

The present appearance of the dam and the partly constructed power house.

SCIENTIFIC AMERICAN

 ESTABLISHED 1845
MUNN \& CO.
 Editors and Proprietors

No. 361 Broadway, New York
Charles Allen munn, President,
s61 Broadway, New York.
Frederick Converse Beach, Sec'y and Treas.
361 Broad was. New York.
TEIRMS TO SUBSCRIBERS.
 the scientific american publications. Scientific American (estabished
Scientific American Suppiement (estal

The combined subscription rates and rates to foreign countries, includlng Canada. will be furnished upon application
Remit by postal or express money order, or $b y$

MUNN \& co... 361 Broadway, New York.

NEW YORK, SATURDAY, MARCH 13TH, 1909.

The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sharp, the articles
short, and the facts authentic, the contributions will receive special at short, and the facts authentic, the contributions will receive spe
tention. Accepted articles will be paid for at regular space rates.
a tribute to roosevelt's technical judgement.
Be he Czar, King, or President, there is no executive among the nations in whom catholic interest, broad information and versatile genius are such valuable qualities as in a President of the United States. Certainly it would be difficult to find another head of a great people, who is called into such close touch with so many widely different subjects, and afforded such an unrivaled opportunity to leave the imprint of his personality upon the national life-political, social, technical, and commercial-as the man who for the time being holds the unique position of our President.

Among Mr. Roosevelt's predecessors, there have been men who surpassed him-far surpassed himin their knowledge of certain special problems that
came up for legislation; but in the bewildering varicame up for legislation; but in the bewildering vari-
ety of subjects of which he possessed more than average knowledge, and in his ability to seize quickly the salient facts of problems with which his acquaintance was more limited, Mr. Roosevelt stands quite alone.
Himself robust, direct, and practical, he prefers the concrete to the abstract; and it was therefore natural that some of the best of his executive work should have been done in connection with questions of a tech-nical-constructive or engineering character. Although Mr. Roosevelt is not by training an engineer, there is little reason to doubt that, had his intelligence and energy been turned in this direction, he would easily have risen to the front rank. In no profession is a true sense of proportion-the abilit ${ }_{j}$ quickly to separate the essential from the non-essential-more valuable than in that of the engineer; and this quality our ex-President possessed in a remarkable degree and used to most excellent effect. For it is a fact and used to most excellent effect. For it is a fact that in all the great engineering problems that called
for executive pronouncement and action, almost invariably, as the records of his seven years' presidency show, Mr. Roosevelt récommended legislation which met with the approval of the great body of professional men throughout the country. In proof of this it is sufficient to mention his attitude to the navy, the Panama Canal, and the vast problem of the conservation of our national resources.
There are not wanting proofs, concrete and costly, of the evil of unintelligent and obstinate forcing of lay ideas upon the professional men who design the matériel of the United States navy. Mr. Roosevelt's administration has been singularly free from such errors. He was a close student of naval affairs, and errors. He was a close student of naval affairs, and
he understood the trend of naval development so well that the Department always found in him an appreciative and able advocate of its new designs. He favored the building of battleships rather than cruisers, and of all-big-gun battleships of the largest displacement. He was kcenly alive to the value of target practice, and our present splendid shooting is get practice, and our present splendid shooting is
largely due to his powerful backing of the officers who devised and carried through our present methods. To him, moreover, we shall owe, in no small measure, the system of promotion by selection and for merit; to say nothing of the coming reform of our present cumbersome methods of naval administration. It is true that in some details of his naval policy the Scientific American has been opposed to policy the Scientific American has been opposed to
Mr. Roosevelt's recommendations, as, for instance, when he would have placed a seagoing officer instead of the Chief Naval Constructor at the head of the consolidated bureaus; but this has been the rare exception.
It is largely due to the clearheadedness and powerful influence of Mr. Roosevelt that this nation is ful influence of Mr. Roosevelt that this nation is
not now engaged in the Herculean task of digging
the Panama Canal down to sea level. There is something agreeable to nature, and therefore attractive, in the idea of a canal through which the water flows from ocean to ocean without obstruction. Mr. Roosevelt evidently thought so; and when his board of foreign and American engineers went down to the Isthmus to examine and report on the matter, he told them that he hoped they would find a sealevel canal to be feasible. The majority of the board reported, as he had hoped, in favor of a sealevel canal; and yet Mr. Roosevelt advocated the adoption of the minority report in favor of a lock canal. His critics called him erratic; but the fact is that, when the arguments in favor of a lock canal were presented, his practical judgment saw that they were unanswerable; and his fearless rectitude led him to condemn at once and strongly the very type of canal for which he had asked. The progress of events has proved the wisdom of his course. The lock canal is being successfully built; and a board of engineers, all experts in hydraulic work, has pronounced it to be the only type that will satisfactorily meet the conditions at the Isthmus.
For many years the professional world has been painfully aware of the unrivaled extravagance with which those great national resources with which the engineer and architect are most closely concerned are being exploited for private profit. They have realized that the nation was living on its capital and rapidly approaching, as far as these resources were concerned, a condition of national insolvency. Here and there, and not infrequently, a note of warning was sounded; but these men had neither the time nor the political vantage ground from which to set in motion the machinery of federal legislation. In President Roosevelt-ranchman, hunter, lover of the forest, rivers, and mountains-was found the very man to appreciate the magnitude of the threatened disaster and awake the nation to its responsibilities. His latest work in promoting the Congress for the conservation of our national resources, forms a fitting climax to his seven years' work in this and ting climax to his seven
allied fields of endeavor.

a cruiser without funnels.

The dispatch recently cabled from England to the effect that a big-gun cruiser is about to be laid down which is to be driven by gas engines and will, therefore, be entirely without smokestacks, has brought so many inquiries to this office, that we have published on another page a digest of the principal work that has been done hitherto in applying producer-gas engines to the propulsion of warships. In view of the fact that the largest engine of this type known to have been successfully tested in any sea-going vessel is of only 500 horse-power, the next largest being an experimental engine of 1,000 horse-power, it is safe to say that the British Admiralty is not committing itself to the immediate installation of pro-ducer-gas plants in any first-class warship. The new vessel, to be known as the "Indefatigable," is to be an enlarged "Indomitable"; and as the cruisers of this class carry engines which indicated on trial about 47,000 horse-power, it certainly does not appear likely that the British navy will commit itself to a jump of from 500 to nearly 50,000 horse-power, without a very considerable intermediate period of experimental trials. If the results obtained with the 1,000 -horse-power experimental engine are as satisfactory as those obtained with the plant of half the power, we may look for tests with a 5,000 or even a 10,000 -horse-power installation, the power being developed upon three or possibly four shafts. But if producergas engines were installed on the new "Indefatigable," it would be necessary to develop from 10,000 to 12,000 horse-power on each of four shafts. No such engines exist, even in stationary gas-engine practice, where the maximum size is from 5,000 to 6,000 horse-power.
However, the advantages of the application of the producer-gas engine to warships are so many and valuable as to make it well worth the while of any great navy to spend lavishly for experimental work aiming at the solution of the difficulties attending the problem. The removal of smokestacks would abolish the telltale smoke and render it frequently possible for a fleet to get within range before being discovered. The number of guns that could be carried on a given displacement would be increased and their arcs of fire enlarged. The perils of suffocation, due to smokestacks being torn open by exploding shells, would be completely removed; since the products of fuel combustion would be discharged through an exhaust in the stern near the water-line. Because of the high fuel efficiency, which is 80 to 100 per cent better than that of the ordinary marine steam plant, a ship would be able to steam nearly twice as far on the same coal supply. If the nation which first perfects a large marine gas engine should also possess the facilities and capital to rapidly build a fleet of gas-engine battleships and cruisers, she will gain a lead over her competitors that might take years to overcome.

ventilation of passenger coaches.

