed from its matrix, being
lighter than water, which may be a further rivation of its name.
(12026) J. H. asks: What is the consensus of authority and scientific opinion on as a means of protecting of lightning rods as a means of protecting buildings from
strokes of lightning? Do they afford real protection? Are they worth what they cost, preventing fire Doubtless you know how declare that lightning rods are worse than useless; they actually invite danger. Others contend that they are as necessary as fire insurance in every well-regulated establishment. A. We are of the opinion that lightning rods are a distinct advantage to a building in the pen country and in thinly built portions of a city; also upon tall spires and chimneys in
any part of a city. The method of protection to be employed has been many times discussed in our paper. You will find a note in Queries column of our issue, Vol. 99, No. on file. The Weather Bureau publications named therein will be a sufficient guide to you. Lightning rods not only greatly reduce dae damage to the building upon which they re used when struck by lightning, but actually ecrease the liability of disruptive discharges atmospheric electricity occurring at all When they are present in quantity. The town ric storms were so frequent there and the resulting damage so great that nearly every bilding in the town was protected by lightning rods. Now lightning in the common sense of the term is most rare there, the formerly
common electric storms being dissipated by rush discharges on the forest of lightning rush disc
onductors.
(12027) A. K. S. asks: Take (for illustration) one cubic foot, v, of hydrogen gas at
32 deg. F., t, under a pressure, p, of one at32 deg. F., t, under a pressure, p, of one at-
mosphere. It will weigh, w, approximately 0.0056 of a pound. Let P remain constant $V=0$, by contraction, for nothing has been eight, therefore w remains 0.0056 pound, but $F=0$, accordingly $W=0$. What is wrong, the assumption that $V=0$ at -273 deg. C., or that when $V=0, W=0$, or do the con-
ditions existing in the theoretical state of bsolute zero counteract one another? A. our difficulty with absolute zero is simply logical one. What you require is to state raction of a gas upon which law of conero depends is true of gases; it is not true quids or of solids. So ling as not true of iquids or of solids. So long as hydrogen is
gas it will contract in the ratio of $1 / 273$ of its volume for a loss of 1 deg. C., but action it is no longer a gas but a vapor and o longer obeys Boyle's law nor the law of ontraction. Neither will it do so after it quefies. The proper statement with which o start the discussion is, if conditions re-
mained the same, at -273 deg. C. the volume would be zero, and all heat would be gone. We do not see any contradiction in the matWhat is true of a gas is of the logic too far. of a liquid or a solid.
(12028) H. W. A. asks: 1. How many volts and amperes should a continuous current ynamo give to ignite a three-horse-power stationary gasoline engine? A. The current for
electrical ignition of gas engines varies from to 14 volts, and from 4 to 2 amperes. Perhaps one may go beyond these limits. You can get a good ignition dynamo from the Hol-er-Cabot Company, Boston, Mass., or from
he Dayton Electrical Company, Dayton, Ohio. . What difference, if any, is there between the construction of a contmuous-current motor nd dynamo, volts and amperes the same in each machine? A. There is no electrical dififferences as are to be seen are due. Such ature of the service to be perferme to the How is the gage of sheet iron arrived at? Has it any reference to the B. \& S. wire gage? . There is much confusion in the gaging of heet metal. It may be specified in thousandths of inch, and this is at present the best . The American or Brown \& Sharpe gage sometimes used, but it differs from the \mathbb{U}. S. standard gage which has been the legal stanstandard gage which has been t
dard for sheet metal since 1893 .
(12029) C. E. P. asks: Will you kindly = 11 feet $101 / 8$ inches. [As you do not give answer the following questions? 1. I have an
induction coil of the Collins type. The core is $11 / 2 \times 14$ inches. Primary consists of two
layers or sections of No. 12 D. C. C. wire. There are 200 turns. Secondary consists of
10 pounds No. $30 \mathrm{D} . \mathrm{C}$. C. wire. The coil is supposed to give 4 -inch spark. Independent
interrupter is used. Can I use battery energy interrupter is used. Can I use battery energy
to operate such a coil? Please state number to operate such a coil? Please state number
of cells, and the volts and amperes that are necessary. A. Try four or six good cells of need to vary the number as the cells become exhausted, or to vary the area of plates im-
mersed when the cells are fresh. For thi purpose the plunging form of bichromate bat tery is best. One is given in full detail in
our Supplement No. 792, price ten cents. Next to this probably would be the Edison primary battery, of which you will require
more cells; perhaps eight will answer. 2. I more cells; perhaps eight will answer. 2. If
water has a great resistance for electricity, why is it that a wet floor conducts better than a dry one? A. The water which is on a floor
is not water, but a solution of any substances is not water, but a solution of any substances
which may be on the floor also. Dirty water may be a fair conductor of electricity; pure distilled water is not to be classed with conductors. Any substance which can form ions
in water will increase the conductivity of the solution.