From the description of the seventy-five steel passenger cars recently ordered for the Pennsylvania Railroad, it is evident that the company are in a fair way to secure the fireproof and collision-proof qualities which are sought in the design of the cars. Outside of mahogany window sashes and seat frames, the cars will be entirely free from wood fittings, the total weight of wood in each car being only 300 pounds out of a total weight of 116,000 pounds for the entire structure. The collapse of the car in collision is guarded against by the provision of a central steel box girder 24 inches wide and 9 inches deep, extending throughout the floor framing for the whole length of the coach. This massive construction will receive the full brunt of a collision, and serve as a deferise against that disastrous telescoping, which is the most fruitful source of fatalities in accidents of this kind.
It is to the ventilation of these cars, however, that we wish to direct attention. The subject is particularly timely just now, when the traveling public is being put to so much inconvenience through the overheated and stuffy conditions which are the rule rather than the exception on some railroads. In a properly ventilated car the whole of the air should be renewed at frequent intervals; it should be warmed, and the proper amount of moisture should be imparted to it. The mere provision of steam pipes, and the opening of a few ventilators in the roof, will not secure the desired results. The air will be heated, but not properly renewed; and a considerable portion will be endlessly circulated between floor and ceiling, and dried out by steam heat to the point at which it becothes uncomfortable, if not positively distressing.
th the new Pennsylvania coaches the air enters by two hoods on diagonally opposite corners of the car roof. From the hoods it is led down by vertical ductts, placed within the sides of the car, to a horizontal duct adjoining the side sill and running the full length of the car between the floor and the sub-floor. Above the floor, for its full length, along the sides, are rectangular ducts in which are placed the steam héating pipes. The outside air enters the hoods and passes through the ducts beneath the floor, to openings into the duct containing the heating pipes. Here it is thoroughly warmed and is finally discharged into the aisle of the car through outlets provided beneath each seat. The air is liberated through ventilators in the roof, which are furnished with valves that regulate the escape of the air. The forward movement of the car forces the air in under a slight pressure, and the restraining action of the discharge valves maintains this pressure and prevents drafts of cold air passing in through cracks in the doors and windows. The system is an excellent one, being founded on thor oughly sound principles of ventilation; but we would suggest that, if provision could be made for adding the requisite amount of moisture to the warmed air before its admission to the car, its hygienic qualities would be improved, particularly for passengers whose throat and nasal passages are subject to catarrhal and kindred troubles.

a successful friction clutch.

The clutch; on account of troubles with motors and axles, has not until recently received attention and development. Many types have been evolved, the principal and earlier one still used having the open air engagement, such as the leather-faced cone, the internal expanding type with the leather face, and the external contracting type. They are all subject to the influence of moisture, oil or dirt, which cannot be kept from their facings. The ideal clutch is the multipledisk type, one in which the working parts are inclosed in a tight case filled with oil, and the uncertainties of the open type are eliminated. The disadvantages of this flat-plate multiple-disk clutch are, however, that the small frictional area which can be attained in the comparatively small space to which the designer is limited, makes necessary large spring pressures in order to transmit the power. The spring pressure in the usual type of flat-plate clutch is generally about 60 pounds to the square inch. This naturally means a greater tendency to undue wear and heating of the plates, with the consequent burning of the lubricant, or, in extreme cases, the warping of the plates. The solution of these problems was obtained in the successful use of a disk for transmitting power by the friction contact of highly lubricated Vshaped wedge plates. The 35 deg . angle corrugated plates give three times the frictional area of equalsized flat plates, and will, therefore, transmit three times the horse-power, but with one-third the spring pressure, and therefore with one-third the pedal pressure. The clutch is self-contained, and not subject to outside conditions; except that in cold weather the oil becomes thick much in the same way as it does in the motor and transmission. This is easily overcome by using a mixture of half light cylinder oil and half kerosene.

ENGINEERING.

On February lst the percentage of completion of the six "Dreadnoughts" now building for our navy was as follows: "South Carolina," 78.90; "Michigan"" 89.70; "Delaware," 64.10; "North Dakota," 70.60; "Florida," 3.30; and "Utah," 3.10 .

According to the last report on the coast defenses of the United States, there are now mounted 376 12inch mortars and 10512 -inch, 12610 -inch, and 948 -inch breech-loading guns. There are also 406 rapid-fire guns in position. In addition to these, seven 10 -inch, five 8 -inch, and 111 smaller rapid-fire guns are ready for armament.
The steamer "Mauretania" is reducing the time of the transatlantic passage on each succeeding trip. On March 2nd she established a new record for the east-bound passage of 4 days, 20 hours, and 2 minutes. The best day's run was 607 miles, and the average speed for the whole passage was 25.28 knots. The kest previous record for the east-bound passage, made by the same ship, was 4 days, 20 hours and 27 minutes.
A resolution has been adopted by the Senate for the construction of a memorial highway to be called "The Lincoln Road," which is to extend from Washington, D. C., to the battlefield of Gettysburg, and $\$ 50,000$ is to be appropriated to defray the expenses of making a survey, plans for construction, and estimates of cost, by the engineers of the United States army. The Lincoln Way is to form one of certain "suitable memorials to commemorate the public services and character of Abraham Lincoln."
The Secretary of the Navy recently reported to the Senate that to keep a first-class battleship in good condition and do the necessary repairs for one year costs $\$ 109,856$. This estimate represents the average of the cost for repairs of seventeen battleships during the year 1908. It does not, however, include the heavier repairs when a ship is out of commission for remodeling or reconstruction. The coal for the battleships for one year, including transportation and storage charges, cost $\$ 5,544,945$.
According to Lloyds Register returns for the quarter ended December 31, 1908, the amount of shipbuilding tonnage under construction by the principal nations was as follows: Great Britain, 765,000 tons; Germany, 164,000; Japan, 73,000; United States, 63,000 ; Italy, 41,000 ; Holland, 40,000 ; and France, 39,000 The aggregate of all the countries omitted from this list reaches 66,000 tons, which, according to the Shipping World, is about one-third the work under construction in Belfast alone.
Much of the good work being done by us in the Philippines is little known to the people of the United States. The recently completed scheme for supplying Manila with water is a case in point. The supply is taken from a watershed 140 square miles in extent being drawn from the Mariquina River, at a point 20 miles northeast of Manila. The works include a 42 -inch steel pipe, $101 / 2$ miles in length, a concrete tunnel $41 / 2$ miles in length, and a reservoir of $50,000,000$ gallons capacity. The capacity of the system is 22 , 500,000 gallons per day, equivalent to 100 gallons daily for each person in Manila.
Realizing that Congress is not disposed, at least for the present, to assist the development of the aeroplane, several leading men of this city have incorporated a company for the purpose of building machines and lending to the new industry that financial backing to which the success of the Wright brothers in France is so largely indebted. The originator of the enterprise is the president of the Aero Club of America, and with him are associated several wealthy members of the Aero and Automobile clubs. This is a step in the right direction; and the aeronautical world in this country will welcome the venture as one which meets the most pressing need of the aeronautical situation, as it exists in the United States to-day.
Excellent progress is being made in the erection of the steelwork of the new Manhattan Bridge across the East River, New York. The four wire cables, $211 / 4$ inches in diameter, are strung. The cast-steel saddles for the support of the suspender cables, and the cables themselves, are in place; and the work of building out the fioor system has commenced. Practically all of the steel for the latter is now on hand in the local storage yard. It is expected that this, the largest and heaviest suspension bridge ever built, will be open for foot-passenger and vehicular traffic by the close of the present year. This will be accommodated by one 35 -foot roadway and two 11 -foot sidewalks. On the same level, that is to say on the lower deck, provision is made also for four surface trolley tracks. On the upper deck there will be four rapid-transit tracks. Unfortunately, in the case of this, as of other bridges across the East River, the structure, after its completion, will probably have to wait many months, and possibly years, before any rapid-transit connections are made by the transportation companies on either side of the river.

ELECTRICITY.

A novel form of current collector is to be used on the cars of the South London Railway, which is now being electrified. Bow collectors will be fixed on the roof of each car, and will be provided with aluminium contact strips. In each strip there will be a groove filled with lubricating material. This will tend to reduce wear on the trolley wire, and when the aluminium strip wears out, it can readily be renewed.
An enormous hydro-electric undertaking is being considered in France. The plan is to dam the Rhone below the rapids, some 13 miles from the Swiss frontier, and utilize the water in a fall of 230 feet. The entire upper valley of the Rhone would thus be formed into a long, narrow lake. The plant would generate 240,000 kilowatts, half of which would be transmitted to Paris, about 280 miles distant, at a tension of 120,000 volts. It is estimated that this work would cost about $\$ 16,000,000$, and could be completed in seven years' time.
In order to increase the efficiency of mercury vapor lamps, quartz tubes are used in place of glass tubes. A very interesting method of making these tubes has just been patented. A carbon mold is imbedded in granulated quartz, and then heated by passing a current therethrough until the quartz is fused about it. The tube is now cooled, and by means of an electric arc the carbon is burned off, leaving a quartz shell. At each end of the shell potassium is combined with the quartz to form gas, into which platinum terminal wires may be sealed.

- An interesting form of dry battery has recently been invented, which is inactive unless exposed to a beam of light. The cell consists of a glass tube in which a platinum strip forms one electrode, and an amalgam of potassium and sodium the :other. The air is exhausted from the tube, leaving a high vacuum. When the amalgam is exposed to a strong light, a current fiows from the platinum to the amalgam through the vacuum tube. The internal resistance of this cell, which is known as a "photo-electric cell," is about 75.000 ohms.
The towns of Emden, Wilhelmshaven, and Leer are soon to be furnished with electricity from a power plant near Aurich; in which peat alone will be consumed. At present a small power station has been erected in which a 200 -horse-power engine is supplied with steam from two boilers. One of these boilers is fired with air-dried compressed peat, and undried peat is used with the other. It is hoped that the experiment with undried peat may prove successful. The station, when it is completed, will contain three 1,800 -horsepower steam turbines.
The present methods of wiring a building were criticised in a paper recently read before the Glasgow section of the British Institute of Electrical Engineering. The introduction of metal filament lamps leads to the expectation that lower voltages will be used for the wiring of buildings, thus making possible a cheaper system of installing the circuits. It was suggested that a metal-covered cable should be invented which shall be soft enough to be rolled up into coils for delivery and to be unwound and straightened for use in the building. The metal covering could be used as the neutral wire, or in isolated work as the return line.
The city of Budapest has a news telephone service with which news items, music, etc., are transmitted to the various subscribers. At about nine o'clock in the morning a buzzer is sounded for about fifteen seconds, after which the correct time is announced. Then the subscriber is told the programme of the day, which is carried out on a time schedule. First there are stock quotations and news items; then the parliamentary news, closing prices of stocks, the weather forecast, etc. Toward evening the subscriber can listen to music at the cafés or gardens, and in the evening to the Royal Opera or one of the theaters. The service costs $\$ 7.31$ per year.
About seventeen years ago the Wizard of Menlo Park startled the world by carrying on telegraphic communication between a moving train and stations along the railroad without any wire connection therewith. The system employed was to mount a board covered with tinfoil edgewise on the car roof. The tinfoil formed part of a local telegraph circuit, which inductively affected the telegraph wires that paralleled the track, and in this way the messages were made to "leap" from the train to the telegraph lines. The recent experiments on the Lake Shore Railroad, where messages were exchanged between an operator on a fast-moving train and operators in Toledo, Elkhart, and Chicago, were of a different character; that is, the Hertzian waves were used, which transmitted the messages directly to the receiving stations, and not to the telegraph wires along the track. The value of such communication between trains and railway stations was illustrated at the very outset of the experiments. On one of the trains a truck broke at some distance from Chicago, and by means of wireless telegraphy a repair train was called from Elkhart.

SCIENCE.

Luther Burbank has succeeded in organizing a company to assist in marketing his products. In this way he hopes to make his more important discoveries practically and more widely useful.
Arunds has discovered that pyrogallic acid and certain substances belonging to the class of tannins have the power to prevent the decomposition of solutions of hydrogen dioxide (peroxide of hydrogen). The addition of very small quantities of these substances completely arrests the decomposition of the solution. A three per cent solution of hydrogen dioxide to which a little tannin was added showed no sign of decomposition six months afterward.
A commercial process for the separation of hydrogen from water gas consists in passing the latter, which is essentially a mixture of hydrogen and carbon monoxide, through a cylinder filled with inert material through which trickles a solution of cuprous chloride. The carbon monoxide of the water gas is dissolved by this solution and the hydrogen alone passes on to the collecting apparatus. The dissolved carbon monoxide is subsequently extracted from the copper solution by pumping in vacuo and is burned under the water-gas generator, which is of special construction.
Prof. Edward C. Pickering of Harvard Observatory and the Rev. Joel H. Metcalf earnestly appeal to the astronomers of America to co-operate in taking up the work of following the movement of newly-discovered asteroids, which has been abandoned by the United States government. For two or three years much useful work was done by the observatory in following the asteroids discovered by Mr. Metcalf. Some of the asteroids will soon come to opposition. Unless the ephemerides for them are computed they cannot be found, and there is danger that they will be permanently lost.
In 1900, Prof. Lowell published his conclusion, based on observations of the occultations of the third satellite in 1894, that the atmosphere of Jupiter is of great height and produces a refraction of 8 min . Chevalier has recently noted an interesting phenomenon, which also appears to be due to refraction by Jupiter's atmosphere. In the occultation of a star by Jupiter, the star does not vanish exactly at the point on the planet's limb toward which it had apparently been moving a few seconds previously. In other words, the star appears to deviate from its course just before occulta tion. M. Esclangon, of the Bordeaux Observatory, thinks that this appanent deviation is caused by horizontal refraction by Jupiter's atmosphere.
The word "kerosene" seems to have been first used in United States patent No. 12,612, of March 27th, 1855, granted to Abraham Gesner, of Williamsburg, N. Y. and assigned to the North American Kerosene Gas Light Company. In the preamble to his specification Gesner states that he has "invented and discovered a new and useful manufacture or composition of matter being a new liquid hydrocarbon which I denominate "kerosene." So far as we are aware, and so far as the Patent Office examiners are aware, this is the first instance in which the word "kerosene" was suggested as a trade mark or a name for what was then gener ally called "rock oil."
Calcium is not a new metal, but it has hitherto been confined to the laboratory. It now appears ready to go forth, like aluminium, and assume an impor tant place in industry. Numerous uses have already been suggèsted. At the time of the great rise in the price of copper it was proposed to make electric wires of calcium. Its immediate promise, however, is in metallurgy, for calcium is an excellent reducing agent. According to a paper communicated to the British Association for the Advancement of Science, calcium is very efficient in refining metals, reducing oxides and sulphides, eliminating dissolved gases, and combining with impurities to form less injurious compounds. Calcium is a silvery white metal, easily oxidizable in moist air, very malleable and a good conductor of heat. Its hardness is equal to that of aluminium.
A new explosive is made by mixing perchlorate of ammonia with an organic substance containing tan nin. The perchlorate may be partly replaced by nitrate of ammonia or common saltpeter. Myrobolan and divi-divi are suitable organic ingredients. A good explosive mixture consists of 36 parts of myrobolan and 64 parts of perchlorate of ammonia. Nearly half of the perchlorate may be replaced by saltpeter. The proportions are by weight, and all the ingredients should be pulverized before being mixed. The new explosive is well adapted for use in coal mines as the temperature produced by its explosion is too low to ignite either coal dust (choke damp) or marsh gas (fire damp). It is advisable to convert the mixture into a plastic mass by the addition of fish glue, oil, or, preferably, agar-agar. The explosive is very power ful, yet it is not easily ignited by shocks and can be handled with safety.

THE PROJECTOR IN SURGERY.

The operating rooms of our hospitals are commonly arranged with a bank of seats at one side for the accommodation of students who desire to witness the operations. Situated thus to one side, and at some distance from the operating table, the students cannot see much of the actual manipulations of the surgeon, and have little or no opportunity to study his technique. The favorite few who are allowed on the floor are more fortunate, but even they are obliged to peer over the shoulder of the surgeon, and dodge the attendants, in their effort to witness the operation. Furthermore, they are apt to prove quite a hindrance to the operating surgeon. With a view to lessening the students' difficulties, the bank of seats in some operating rooms is made very steep, so that from the upper tiers the students can look over the heads of the surgeons and attendants, and thus obtain what practically amounts to a bird's eye view. But there is a serious objection to such amphitheaters. Dust is the surgeon's greatest enemy; for on its wings disease may be carried into the open wound and infect the patient. It is bad enough to have a body of unsterilized students in the operating room. But when they are perched high up above the patient, the scuffing of feet ur even the slightest motion of the body will dislodge dust, which is quite liable to settle down on the region of the operation. The danger of infection increases directly in proportion to the number of persons in the operating room. And on this account many prominent surgeons will not permit students to witness their operations.

In order to enable the embryo surgeon to study the work of the skilled masters in the profession, although debarred from the room, Dr. Charles H. Duncan, who is prominently identified with St. Gregory's Hospital in this city, has devised an apparatus which, without interfering in the least with the operating surgeon, will project a bird's eye view of the operation on a screen in the next room. This projection will show the work life size or larger, if desired, and a lecturer may explain the operation as it progresses without disturbing the surgeon.

The general construction of $t h$ is apparatus is shown in the accompanying engraving. About 18 inches above the heads of the operators is a large disk, fitted near its periphery with a series of electric lights. There is a large central opening in the disk, over which is an inclined mirror adapted to reflect the scene below into a second vertical mirror, which in turn reflects the light into a lens. The latter focuses the scene upon a suitable screen in the adjoining classroom. Two mirrors are required, so as to project the image right side around. Their arrangement is shown in plan in the small line drawing. The students are sep-

The projector permits students to witness surgical operations without entering the operating roomo
THE PROJECTOR IN SURGERT.
lamps throws a strong light on the patient, so that the image cast on the screen is perfectly distinct.