(12030) P. E. G. asks: A question has arisen, does an ox push or pull? Please give me youn opinion on this question, also several
reasons for same. A. The answer to your question depends. entirely upon the sense of the words "push" and "pull." The ox leans
against his yoke and thereby pulls forward against his yoke and thereby pulls forward
the plow or other load attached to it; a horse can pull in no other way, i. e., only by push-
ing with his shoulders against his collar or ing with his shoulders against his collar or
breast plate. A man in an approximately vertical position can pull no more than hi weight; in a tug-of-war he pulls no more
than he pushes against the ground with his than he pushes against the ground with his
feet. Standing above a weight he can lift a good deal more than his own weight, but still no more than he pushes against the ground
with his feet; action and reaction are equal and opposite, and there is practically no pull (120 a corresponding push.
(12031) J. A. C. asks: Kindly tell me whether or not helium has been liquefied. If
so, when and by whom? A. The liquefaction so, when and by whom? A. The liquefaction
of helium was described in the ScIentiric AMERICAN, vol. 99, page 59, and in the Sup-
PLEMENT, vol. 66, page 186. It was liquefied by Prof. Onnes, of Leyden, Holland. To ac complish the result, gaseous helium was ex-
panded from 200 to 40 atmospheres, having been previously reduced to about 15 deg . absolute. The temperature of the liquid was 4.5
deg. absolute. Its freezing point is below deg. absolute.
(12032) A. R. asks: Suppose boiler say 12 inches diameter by 48 inches long
be filled with water, filled absolutely full, so be filled with water, filled absolutely full, so
that there would not be even an air bubble, that there would not be even an air bubble
and then a screw plug put in the opening so that the water would be compressed (if such is possible), and under such condition there
would be no room for steam? The boiler is supposed to have stood a test of 300 pounds to
the inch. Now a fire is built under the boiler, the inch. Now a fire is built under the boiler
and the water reaches the boiling point (212 deg). Can it be made hotter, there being no
room for steam? What would be the result A. The force exerted by the expansion of water due to heat in a boiler under the con-
ditions you describe would be enormous, being the expanded liquid back to its original volume Water expands 0.00043 of its volume in being Water expands 0.00043 of its volume in being
heated from 212 deg. to 213 deg.; it is almost incompressible, being compressed only 0.0000036 The pressure would therefore be increased by nearly 117 pounds for every degree through which the temperature was raised, neglecting
expansion of the boiler.
(12033) Seattle asks: What is the longest board, one foot wide and sawed off
square at each end, that can be put on the fioor of a room 10 feet long and 8 feet wide? A. Your problem is one partly of geometry which can be drawn in a 10×8-foot room is
the diagonal, the length of which is the square root of the sum of the squares of the sides = nearly ($939 / 64$ inches). The ends of the board being cut off square, the length of the board will be shorter than the above by the
height of a small triangle at the two opposite height of a small triangle at the two opposite to the triangles into which the diagonal divides the room, two its hypotenuse being at right angles lines and its hypotenuse being at right angles
to theirs. Its hypotenuse is the end of the board, 12 inches long, and one side. One
angle and the proportions of the other sides angle and the proportions of the other sides other sides can be computed. So can the
length of a perpendicular dropped from its
right angle onto its hypotenuse, and this right angle onto its hypotenuse, and this
perpendicular is the amount by which the longest board which can be laid in the room is shorter at each end than the diagonal. The length of that perpendicular for your case is
nearly $5 \% / 4$ inches; so that the longest board 12 inches wide with square ends which can
be laid diagonally across a 10×8-foot room
is therefore 12 feet 9% inches - $11 / 2$ inches
your name,
(12034) N. T. W. asks: Do you publish Supplement giving instructions for rewinding the dynamo described in Supplement No.
00 , or rewinding the armature, so that it will develop a current of 110 or 115 volts? If so, I would like to secure it; and if not, I would ike to be advised concerning the practicability
of doing this. A. If you wish to alter or modify the dynamo of Supplement No. 600, ou had better get the Scientific American and take note of Queries 8250 and 8316 , in which you will find how others have made alterations which are improvements in the machine. The wooden sleeve on the shaft and the paper washers are a very decided disad-
vantage to the generating power of the mahine. They were in general use when the machine was designed, but have been abandoned long ago. The winding data for 110 volts with the core and field, as in the SUp PLEMENT No. 600, are as follows: Field of No.
23 , cotton-covered magnet wire, 3,640 turns, about 14 pounds; armature, No. 22 wire, 24 coils of 25 turns each. A field resistance of about 200 ohms will be required.
(12035) C. C. C. asks: Will you please decide this argument? Does the steam going into the cylinder of a locomotive engine when
is going forward drive the piston back? it is going forward drive the piston back?
claim it drives the engine ahead by forcing up against the cylinder. On a stationary engine the steam drives the piston forward and back,
ut not on a locomotive when it is going but not on a locomotive when it is going
ahead. I claim the motion of a piston on a ahead. I claim the motion of a piston on a ocomotive is only forward when the engine
moves forward, making the piston apparently tand still, then the piston shoots forwar locomotive cylinder acts equally upon the head and upon the piston, but the piston moves relatively to the engine, whereas the cylinder head does not. It is true that if the length of the stroke is less than the hemi-circumfer
ence of the driver (which it almost invariably is) the piston never moves backward relatively to the rails when the engine moves forward,
but it moves relatively to the engine. The common argument as to whether a locomotive piston moves backward or not is entirely a
question of whether the motion is relative question of whether the motion is relative
to the engine or to the rails, but your view
is not is not completely correct in either case. If sure of the steam against the cylinder head as you suggest, without motion of the piston
relatively to the rails, the engine would go forward by the length of one stroke of the iston if the throttie were opened at the be wheel was fastened down to the rail, which is wheel was fastened d
of course impossible.
(12036) A. E. H. asks: I am interested in electroplating flowers, etc., and have vering, using no wax. Now I want to permanently color these copper fiowers various hades. 1. Would dyes dissolved in clear shelper may be coated with any desired color of
lacquer and so given a luster and flnish. Al sorts of lacquers are described in the "Scien-
tific American Cyclopedia of Receipts," which tific American Cyclopedia of Receipts," which
we will send for $\$ 5 . \quad$ 2. How can I oxidize we will send for $\$ 5.2$. How can I oxidize
copper quickly? A. Copper and brass are oxidized by the same methods, since it is chiefly the copper in the brass which gives the color 0 the oxidized brass. A great many method ceipts." One formula is 2 ounces nitrate of iron and 2 ounces hyposulphite of soda in a produced, wash, dry, and burnish. 3. What col ors can I simply get on copper chemically? A. Anything from green to black may be pro-
duced upon copper by chemical action. 4. Can I oxidize clean copper in oxygen to get the deep copper red, or would some chemical solu rass, but not for copper. A You cannot oxidize copper by the direct action of oxygen n the form of a gas. Oxygen acts with
treme slowness upon copper in the air. How is the coloring done on the jewelers' hat pin roses? A. Articles of copper are colored by some one of the processes referred to above.
We doubt that any new or secret ways of We doubt that any new or secret ways of
doing this work are known. 6. Kindly suggest all the coloring processes you can. I hope this may interest your readers of Notes and which are already in print in our book, which we sell. It would cost more for us to
them copied than the book will cost you.
(12037) H. R.T. asks: 1. How much loss is there in compressing air to lift water from 80 feet, over raising it direct with a centrifugal pump of best designs? A. The losses erably with conditions, principally depth and is already a loss in pressure required. but as there is already a loss in converting steam or other
power into compressed air power, there should be a saving in applying the same power diectly to pumps. 2 . Is a centrifugal pump as economical as a plunger pump for raising
water from 40 to 80 feet in large quantities or irrigation purposes? A. The efficiency of that of plunger pumps, that is to say, direct-
acting steam plunger pumps, which we sup
pose you mean, especially where conditions facilitate condensation in the steam pipes leading to the pump. The only disadvantage of
centrifugal pumps is the difficulty of main centrifuga pumps is the dimculty of mainwhen the latter are vertical and of great
length. If properly set up and carefully a lift as you mention they should not present the above difficulties. 3 . In raising water with any pump, how large should the delivery pip be to deliver 2,000 gallons per minute say 50 feet vertical? A. The larger the discharge pipe, the easier the work for the pump; for not be less than 8 inches, and had better 4. How fast should water
moved through pipes to do it in the, right most economical way? A. The speed of the
water through the pipe for a discharged varies inversely as the square of the diameter, i. e., 2,000 gallons per minute to traving through a 12 -inch pipe would have through four times as fast to be discharged feet per minute friction increases rapidly. Would it be economical to put in an electric
plant and transmit the power about ten miles plant and transmit the power about ten miles
and pump wells against a single plant for each well. These wells would be run abou install a steam plant on the railroad and generate a current and use a motor of about 12 to 20 horse-power at each well. There would
be at least a hundred wells I could pump and each well waters one hundred acres of land, and the owners would pay $\$ 5$ per acre per year
for this work. A. For such a system of well pumps as you describe, a central station disbe much cheaper than an individual would plant for each well in first cost of installation, and you would effect a much greater
economy in cost of operation by the former means. Large boilers are always more effiand the economy in fuel alone of generating
the total power required at one central stathe total power required at one central sta-
tion as compared with its generation at one hundred individual stations would go far toCentrifugal pumps, efficient for the depths you mention, are admirably suited for being driven electrically, and by means of high-voltage al ternating current (locally transformed by simple automatic apparatus to a safe low voltage if desired) you can distribute any
quantity of power over a radius of 10 miles with almost no loss and comparatively low first cost of conductors. 6. Please give me your opinion on this and the raising water
problem and oblige me very much. A. One problem and oblige me very much. A. One
hundred wells watering 100 acres each at $\$ 5$ an acre- $\$ 50,000$ - - sounds like
munerative investment. If you have not made a pulsometer test of the capacity of the various wells before guaranteeing a del
of 2,000 gallons per minute from them.