The students can witness every movement of the surgeon, and study in detail his methods of performing the operation, or respecting the feelings of patients who are sensitive to the gaze of the young doctors, the screen can be curtained off to show only the part operated upon.

Of particular value is this apparatus for taking photographs of surgical operations. When the surgeon comes across an interesting or rare phenomenon, a photograph of the same may be taken, making a record which can be preserved for future lectures or treatises. Dr. Duncan has tested his apparatus in an experimental way, and the accompanying illustration of a hand is reproduced from a photograph, taken by exposing a sensitive plate at the point where the screen is located. Heretofore the fear of infecting the patient has hampered the use of the camera in making records of operations. At Johns Hopkins University some successful photographs have been taken of important operations; but the utmost precautions had to be observed, to prevent dust from being dislodged from the overhanging camera, and infecting the patient. With this apparatus there is no such danger, because the portion that overhangs the scene of the operation is fixed and permanent, while moving parts, such as the shutter, the diaphragm stops, the plate holder, etc., are either located to one side, or else are situated above the disk in which the lights are contained.
One of the most important advantages of this system is the fact that moving picture records can be made of important operations. At present, when a great surgeon dies, his technique dies with him; for there is no way of graphically preserving to posterity the methods he pursued. But by means of a moving picture film, an invaluable record of his
while another hand wheel is arranged to allow of throwing color slides before the lens, permitting the lecturer to intensify such colors as will show up the various parts more clearly. The ring of incandescent ro could be preserved for all time A surgeon who was called upon to perform a rather unusual operation could study the moving picture record of the work of noted surgeons in similar cases, and thus prepare himself to perform the work to better advantage.

A New Method A New Method
of Identifying
Criminals.
A novel meth od of identifying criminals with absolute certainty h as been devised b y Professor Tamassia. When comparing the veins on the back of both hands, a strik ing. diversity will be observed Far more impor tant, however, are the differ ences noted in the hands of different persons. In order to cause the veins to stand out more distinctly, the wrist should be bandaged for a short time. Their courses can then be photographed. Owing to the size of the hand, it is far easier to discover slight diversities than in minute prints of finger tips. Nor can any voluntary alteration of the vein tissues be feared, unless the hand be seriously injured.

GAS-DRIVEN BATTLESHIPS AND CRUISERS.
A dispatch cabled from England, to the effect that the British government is about to lay down a large "Dreadnought" cruiser which will be driven by pro-ducer-gas engines, and will be without the customary funnels, has caused no little interest, and has brought several inquiries to this office regarding the truth of the statement. We may as well state at the outset that, in our opinion, it is very improbable that the British government is about to do any such thing; and this, in spite of the fact that-successful experiments have been carried out with pro-ducer-gas engines installed on an old gunboat of the British navy.
The ever-recurring rumors of the construction of a gas-driven battleship or cruiser are, no doubt, ultimately traceable to a paper read a few years ago before the British Institution of Naval Architects by James McKechnie, Chief Engineer for Vickers, Sons \& Maxim, in which he made a comparison between the 16,350-ton steam-driven battleship "Dominion," of the British navy, and a design of his own for a battleship of the same displacement driven by producer-gas engines. At that time no such ship existed, and no such ship exists to-day except on paper. The comparison, however, coming from such an eminent authority, is reliable; and, in view of the possibilities of the future, is of great value and interest. We reproduce three views of the ship. The many advantages of her design will be at once apparent. In the first place, although she is between 3,000 and 4,000 tons smaller than our own "North Dakota," she carries the same number of 12 -inch guns, and these guns are mounted all on the upper deck, which is unincumbered either by smokestacks or superstructures. The comparison of weights, etc., of steam, gas, and oil ma chinery for a 16,000 -horse-power battleship, which is given in the accompanying table, speaks for itself. The data for the steam engines are those of the exact weights, etc., of the engine, boilers, etc., of the "King Edward" class of battleships of the British navy.
comparison of weights, etc., of steam, gas, and

	Steam	Producer Gas Engine.	$\begin{gathered} \text { Oil } \\ \text { Engine. } \end{gathered}$
I.H.P. available for propelling the ship	16,000	16,000	16,000
eight of machinery inclu usual auxiliaries, but not deck machinery.	$\begin{aligned} & 1,585 \text { tons } * \\ & 10.1 \end{aligned}$	$\underset{14.48}{1,105 \text { tons } \dagger}$	$\begin{gathered} 750 \text { tons } \ddagger \\ 21.33 \end{gathered}$
I H.P. per ton of machinery..			
and boilers or producers..	7,250 sq. ft.	$\left\lvert\, \begin{array}{r} 5,850 \mathrm{sq} . \mathrm{ft} \\ 366 \mathrm{sq} . \end{array}\right.$	$\begin{array}{r} 4,110 \mathrm{sq} . \mathrm{ft} \\ 257 \mathrm{sq} . \mathrm{ft} \end{array}$
Area per I.H.P. ${ }_{\text {Fuel }}$ consumption in pounds per			
Fuel consumption in pounds perI.H.P per hourAt full power:			${ }_{0.75}^{0.6} \mathrm{lb} \mathrm{lb} .$
	1.6 lbs.	$\begin{aligned} & 1.10 \mathrm{lbs} . \\ & 1.15 \mathrm{lbs} . \end{aligned}$	

* Includes water in boilers.
+ Includes water in jackets and piping, but not coal in producers.
\ddagger Includes water in jackets and piping.
The plan shown provides a two-cycle gas engine, which may be worked either by producer gas or heavy oil. The compressed-air plant may be located in any part of the ship, and coal may be stored in the bunkers and oil in the double bottom. The gas machinery is divided into three groups, accommodated in six compartments. The ship is driven by four 10 -cylinder vertical gas engines, coupled to four propeller shafts. The gas producers occupy the two center compartments, and in the forward compartments there are four sets of air compressors driven by gas engines.
The advantages of the gas system in solving the always difficult problem of placing the magazines to the best advantage, is shown by a study of the half plan of the ship; for it will be seen that each of the main magazines is located immediately below the pair of guns which it is intended to serve, and that there is communication between the various ammunition and shell rooms. This enables the ammunition to be readily distributed throughout the ship on one level. Hence, if any turret were put out of action, its ammunition could be transported below the armored deck for the service of other turrets.
The abolition of boiler uptakes and funnels enables the turrets to be so disposed, without increasing the length of the ship, as to admit of all the ten guns being fired on either broadside, and of six guns being concentrated ahead or astern. The

Armament : Ten 12-inch; eighteen 4inch guns.
Outboard profile, deck plan, and hold of design for a 16,350-ton gas-driven battleship
insufficient size, and much experimental work must be done before any application to a costly battleship will be warranted."
In comparison with the task of driving a 16,000 or 20,000-ton battleship by gas power, the applications which have already been made to marine work, and particularly naval work, are very modest indeed. Probably the best-known system of producer-gas engine for marine purposes is that known as the Capitaine, an illustration of which is herewith presented. The plant, which is of 30 horse-power, was illustrated and fully described in our issue of March 4, 1905, about which time it had accomplished successful demonstrations. It consists of a generator, cooling and scrubbing apparatus, and the engine, all mounted upon a single foundation. The floor space occupied by this installation is 7 feet 6 inches in length by 3 feet 6 inches in width, and its weight is about $23 / 4$ tons. The cylinders are 27 inches in diameter by 11.02 iaches stroke, and the normal speed of the engine is 200 revolutions per minute. To determine the suitability of the Capitaine system for small powers, the Thornycroft firm of Chiswick, London, fitted a canal barge with a 2 -cylinder, 35 -horse-power engine, which was sent on an extended trip over the English canals. She left Brentford, fully loaded, and towing two ordinary canal barges, which she took to Birmingham. After giving various demonstrations there, she went The most sary to speak in detail.
important work that has been done in deolop a producer-gas engine for naval purposes is that of the Beardmore Company on the Clyde. The experiments resulted in the construction of two units one of 500 and the other of 1,000 horse-power. The first of these was applied to the old British gunboat "Rattler," of 715 tons displacement. The old recipro cating engines and boilers were removed, and a 500 horse-power Capitaine producer-gas engine and auxiliary plant substituted. The 500 -horse-power unit was the largest size in which the piston could be used with out water-jacketing. The engine is of the vertical, 5 cylinder type, working on the Otto cycle, and the gas producer uses bituminous coal. The displaced steam machinery weighed 150 tons, whereas the gas plant substituted weighed only 94 tons, a saving of about 66 per cent. The trials of the ship lasted for eight days, during which several short runs of 45 knots or less total length were made. The fuel consumption averaged 6.46 cents per knot at an average speed of 10.5 knots per hour. The absence of noise and vibration in the engine room was noticeable; and the fue consumption, as compared with that for the steam engines of the same power, was about 50 per cent less A similar plant of 1,000 horse-power has been constructed, and is now undergoing tests.