(12038) P. R. F. asks: To decide an argument, will you kindly answer the following question through the columns of your
paper? Will a perfectly solid or solidified chunk of lead, of its own weight, reach bottom of the ocean at the deepest depth? A. It is
very commonly supposed that at great depths in the sea iron ships and similar weights sink o farther because of the pressure, and no at great depths is enormous, but water is great depths is enormous, but water is so almost not at all. At a depth of one mile the density of water is increased less than one heavy as water of that density. If a well could be sunk to the center of the earth and
filled with water, filled with water, your piece of lead would go
to the bottom with no appreciable diminution to the bottom with no appreciable diminution water by acceleration due to gravity. Further than that, there is no conceivable depth gravity material) would not sink in water because it is as compressible as the water or more so, and it
ately increased.
(12039) J. M. M. asks: Tests made in dry. A simple hygrometer was used, possibly not very accurate, but near enough for the purpose. The instrument used shows the varia-
tions in moisture by the coiling and uncoiling of a spiral formed of some substance easily affected by dampness. A pointer attached
moves on a scale, which is intended to indimoves on a scale, which is intended to indi-
cate the percentage of moisture in the air, and 8 vided as follows. 100 full satura tion, 80 moist, 65 normal, 40 dry, 20 very
dry, 0 absolutely dry. In the trials referred to, on a mild day with considerable moisture about 20 or 25 . On a cold dry day, when ir fre was needed, it would go to 0 . The point in cold clear weather, is by passing through - the furnace raised in temperature from 40 to 60 degrees, or more, with no op-
portunity of taking up the water it would naturally contain at the higher temperature. By many persons such extreme dryness, com-
bined with high temperature, is thought to detrimental to health, causing colds, throat troubles, etc. One noticeable effect is that a
much higher temperature is needed to produce
a comfortable feeling of warmth, than would otherwise be required. With plenty of mois-
ture a room will feel comfortable fully ten degrees lower than with very dry air. The small water tanks sometimes attached to fur naces seem to have slight if any effect, not
sufficient moisture being taken up by the sufficient moisture being taken up by the
moving current of air to produce any noticeable difference on the hygrometer. One point in favor of the furnace, however, is that it
brings into the house a constant supply of resh air. A. We published a valuable series of articles on this subject in Supplement Nos. $325,6,7,8,9$. a shorter article devoted
more especially to hot-air heating in No. 213 , and another on healthful temperature and umidity in No. 1337, with reference to schools, where of course the conditions for growing
children are most important. There is nothing unwholesome in dry air, per se; you hit ir feeling warmer with more moisture. The nwholesome part of dry air is that it is not sensibly hot, and that consequently people they are conscious of, and are more liable to chill by change of temperature on going out, The air will always have a natural and there ar duct to the furnace is properly propor ioned and kept wide open. The trouble is that many persons think they are not getting nough heat unless the air coming from the "register" (a senseless term, but commonly ased) is sensibly hot, and close up the fresh aturally thereby restricting the inflow of to the rooms is unduly dried. The air wil not rise in the pipes at all unless it is warme than that of the rooms, which is to say suff strong wind blowing directly into the fresh-ai ntake) and the simple practical way to pro vide sufficient moisture for health is to have an amply large fresh-air intake open to the south or southwest side of the house and to pinion as to the best system, as circumstance alter cases and the systems are many and
(12040) A. S. L. writes: During the snowstorm of last Sunday, the thermometer ranging from 10 deg. to 12 deg. F. above, th snow changed to hail, and rain also fell at thi temperature. Notwithstanding that this ap that can be attested to by witnesses that rain fell with the temperature from 10 deg. to 12 deg. F. A. The falling of rain when the the temperature of the cloud above the earth from which the rain came was higher than the freezing point. Hail is frozen rain drops and not crystallized frozen moisture, as are snow fakes. Hail probably started from the cloud as rain and froze in the air. When it is
warmer at a higher point in the air, it is called an inversion of temperature. For examples se Davis's
$\$ 2.50$.
(12041) B. M. asks: A certain probem is now confronting me, and in a last effort I appeal to you for information. I am about the "Aquarium." On either side of the lobby will be two large glass tanks containing fish of all descriptions. I would like to devote one to deep-sea or salt-water fish, and there is th obstacle of the salt water; and the information would like to obtain is, will they live in artificially-made salt water? If they will, what should be the proportion of sea salt to water have been told that at st. Louis during the sea fish in tanks. sea fish in tanks. How did they get the salt
water? A. The experiment of using artificial sea water has been tried in the government aquarium controlled by the Fish Commission in Washington, D. C., but without success. The best Turk Island salt was employed, and grea care was taken that the artificial water should have the same density or degree of saltness a sea water itself. The fish did not thrive, and some valuable ones were lost. It is not known what element sea water possesses that artar sal water lat that some necessary element is not crystallized mission has used natural sea water, which was brought from the ocean in tanks. A circulating pump is used, by which the water is continu ally being taken out of, and forced back into, the tank, passing on the way through a filter the water pure and clear mir is required to b forced in continually. This is done in two ways. One method is to allow a small stream say two to four or five feet and in entering the tank the falling stream, and, in entering siderable air. This, however, is not generally enough, and artificial aeration is produced by forcing a current of air into the bottom of the tanks through a finely apertured nozzle. For this purpose, a plug of some form of porous being inserted in the mouth of the air pipe where it enters the tank. You will of course
be able to obtain natural sea wate with difficulty, to obtain natural sea water without pump you will easily be able to prese an air Since, however, a considerable expense is in we suggest that it is possible an efficient sub stitute might be provided by introducing a
series of small pipes into the current of water that is circulated through the tanks, particuthrough a single pipe of quite small diameter, so that the current will have a considerable
velocity. By curving the ends or nozzles of the velocity. By curving the ends or nozzles of the small air pipes so that they will lie in the direc-
tion of flow of the current, air would be drawn tion of flow of the current, air would be drawn
in, and would of course mingle with the water in, and would of course mingle with the water
flowing through the tank. We make this as a suggestion simply.
(12042) H. A. E. asks: Will you please tell me the meaning of gage in wire
and sheet metal, as 14 gage, 22 gage, etc. Also the meaning of 10 ounces, 14 ounces, 20
ounces, etc., in regard to sheet copper? A. ounces, etc., in regard to sheet copper ?
There is in this country no uniform or stand ard gage, the same numbers representing difages, of which the commonest are the Ameri can or Brown \& Sharpe (B. \& S.), the Roeb-
ling or Washburn \& Moen, the Birmingham ling or Washburn $\&$ Moen, the Birmingham
(B.W.G.), and the British Imperial Standard. (B.W.G.), and the British Imperial Standard.
In 1893 a United States standard gage for In 1893 a United States standard gage congress, based on the fact that a cubic foot of and an inch thick weighing 40 pounds, or 640 ne ounce that be $1 / 640$ of an inch thick the distinguishing numbers representing a certain number of ounces in weight per square foot and the same number of 640ths of an
inch in thickness. Unfortunately, however, there is only an arbitrary relation between the gage numbers and the thicknesses; thus, No 16 gage sheet weighs 40 ounces to the foot but No. 5 gage weighs 140 ounces to the square foot and is $140 / 640$ or $7 / 32$ inch thick, which has no relation to 5 , and No. 31 gage, 7 ounces to the foot and $7 / 640$ thick, has no
relation to 31 . This well-intended measure only added to the existing confusion, although it differs but little from previously existing gages, as shown by the following figures, the thickness of a sheet or wire corresponding to
the same number by the different gages being the same number by the differ
shown in decimals of an inch.