Outside of the saving of weight, as shown in the comparison by Mr. McKechnie, and in the recent tests of the gunboat "Rattler," there is a saving of fuel consumption which, in the best producer-gas engine, is fully 50 per cent as compared with a good average steam plant, and of from 25 to 30 per cent as compared with the most economical steam plant. But it will be seen that a great advance has to be made in the size of the producer-gas engine before it can be successfully applied to a modern first-class battleship or cruiser. The power developed in the engine room of such ships will aggregate from 25,000 to 45,000 horsepower. Before 45,000 horse-power can be developed, even on four shafts, it is evident ihat much experimental work must be done to increase the size of the individual marine gas engine above the 500 horsepower at which it now stands. But as the size of the unit increases, the piston and piston rod increase to a point at which it becomes necessary to provide some system of water cooling; and this problem must be effectually solved before the risk is taken of applying the new form of motor to a ship calling for from 25,000 to 45,000 horse-power in the engine room.

Preserving Vinegar.-5 parts 80 per cent vinegar essence, 8 parts purified wood vinegar, $31 / 4$ parts common salt, $1 / 10$ part nitrate of potash; $1 / 3$ part sulphate of potash; 50 , parts good, young wine, $11 / 2$ part starch sugar or honey, 40 parts water.

(fituresprondente.

a tYpographical error corrected

To the Editor of the SCIENTIFIC AMERICAN:
I notice that you published my communication of January 14 th. I feel much indebted for your kind-
ness, but 1 beg to be allowed to call attention to ness, but 1 beg to be allowed to call attention to an
error, undoubtedly typographical, in which 11 (eleven) appears instead of 44 (forty-four)
My authority for this value of 44 (forty-four) hours for the mean interval which elapses between a solar outburst and the terrestrial response is Svante Arrhenius, while he again ascribes it to Ricco. An exposiin the Screvreic in the Scientific Amind Wilfrid S. Griffin.
11th, 1908 , No. 1671 .
Pittsfield, Mass., February 16th, 1909.

a pectiliar optical phenomenon.

To the Editor of the Scientific American: Your readers may be interested in a description of the unusual, beautiful phenomenon seen in Salem, Va., on February. 8th at $10: 45 \mathrm{P}$. M. At about that
time, I I observed a filmy cloud arising in the east and covering the moon. The moon's rays seemed caught into four bundles, like the light from a searchlight or stereopticon. At a distance of about ten screen as an irregular circle of rainbow colors having the red nearest the moon. The patches of rainbow were above the moon, to its right and left. The one below was beneath the horizon. Around all this was a circular rainbow, having the violet inside, I
think, with a radius of some twenty degrees, just think, with a radius of some twenty degrees, just large enough to inclose Jupiter comfortably. A half-
hour later a student noticed the same without color and with the images right and left complete circles like the moon istelf, while the upper one was elliptical.
Salem, Va., February 16th, 1909.

did the "republic' carry searchlights?

To the Editor of the Scientific American:
I have read page after page in the New York daily I have read page after page in the New York daily ships "Republic" and "Florida," but not one word have of them. Is it possible that the owners of the ocean liners are so utterly careless of the value of human lives and of their own costly steamers, that they do not have a powerful searchlight mounted above the "crow's nest" on each and every ship? If they do not, it is an amazing thing. Even during a dense fog at night, the beam from a powerful searchlight, such as is used on a battleship, wili penetrate to a distance sufficient to warn two approaching steamers of their proximity and relative positions, and so reduce the
chances of collision, with all the horror that follows such a calamity
such a calamity. That only six lives instead of six hundred were lost in the recent collision, is because of fortunate conditions existing at the time; but the consequences of
that calamity are none the less horrible to the relathat calamity are none the less horrible to the rela-
tives and friends of those six victims.
Bensonhurst, N. Y., January 27th, 1909 .

THE AIRSHIP OF THE FUTURE.

To the Editor of the Scientific American:
In your issue of January 23 d a letter is published under the heaiew is taken that the flying machines of to-day might be determining factors in the event of war. This conclusion is open to serious question, flrst because the flying machine is at present more vulnerable than the object it would destroy, owing to the facts that it keeps reasonably close to the earth and is large enough to be a good target, besides being only
cortrollable as yet in a very modest way and under cortrollable as yet in a very modest way and under
favorable weather conditions. Great improvements can naturally be made, but the size and carrying capacity naturally be made, but the size and carrying capacity
are necessarily limited, since (to quote from a recent magazine article) "its weight increases as the cube of the dimensions, while its supporting surface only as the square." It is more than doubtful that any im portant practical results can come through any of the
heavier-than-air machines of which the public has any knowledge.
It by no means follows that aerial navigation is an idle dream, for the airship that-can navigate the air pear; but by that time balloons and flying machine will have taken their place among the relics of the past. The real airship of the future will no more be imited as to size and carrying capacity than the steam ship is. It will be able to choose such atmospheric level as is most favorable, whether it be high above the clouds or near the earth. It will not be limited to a mere fifty-mile trip, but be capable of a sustained
voyage of days at a speed of perhaps one hundred voyage of days at a speed of perhaps one hundred
miles per hour. Then we will have aerial navigation the commercial sense, and an airship that might be it would be wise to keep our present means of defense. New York, January 25th, 1909. C. A. McCReADy.

stress in a vacuem balloon.

To the Editor of the Scientific American:

As inventors frequently propose the construction of a vacuum balloon, to secure buoyancy without the use of gas, it may be desirable to estimate the strength of
material required to resist crushing, say in a spherical material
balloon.
The unit stress in the wall of a thin hollow spherical balloon subject to uniform hydrostatic pressure, which is prevented from buckling, is given by equating the total stress on a diametral section of the shell to the total hydrostatic pr
in which S may be the stress in pounds per square inch
p the hydrostatic pressure in pounds per square inch, x the hydrostatic pressure in pounds per squa The greatest allowable mass of the shell is found by equating it to the mass of the displaced air, thus: $4 \pi \gamma^{2} t \varsigma_{1}=4 \pi \gamma^{3} \varsigma_{2} / 3$ in which ς_{1} is the density of the wall material, 5_{2} the Now assuming $p=15,5_{1} / 5_{2}=6,000$, for steel and $\stackrel{\text { air, the equations give: }}{S}=3 p s_{1} / 2 s_{2}=45 \times 6,000 / 2=135,000$ pounds pe square inch as the stress in a steel vacuum balloon. For aluminium 5_{1} is less, but the permissible value of S is also less in about the same proportion. The last equation shows that for a given materia and atmospheric environment, the stress in the shel or wall of the spherical balloon is independent of the radius of the surface. It is also well known that the stress is less for the sphere than for any other sur will be less than $3 p \quad s_{1} / 25_{2}$. The argument is easil wien to apply to a partial-vacuum balloon, since a bal loon of one nth vacuum will float a cover of but one nth the mass and strength.
The above result was obtained on the assumption that the shell was prevented from buckling; as a mat ter of fact, it would buckle long before the crushing
stress could be attained. We must conclude therefore stress could be attained. We must conclude therefore that while a vacuum balloon has alluring features, the materials of engineering are not strong enough
favor such a structure. Perhaps it is nearer the truth to say that such a project is visionary, with the ma A. F. Zанм, Ph.D.

Washington, D. C., December 26th, 1908.

the earthquake in italy.