Gage. B.w.G.		B. \& S.	$\begin{gathered} \text { Roeb } \\ \text { Ring. } \end{gathered}$	$\begin{aligned} & \text { Brit- } \\ & \text { ish. } \end{aligned}$	U. S. Stan-
1	0.3	0.289	0.283	0.3	0.28
3	0.259	0.229	0.244	0.252	. 25
9	0.148	0.114	0.148	0.144	0.156
0	0.035	0.03	0	. 0	0.037

A joint committee of the American Society of
Mechanical Engineers and the Railway Master Mechanics' Association recommends, remedy to the existing confusion, the adoption of a decimal gage in which " 0.25 gage"
mean nothing but a thickness of $25 / 1,00$ $1 / 4$ of an inch, and " 0.06 gage" nothing but 6lready been adopted by many manufacturers
(12043) J. S. asks: is it possible for the temperature to be twice, or any number of times, as warm or cold as any specified degree
of temperature? Can this be measured or computed? For instance, how cold is twice as cold as 0 deg. F.? A. In terms of degrees of the Fahrenheit or any other scale, reckoning from the zero point, the question has no answer and no meaning whatever. Degrees of the scale
of any thermometer are not to be compared by of any thermometer are not to be compared
multiplication or division, excepting those the absolute scale. This is reckoned from the absolute zero, which is 459 deg. below the
Fahrenheit zero. Half as hot as 0 deg. is then ahrenheit zero. Half as
-229.5 deg. absolute F
(12044) A. T. G. A. writes: In your issue of October 3rd, 1908, T. B., No. 10867 asks why the days and nights are not equal on
the days the sun crosses the celestial equator. the days the sun crosses the celestial equator.
I have for many years been impressed with the to the many inquiries. It has been the most interesting column of the paper to me. In this one particular case, however, may I suggest
you do not include the main reason for the dis crepancy? In some almanacs the time of sun-
ise and sunset is computed for the instant the rise and sunset is computed for the instant the
first glimpse (or the last) of the sun's disk frst glimpse (or the last) of the sun's disk
would be seen on the true horizon. Allowance is made for the semi-diameter of the sun and
for the refraction of the atmosphere. This would cause the sun to appear a few minutes earlier in the morning and to be seen a few (sometimes) 8 or 9 minutes longer the it would otherwise be. When this happens during the time of lengthening days (as in March) it would cause the equal days and nights to come earlier, and to come later in September. The
matter of semi-diameter and refraction is not taken into account by all almanac computers, the sun would be on the horizon if there were no atmosphere. In such almanacs the equal spring and autumnal equinox, but only theo retically so. The equation of time would have the effect only of transferring the time of both
might be, and so would have no effect upon the
length of the time of daylight. There would, of course, be a slight effect due to the change
in the equation of time between sunrise and in the equation of time between sunrise and
sunset, but that would scarcery amount to as sunset, but that would scarcery amount to as
much as one minute. Pardon my "butting in" n this matter. My appreciation of the uniform causes me to feel you will understand the spirit in which this correction is sent. A. We appre-
currection. Our readers wiscussed in Todd's New Astronomy, unde the topic "Sunrise and Sunset." We send the give the moment when the last ray of the sun is seen on the horizon as the time of sunset, and the first ray as the time of sunrise. What all almanacs do give we are not able to say.
$\begin{array}{ll}\text { (12045) } & \text { S. B. asks: Will you kindly }\end{array}$ inform me through the columns of the Scien tific american what the corrosive and ele trical resistance of aluminium is, as compared
to brass, copper, and tin? A. The specific elec to brass, copper, and tin? A. The specific elec
trical resistance of the metals you name is as follows: Aluminium 2.98, copper 1.59, tin 13.1 and brass, containing 66 parts copper and 3 more exactly, we would refer you to Foster's "Electrical Engineer's Pocket Book," pages 134 to 140 . We send the book for $\$ 5$. If by "corrosive resistance" you mean the resistance
to the action of acids, etc., we would say that luminium is acted upon more slowly than an the others by most chemicals, and tin would be placed next th aluminium, while copper
would probably be acted upon more than brass for the above reason by most corrosive chem cals. No figures can be given for any general
statement of this sort. Figures would differ (12046) Dr. V. D. B. asks: Will you kindly let me know who was the first engineer struction of buildings? A. We should say that it would be most dificult, if possible, to an swer your question positively. If you refer must be comparatively modern, but the tran sition from iron to steel in buildings must hav been as gradual as it is vaguely defined in
manufacture of the metal. There are man iron bridges in Europe more than a centur old, one of the oldest being that over the Severn, built in 1776. Possibly you do not use
the term "buildings" in a sense to include the term "buildings" in a sense to incluse
bridges, but iron could hardly have been used for such a purpose long before its introduction in roof trusses for large spans. That use was ways, the earliest termini in Europe being so
roofed, and we should say that the use of iron imbedded in or in conjunction with masonry would date back a century or more. An article
in one of our early Supplements, May 12th, in one of our early SUPPLEMENTS, May
1877, abstracted from a paper read before one of the engineering societies, refers to the imbedding of iron in masonry as "too old to be
patented," even then, which means that it mirst patented," even then, which m
be more than a century old.
(12047) L. E. B. says: There seems to be a common belief among barbers that a
razor after much usage becomes tired is, the razor will not keep in condition with the care usually given it. After it is laid away to rest it seems to become all right again. If this is true, what are the causes, and is there
any remedy besides the rest cure? A. The only scientific explanation of the benefit of "rest cure" for razors is that honing, and
more particularly constant stropping, tend to increase the smoothness of the edge; and whereas this is an advantage within certain limits, the best cutting edge of a razor looks
under a microscope like a saw, the better the steel and the edge the more regular the teeth," and in correct shaving the operation is that of sawing and not slicing off the hairs. putting it away, a certain amount of oxidation takes place, and this in the case of a good razor of homogeneous steel should tend to deepen the "teeth," just as a barrel hoop with
an edge one-eighth of an inch thick may by exan edge one-eighth of an inch thick may by ex-
posure to the weather become so sharpened as to saw wood. This natural process could probably
(12048) E. K. asks: Would you please inform me which wheels have the tendile is to rise off the ground when an automo-
bing curve at high speed? The principle is the same on trains, carriages, and trolley cars, is it not? A. When an automo-
bile or any other vehicle is turned sharply in one direction, its momentum tends to carry it straight on. If its speed is sufficient and its
front wheels are turned sufficiently sharply, it front wheels are turned sumfientily sharply,
will turn over on its right side in rounding
curve to the left, the left or inside wheels
therefore leaving the ground first. This is readily demonstrated by the fact that the tendency to go straight on or turn over in railroad trains is corrected by the super-elevation ity nearer to the inner wheels, to keep them 12049) R A asks. Will you be kind as to furnish the information as to what number of degrees Fahrenheit is required in the surrounding temperature to cause ice to
melt? A. Ice begins to melt the moment the melt? A. Ice begins to melt the moment the
temperature of the surrounding atmosphere rises above 32 deg. F. The reason ice melts
so slowly is that it requires more heat units transferred from the surrounding atmosphere 32 deg. than it does to raise the same quantity of water through 1 deg. of temperature, on account of what is called the latent heat
of fusion, but that does not affert the temperature at which fusion commences.
(12050) F. A. J. asks: In a Supple-
small alternating current motor, and I hav
found it very simple in all but one thing which is the inductors for the rotor core plate do not quite understand if the No. 4 wir
which you give for the inductors should peeled of the entire insulation and laid in without insulation or with the insulation lef on the wire. Kindly let me know which is th correct way. A. The inductors in the rotor of
the motor of Supplement No. 1688 are not oade of insulated wire. The holes into which inch in diameter, and the No. 4 wire is 0.20 inch in diameter. There is no room for insulation unless, as the article says, thin paper is used and glued upon the wire. The wire is n a long article like this, you should do so by page and column and part of column, so as t ve come to the part in question. It is a mis take to suppose that the editor knows all th the past. He must find the matter of the in quiry and consider it before he can answer th
inquiry. This often takes much time; and i correspondents can save us time they ought
surely to do so, since our work is entirely in their interest and is not directly a source o proft to the edito
(12051) B. B. M. asks: Will you please inform me what purpose the brushes That is, whether the brushes cause friction o act as inductors to carry the electricity. . The rods with brushes at their ends upon the Wimshurst machine act by induction. Supacts inductively upon the sector of the ot plate, which happens to be opposite it at th moment and in contact with one of th with it will become charged oppositely to th sector, which acts inductively upon it, and the other end of the rod, its brush, and the sector in contact with it will become charged. simi-
larly to the sector on the other plate. This action takes place upon each pair of opposit sectors of both plates as they rapidly pass each other. Thus the charge upon the sectors is rapidly buint up. You will find a good
description of the action of the influence ma chines in Carhart's "University Physics," vol
(12052) R. H. T. asks: Can you tell me to what extent common water has ever ben a pressure of 15 . Pure water is compressed the temperature of its freezing point 0.0000503 of its volume. The amount of its compression the book called "Smithsonian Physical Tables," page 83, to which we would refer you. It
can doubtless be found in the library of the
(12053)
a London firm which offers Do you know any one who will invent a method of dispel ling fogs? A. We do not know any offer of a
prize for a fog-dispelling device. The elecrical apparatus of Sir Oliver Lodge has been ntirely successful in dispelling fog over smal has prevented its general adoption for larger reas hitherto. 2. I have an idea on which X-ray will show objects through opaque flesh, why cannot it be made powerful enough to show objects through opaque fog? A. The state the flesh is drays show opaque objects through shadows of bones, etc., upon a substance which the rays also cause to glow with light. Thes hadows are thus made visible by the light
round them. The eyes are in the dark box of the fluoroscope, and do not see any object but the luminous fuorescent surface of screen. People commonly say they see th
bones, but they do not see anything but shadow of a bone cast upon the screen. Our
eyes cannot see X-rays. They do not affect the optice nerve, and do not excite the sense (12054) J. C. asks: I. If a disk of iron or steel be magnetized, how will the poles
be located? The disk is $1 / 8$ of an inch thick and 4 inches in diameter. A. If a steel disk is magnetized, drawing it over a magnet, its
poles will be at the opposite ends of a diampoles will be at the opposite ends of a diam
eter of the disk, near the edges of the disk. If the opposite poles of a pair of magnets, it shall be magnetized so the 2. Also which will make the most powerfu magnet-an iron or a steel disk? A. An iron f any degree of strength. Only steel can be trongly magnetized permanently. 3. I suppose chat in an ordinary compass the end of the
needle which points north is the south pole of the magnetic noedle of the compass. Is this correct? A. Do not confuse yourself about the is well of the poles of magnets. In America it pass needle which points north, the north pole
pall and the end which points south, the south pole. This has nothing to do with the kind magnetism which is resident in the poles;
it
simply tells the direction the ends of the name the ends when it comes to rest. We also name the ends of all the magnets in the same
power located in the north direction which atIsacts one end of the needle of the compass.