In the January 23 rd issue of the Scientific Ameri CAN, page 82 , is an article on the recent earthquake a umn to call attention to a few facts concerning seismi disturbances that the writer appears to have over disturba
In the first place, he states that the Messina earth quake happened "through the operation of a mechan ical necessity." Just what this might be is not clear. Indeed, an earthquake, instead of being a "mechan ical necessity," is a process in planetary evolution by which the earth's crust is continually settling on account of the secular leakage of the ocean's water
through flssures in the former's bed, thereby causing through flssures in the former's bed, thereby causing
an enormous pressure of steam on the surface crust of an enormous pressure of steam on the surface crust of
our planet. These earthquakes are confined to the thin upper shell of the earth, and originate at a depth of only a few miles. (The earth is in a state of unof only a few miles. (The earth is in a state of un-
stable equilibrium, since its diameter is longer through the equator than through the poles, causing a stres and strain in localities.)
This fact, together with the grinding and settling of the superficial rock strata, gives rise to the terrible
world convulsions, one of which we witnessed in southern Italy.
It is believed by some scientists that in this way great quantities of sea water will some day rush into the heated bowels of the planet, and shatter the earth
by a colossal explosion, such as the moon underwent by a colossal explosi
in remote ages past.
in remote ages past. Murray further states that the localities of earthquakes and volcanoes are different, but here he is fundamentally wrong. Everyone knows that these two manifestations of internal activity are not only due to a common cause, but they are to be found in the same localities. To cite a few examples: Mount Etna is but 32 miles from the devastated Messina. Herculaneum and Pompeii (two buried cities which
were more than once visited and finally destroyed by were more than once visited and finally destroyed by
disastrous earthquakes and volcanic eruptions comdisastrous earthquakes and volcanic eruptions com-
bined)
nestle close under the smoking crater of Vesuvius. The earthquake at Kingston, Jamaica, which suvius. The earthquake at Kingston, Jamaica, which
occurred, if I am right, on December 24th, 1906, was occurred, if I am right, on December 24th, 1906 , was
followed by a devastating "tidal wave" which swept fover the city.
The disaster at Martinique on May 10th, 1902, when plosion and lava raie was blown off by a terrific exof St. Pierre, was accompanied by slight stricken
The eruptions from the volcanoes Mauna Loa and Kilauea (in the Sandwich Isles) and Krakatoa in the Strait of Sunda are nearly always combined with severe earth tremors.

According to Mr. Murray, the terrestrial heat is slowly declining because of radiation into space, but the earth does not radiate heat as the sun or stars; tically none of its inherent heat penetrates.
Ninety-nine and seven-eighths per cent of the heat on the earth's surface comes from the sun and is absorbed by the atmosphere. Nor does it follow that
the bulk of the earth is diminishing on this account the bulk of the earth is diminishing on this account, but the crust is sinking in places and rising in others.
(See "The Earth a Failing Structure," by John F. (See "The Earth a Failing Structure," by John F.
Hayforth in Scientific AMERICAN SUPLEMENT No. 1677.) Earthquakes are not caused by the shrinking strata earth's crust, but by the settling of the strata. This is directly caused by the seepage of sea
water into the earth's interior, where it is converted water into the earth's interior, Where it is converted into steam at a high pressure. This steam finds an a volcano. The continual discharge of matter undermines the surface crust, which settles unexpectedly. The fact that volcanoes and earthquakes are in the same localities and near the sea supports this theory.
As to the distribution of earthquakes, the points of As to the distribution of earthquakes, the points of
greatest activity lie in a zone encircling the earth on greatest activity lie in a
lat. north about 37 deg.
According to Major de Montessus de Balore, etc., the greatest number of earthquakes in any one country on the earth in the last fifty years is Italy, with
27,700 . Japan is a close second with 27,570 . There is a considerable gap until Greece is reached, with 10,300. It might be mentioned that San Francisco, the scene of the April 18th, 1906 , quake disaster, is in
lat. N. 37 deg. 47 min., while Messina is in lat. N. 38 lat.
deg. $\mathrm{N}_{\mathrm{min}} \mathbf{3 7}$ deg. certainly 47 mery close.

Mr. Murray assures us that the moon was "once the Mr. Murray assures us that the moon was "once the
center of great volcanic activity." This statement,
when examined in the light of recent discoveries about our satellite, is not tenable. The multitude of craters origin. The lunar craters, far from being shaped like the average volcanic craters on this earth have their floors level with the general lunar surface, and in nearly every instance there is a cone in the center. On the earth there are about 3,000 craters of all sizes, from Mount Vesuvius down to little craterlets. - On he visible flve-eighths of the moon turned toward us are 33,000 craters, as against 3,000 on the earth. the moon adapted to the physical peculiaritism on the moon adapted to the physical peculiarities of the difficulty. But the terrestrial craters are never more than 4,000 feet deep, as compared to an average depth of 12,000 feet for lunar craters. Take two lunar craters, Albategnius and Clavius. Three or four smaller craters are grouped around and impinge on he rim of the main crater. Fragments from a meteor in falling would very likely scatter over the crater formed by the main body of the meteor, and thus make craterlets.
All the craters in the Mare Humorum, Mare Nectaris, and around crater Tycho literally honeycomb that quarter of our satellite. But when we come to
the Mare Imbrium and Mare Serenitatis, all of the few craters there are filled to their rims with the iquid matter of a giant meteor, which, striking the Mare Imbrium with terrific force, splashed over a wide part of the moon's surface filling up the craters formed previously. (See Prof. G. K. Gilbert's address before the Philosophical Society at Washington on December 10th, 1892, and published in abstract in Astronomy and Astrophysics for March, 1893.)
Nevada City, Cal., January 29th, 1909 . Porald Beard.

CURIOSITIES OF NUMBERS.

To the Editor of the Scientific American
In a letter signed by Dr. G. Vacca, which was pubion of wheur issue of December 19th, 1 ,ob, on enressed by the difference between two squares a expressed by the difference between two squares, a
very positive denial is made as to the truth of the proposition. Also the unqualified statement is made hat "none of the numbers of the form $4 n+2$ can be xpressed as the difference between two squares." This ast statement, if made without any qualifying conditions, is certainly erroneous. A formula which will solve the problem for ©ll classes of numbers (odd, $4 n$, 4 ma be developed as follows.
Let X be the difference between two squares. Let D be the difference between the two numbers to be squared.
Let $L+D$ be the greater of the two numbers to be quared.

$$
\begin{gathered}
(L+D)^{2}-L^{2}=X \\
2 L D+D^{2}=X .
\end{gathered}
$$

This last equation, when arranged to show the value of L in terms of X and D, yields a formula as follows:

$$
\frac{X-D^{2}}{2 D}=L
$$

A mere inspection of the equation $2 L D+D^{2}=X$ s less than X. It is also plain that as D may be the difference between two consecutive numbers, the unit must be considered as a divisor.
Using the above formula, and taking any number, which it is desired to express by the difference between the squares of two numbers, for X, and with D as any perfect aivisor of that number as shown above, the this lesser number L plus their difference D is the this lesser number L plus
As for example, it is desired to express the number 21 by the difference between the squares of two numbers. It has two perfect divisors 1 and 3 whose squares
are less than 21 . Either of the two may be used for D;
say 3 is taken. Then it will be as follows: $\frac{21-3^{2}}{2 \times 3}=$
, the lesser number. $2+3=5$, the greater number. have resulted thus: $11^{2}-10^{2}=21$.
Applying this formula to the series of numbers 6, 10, 14, etc., will give results that show that it is true that these also may be expressed by the difference between
two squares. As all numbers in the form of $4 n+2$ are multiples of 1 and 2 , it follows that each may be exmultiples of 1 and 2, it follows that each may be ex squares; in some cases by more. It will work out as follows:

$\begin{aligned} 6 & =3.5^{2}-2.5^{2} \text { also } 2.5^{2}-0.5^{2} . \\ 10 & =5.5^{2}-4.5^{2} \text { also } 3.5^{2} \text { - } 1.5^{2} .\end{aligned}$

$14=7.5^{2}-6.5^{2}$ also 4.5^{2} - 2.5^{2}.
The question then arises whether fractions are ever admissible in the discussion of the properties of whole n coers. It seems plain that they shove the truth of general staters; as, for in stance, in the very simple statement that "'the square that number." $N^{2}=4\left(\frac{n}{2}\right)^{2}$. The fact that in all cases where N is an odd number, the N divided by 2 has a fractional termination, does not disprove the proposi tion at all. it is the regardess of the fact that frac tions enter into the solution. Likewise, in the propo ence between two squares, the fact that numbers in the form of $4 n+2$ can only be expressed by the dif ference between squares of numbers having a fractiona termination, does not disprove the proposition. It is true in all cases.
This is sent with apologies for offering anything so imple to the Scientific American. Frank Newcomb
Beeville, Texas, January 15th, 1909.

aeronattical notes.