is there any such power located in the south direction which attracts the other end? A. The earth acts as if it were a huge magnet,
ith a pole in the northern hemisphere, and ne of opposite nature in the southern hemisform a general statement. It is impossible form a single magnet pole. The having of positive pole involves the necessity of hav-
ng an equal negative pole. One pole cannot xist alone so far as we are able to control the matter on the earth. The nature of the magnetism in the north magnetic pole of the arth is the opposite of that of a compass
eedle which is directed toward the north on the earth. That is all it is necessary to say. we call the north pole of a bar magnet or a compass needle plus, as we do call it, we
must say that the magnetism of the earth is must say that the magnetism of the earth is negative at its nort
south magnetic pole.

NEW BOOKS, ETC

Accurate Tool Work. By C. L. Goodrich and F. A. Stanley. New York:
Hill Publishing Company, 1908. Pp. 200; fully illustrated with photographs.
This work produced in the excellent style of e Hill Publishing Company, is conformable of size and arranging the except in the matter nformation more in the form of a continued treatise. The developments referred to in a preceding review have increased the importance of the tool-maker's art and also caused the ap-
plication to many industrial machine shops in rder to obtain interchangeability of parts the streme accuracy, delicacy of finish, and the rocesses for obtaining them which were formlates, and refined test indicators are more and more commonly used, and even the compound microscope with the adjustable cross-hairs arranged as a profile gage for screw threads. he uses of all of these are carefully described nd the book, which is admirably illustrated with clear photographs and diagrams, should e as valuable to the practical man as it is ineresting to the amateur, the development of郎 particular refinements having been so a the subject. A chapter on .trigonometry in mathematical workman by the claim that it contains neither equation nor Greek letter, and the practical nature of the work is assured by the fact that the first-named of the authors is a epartment foreman for the Pratt \& Whitney Company.
Modern Power Gas Producer Practice
and Application. By Horace Allen.
New York: D. Van Nostrand Com-
pany, 1908. Pp. 326; 136 illustra-
pany,
tions.
1908.
Price,
$\$ 2.50$.
The author's aim has been to describe the practical commercial types of products and eloped while defining briefiy the rulliag priniples of the gasification of fuel which govern lesign. The result is a compact and complete practical operator of gas producer plants, if, learness in places for the interested amateur. Many of the economies shown by the substitutions of producer gas for steam plants in industrial works are very remarkable. The fig-
ures given for corresponding economies in weight and space occupied per horse-power for marine engines are not so large as some recent laims have contended, but in fuel economy iven quantity of fuel, the results more than arrant the growing attention to this method of hemical analysis of fuel and gas necessary or intelligent study of the operation of gas plants and of the direct determination of the heating value of fuels by calorimeter tests. A useful chapter is also added describing briefiy all the patents issued on producer gas accesories from which investigators can see in how
reefand and Perspective Drawing. By
Chicago: American School of Cor respondence, 1909. 8vo.; pp. 125; ill. Price, $\$ 1$.
This volume, like the rest of the series of cially for self-instruction and home study, and it appears on the whole to fulfill this requiredent although its foreword applies rather this work in particular The rening pararaphs on drawing while bequtifully put and in no way too technical, are probably a little beyond the depth of the class of students for which the correspondence school is primarily intended, but the instruction itself is perfectly cear and sound, and also has the merit of being original. The author of the first part has wisely adopted the freehand perspective ex-
ercises of A. R. Cross, which could hardly be ercises of A. R. Cross, which could hardly be
improved upon. The explanations of perspective are as clear as possible to anyone who is perhaps have descriptive geometry, but might simpler for the benefit of those who are not. To the careful student there is, however, in