the aeronautic society aeroplane.
It was announced on March 3rd at a meeting of the Aeronautic Society by Lee S. Burridge, the president, that he had concluded a contract for the purchase of a $\$ 5,000$ aeroplane for the Society's first public exhibition this year at Morris Park.
The contract is with Glenn H. Curtiss, of Hammondsport, N. Y., member of Dr. A. Graham Bell's well-known Aerial Experiment Association, who, in the Association's aeroplane, the "June Bug," built at his factory, has made many successful fights at Hammondsport, chief of which were those of July 4th last, when he won for the first time the Scientific American trophy.
Arrangements have also been made with Mr. Curtiss for him to give public demonstrations of fiight for the Society at Morris Park. The Society is converting the old race-track into a first-class aerodrome. The grandstand will accommodate thousands of spectators who will undoubtedly gather there to see Curtiss fiy, and to witness the aeroplane races which will take place.
The Aeronautic Society is thus the first aeronautical body in America to purchase an aeroplane.
The first public fiights by Mr. Curtiss in New York city are to be made at Morris Park early in the month of May.
In describing the new machine, Mr. Curtiss states that it will be in many ways different from the aeroplanes made for the Aerial Experiment Association. The main surfaces, of about 30 by 4 feet, will be parallel and not arched as in the "June Bug." It will have front and rear rudders controlled entirely by the aviator. The transverse stability will be maintained automatically by a new device. There will be many features that are novel, although not untried. The weight will be about 600 pounds, which is much lighter than the average of the machines now fiying. The aeroplane will be capable of lifting 200 pounds. The engine will be a 4 -cylinder, water-cooled motor of 25 horse power, which experience has taught is suffcient. The propeller, of $5 \frac{1}{2}$, feet diameter and the same pitch, will be mounted upon the engine crankshaft at the rear. The frame of the aeroplane will be ot spruce wood and the surfaces of rubber-impregnated silk.
The aeroplane will be mounted upon a 3 -wheeled chassis, and it can be started either by running along on the ground under its own power or by being jerked suddenly forward by a falling weight, as is the Wright machine. It will have a speed of over 40 miles an hour, and Mr. Curtiss expects to make several new records with it.
a new afronautic manufacturing company.
lmmediately following the news of the purchase of an aeroplane by the Aeronautic Society came the announcement last week of the formation of a $\$ 300,000$ company organized by Mr. C. F. Bishop, the president of the Aero Club of America, for the manufacture of aeroplanes and dirigibles. A. M. Herring, the aeroplane inventor who is under contract to supply the government with a 2 -man machine by next June, has a large interest in the new company, to which he will assign his American patents upon automatic stability devices, etc., when they issue. G. H. Curtiss is also a principal stockholder, and for the present the aeroplanes and motors will be built at his plant at Hammondsport, N. Y. The aeroplanes to be produced are to have all the improvements devised by Herring and Curtiss, and they are to sell at $\$ 7,500$ each. It is also proposed to build gliders for $\$ 600$. Capt. T. A. Baldwin will attend to the manufacture of dirigible Baldwin will attend to the manufacture of dirigible
balloons, several of which will be constructed shortly. The co-operation of the leading experimenters in both lighter-than-air and heavier-than-air apparatus should do much toward furthering a rapid development of aeronautics in America.

An Important Reduction of Magnetic
 Observations.

The variation of the magnetic needle with time and place is a matter of such vital interest to the navigator and the land surveyor, not to mention the scientific investigator, that the study and publication of data bearing on this phenomenon regularly must be undertaken under government or other auspices that will insure accuracy and completeness. The navigator must have information which will enable him to correct the courses as indicated by his compass, and the surveyor in running the lines of a piece of land as given in an old deed or other description must be able to allow for the change in direction of the old compass bearings. Therefore much practical importance attaches to the work of the Division of Terrestrial Magnetism of the United States Coast and Geodetic Survey, and this among persons interested has been heightened by the recent publication of "United States Magnetic Tables and Magnetic Charts for 1905." In past years it has been the custom of the Coast Survey to prepare magnetic charıs for some period in advance
of the date of issue, but the greater attention recently paid to magnetic studies makes it evident that the secular changes on which such charts are prepared are none too well understood in detail. Accordingly it was decided to prepare tables and charts for the year 1905 corrected to that date with all possible precision, and in the light of observations rather than the estimates. The work involved in this volume was under the direction of Dr. L. A. Bauer, who in the fall of 1906 resigned from the Survey to become director of the Department of Terrestrial Magnetism of the Carnegie Institution, and the great development into a harmonious and comprehensive plan under which magnetic research has been and is being carried on by these two agencies is in large measure due to his efforts.
Terrestrial magnetism aside from its practical application, represents an interesting aspect of modern science. Ordinarily. we conceive of the processes of nature as involving long periods of time, as in the formation of continents or in the evolution of animal forms, or at the other extreme some sudden cataclysm as an earthquake, so that when a series of natural phenomena involving a swift and ceaseless change in so short a period as five or ten years is occurring, as in the earth's magnetism, it is indeed difficult to realize and understand it. In fact the problem becomes more difficult in the development of present-day science. In the early part of the nineteenth century a famous scientist remarked that once discovered the laws of nature were simple, but to-day that statement hardly can hold where a wealth of data obtained by observation and experiment often shows conclusively that the laws of nature are complex to an extreme. Thus in looking at charts of equal magnetic declination, inclination and intensity it will be noted that the lines showing these quantities are very irregular and are not the smooth fiowing curves by which the distribution of the earth's magnetic force on land once was indicated.

Local and other conditions, shown by a number of observations, are such that to-day the irregular curves are the normal ones, and those that are regular either must be dismissed as conventional drawings or considered as based on an inadequacy of observation. The work recently published gives tables of the observed magnetic elements at many points in the United States as far as available and their values reduced to the date January 1, 1905, from observations made at over 3,300 stations, over two-thirds of which were occupied by the Survey from 1899 to 1906.

These stations averaged about 31 miles apart with an average of one for every 973 square miles. The observations were made on a common system and instrumental errors so far as possible were eliminated. In addition observations were made at sea from the vessels of the Survey. The charts accompanying the tables show declination, inclination, horizontal intensity, vertical intensity, total intensity, magnetic meridians, and secular motion and horizontal intensity secular variation eurves.

The Current Supplement.

The current Suppiement, No. 1732, opens with a strikingly illustrated article on three bird habitat groups which have recently been mounted in the American Museum of Natural History. One group shows the duck hawk and its nest on the Hudson Palisades. Another group illustrates bird life in the New Jersey Hackensack Meadows in August; and the third shows part of a colony of white egrets of South Carolina. Other articles that deserve to be mentioned are those entitled "New Process for the Impregnation of Timber," "Vacuum Distillation," "A Model Atom," "Chemical Effects of Magnetism," "Limit to the Number of Marine Organisms." Dr. H. Decker writes instructively on the subject "Man as a Machine." An estimate is made of the available coal supply of the United States. Percy Longmuir contributes an article on Alloys. Hudson Maxim's imaginative artiele on the "Warfare of the Future" is concluded. Somewhat allied is the article on military tactics and the dirigible airship. Prof. Reginald Fessenden contributes by far the most important article in the Supplement, namely, that on wireless telephony, in which he traces its history and present status. G. K. Gilbert's admirable study of Earthquake Forecasts is concluded. The usual Engineering, Science, and Trade Notes are also given:

A Chance for Rubber Heel Inventors.

The inventor of a well-known, widely-advertised rubber heel for shoes has expressed a desire to examine patents covering rubber heels, or even mere ideas. Inasmuch as many readers of this journal are inventors of rubber heels, it will give the Editor pleasure to place them in communication with this manufacturer. Inquirers should send in printed copies of their patents to be forwarded, if their ideas are patented.

THE M'CALL'S FERRY HYDRO-ELECTRIC POWER PLANT.

A most notable hydro-electric engineering project is being carried out on he Susquehanna River. It is an interesting fact that this water course, although one of the most important in the United States, has been literally running to waste. Although the river drains an area of nearly 30,000 square miles and is 350 miles in length, as yet the power developed from it has been so small as to be insignificant in comparison with what can be obtained by the plant we have referred to.
In a distance of 60 miles examined by engineers, it is estimated that this river would afford over 400 , 000 electrical horse-power, were a series of dams and generating stations installed where sites are available. The McCall's Ferry dam, as it is termed, has been built on this section at a site where it is calculated fully 150,000 horse-power can be developed. While the river is very wide at this point, an island dividing it into two channels enabled the builders to construct a barrier where the volume of water and the current at fiood height might otherwise have rendered the project impossible. As it is, plans had to be made with a view to resisting the force of the ice fields which come down the river with the spring freshets, also to provide for the great difference between the height of the river at high water and at low water, which at times is no less than 30 feet. The total width of the Susquehanna at McCall's Ferry is nearly 3,000 feet, consequently a barrier of these dimensions had to be erected. As the photographs show, the dam is an imposing structure. In height it ranges from 60 feet to 100 feet, while its width at the bottom is no less than 68 feet, tapering to the crest in a parabolic curve. An idea of the amount of material in the work is given when it is stated that nearly 400,000 cubic yards of concrete were set before it was completed. As the illustrations show, it is of the ogee type, designed especially to withstand the ice packs, also the debris which is brought down on flood currents in addition to the great volume of water
For a distance of 2,650 feet the McCall is a dam of the weir type. Consequently, it is believed that the annual fiood will carry the fioating matter over it without doing damage, since the river reaches such a height in fiood time that the depth of water on the crest of the dam will at times be fully 15 feet. The sides of the barrier, however, have been constructed of a special thickness, and are considerably higher than the weir section, being built at such an angle that they do not offer direct resistance to the water course. In fact, the engineers have taken advantage of curves and angles wherever possible, so as to divert the force of the fiood current.
The building of the main dam and the power canal necessitated much preliminary work, owing to the difficulties of placing a barrier across this water course. It was necessary for the false work to be of the most substantial character, and one of the first steps was the construction of a oother massive viaduct nearly across the river. This outlay alone was $\$ 200$,000 , because the bridge was 2,000 feet in length with a width of 50 feet, on which were laid four railway tracks. The work was necessary in order to furnish a site for the concrete and other supplies and for the mechanical conveyors which transferred the material into the bridge forms. Although the viaduct was in itself a structure which might be considered permanent, it was only built for the purpose of facilitating the construction of the dam in lieu of wooden and other false work, and was later destroyed.
It was necessary to build a cofferdam of unusual strength to meet the emergency. Work was begun upon this from the east side of the river, and the water diverted from a section of the channel about threefourths of a mile in width. Here the permanent structure was taken up, the barrier being formed in piers with a space of about 50 feet between each. After this section was completed, a second cofferdam was built from the west side, and the operation was repeated. Thus the dam in sections extended across the river, but owing to the method of construction, the spaces between the piers, left to allow the water to fiow through during the work, are easily being closed, as operations can be carried on without hindrance from the rise and fall of the river. The plan of building the cofferdam was to construct huge timber cribs, 16 feet by 35 feet, their bottoms being modeled to fit the river bed, which were fioated down by means of heavy cables and then sunk in position 10 feet apart. The spaces between the cribs were then closed with stop-logs, and the whole upper face of the dam sheathed with planks and with dirt. Dump cars pulled by small engines, which ran out over the cribs, brought the dirt from the island.
For the mixing of the concrete to be used in building the main dam and power house, the company erected a large plant. Eight Smith mixers with a capacity of 2,000 cubic yards a day were in a
building 200 feet by 50 feet. The mixers were placed under chutes connecting with bins above, which contained the crushed stone, sand, and cement used in the mixing. There were 32 of these bins in all. Next to the concrete plant a store house for the cement was erected. All the drills and the hoists on the derricks were worked by com pressed air, furnished by two 350-horse-power Corliss engines. In the same engine house was installed the dynamo that furnishes the entire works, houses, etc., with electric lighting and telephone service.

At Conowingo, 14 miles below McCall's Ferry, the company opened two im mense quarries, giving employment to 400 men The quarries are about a mile apart, one having a rock face 2,000 feet long, and the other a rock face 1,000 feet long. Both quarries are adequately tracked, and the rock as it is taken from the quarries is swung out over the tracks on large cables and then dumped into cars. These cars are drawn by engines to a large stone crusher, which the company hạs erected near the railroad station at Conowinge. The sand for the concrete is dredged from the bottom of the Chesapeake Bay off Elk River and brought to Port De-

View showing the steel forms used in molding the face of the dam.

Ferry, a distance of 21 miles. The power house which contains the electrical installation, is 80 feet by 500 feet and is equipped with ten Swiss twin-turbine motors, parallel outward flow, each with a capacity to generate 13,500 horse-power. The water which turns the wheels of the turbines passes through ten large conduits to the wheels at the rate of 16,000 gallons a second. After turning the wheels, this water is discharged into the old river bed below the dam. The main difference between this plant and the ones at Niagara lies in the fact that no wing dam had to be built, and that the water furnishing the power, instead of passing to the turbine wheels through conduits, drops down into rectangular pits in which are located the turbine wheels. This in stallation will give the McCall's Ferry plant the largest capacity of any in the United States with the exception of those at Ni agara Falls. The size of the power house can be appreciated by noting its dimensions. It is one of the most complete of its kind in the country, being equipped with permanent electrical apparatus for lifting and transferring parts of generating units and other heavy machin ery which may be in-

View of the McCall's Ferry dam and hydro-electric power plant as it will look when completed.

stalled in future. The lifting and conveying mechanism is operated by an individual motor plant.

Within a radius of 75 miles from the site of the pro ject are situated a number of manufacturing centers, including the cities of Baltimore, Washington, Harrisburg, York, Lancaster, and Philadelphia. With the
structure cannot move over a proportionally larger area.
This system of construction has the further advantage that the size of the machine may be indefinitely increased with an increase of weight only directly proportionate, whereas in machines composed

Front view of the aeroplane, showing horizontal and vertical rudders, radiator, and steering wheels: The machine is mounted upon runners placed below its central portion. .
present system of electrical transmission for power, the current can be conveyed to any of these points. Consequently, the location is adjacent to a very large source of consumption, saying nothing of an extensive mileage of street and interburban railways, which it may furnish with current." Although the current will have to compete with' steam, as fuel in this part of the country is sold at a very low price, owing to the proximity of the soft coal mines, the calculations of the electrical engineers are that electrical power can be generated and supplied to any point in the entire territory at a lower cost than steam power can possibly be generated, owing to the character of the generating machinery and the low cost and abundance of the water power.

The plan of the promoters to serve such a wide field with electric power, in spite of the competition due to the low price of steam coal, will be followed with interest, for the reason that nearly all of the generating stations recently built on water-power sites have been in sections where it was impossible for industries to be supplied with coal or other fuel except at a very high price, usually far in excess of the rates paid by manufacturers in the radius of McCall's Ferry for fuel.

Altogether, the project represents an investment of about $\$ 10,000,000$. It has been taken up after an investigation made by Mr. William Barclay Parsons Mr. Cary T. Hutchinson, and other noted experts. The work was done under the general supervision of Mr. Hutchinson.

TEST OF THE BELL TETRAHEDRAL-CELL AEROPLANE IN NOVA SCOTIA.
The accompanying photographs show Dr. Alexander Graham Bell's aeroplane "Cygnet II," which was recently tried in Nova Scotia.. The construction of the "Cygnet I" has already been described in our columns, this being on the principle of the tetrahedral kite. Dr. Bell's idea is that the difficulty experienced in aeroplanes composed of a few large planes, of maintaining the center of air-pressure coincident with the center of gravity, may be overcome by dividing the supporting and guiding planes into as large a number as possible of tetrahedral cells; as the center of air pressure upon any one pocket cannot move outside the area of that pocket, the center of pressure of the whole
of a few large planes, the necessary strength of con struction causes the weight to increase as the cube of the dimensions.
In December, 1907, Dr. Bell tested the "Cygnet I" by towing it as a kite above Lake Bras d’Or, near Baddeck, N. S. Upon that occasion the late Lieut. T. E.

The "Cygnet II" is larger and somewhat different shaped than its predecessor. As can be seen from the photographs, it is composed of a great number of tetrahedral cells, or V-shaped surfaces. The 8-cylinder V motor and radiator are mounted upon the rear of a triangular frame extending through a cut-away part of the aeroplane, at the center, while the aviator's seat is at the front of this frame. The motor, of $33 / 4$ inch bore by 4 -inch stroke, develops 35 horse-power at 1,000 R. P. M. It drives the large propeller by means of sprockets and chain. The propeller makes 1,500 R. P. M. to 1,000 of the motor. This engine will develop 50 horse-power and it weighs complete, but without water, 202 pounds.

A double-surface horizontal rudder and a single vertical rudder are arranged upon a bamboo frame that projects out in front. Both rudders can be operated by a single steering wheel. The aeroplane is mounted upon three runners for the purpose of testing it upon ice.

It was not supposed that the power of the engine would be enough to start the machine or even to maintain a sufficient speed to support it in flight, but it was proposed to determine, by observation of the difference between the towing force required to keep the machine suspended with and without the engine, how much power would be required in free flight.

Unfortunately, however, the propeller shaft sheared off early in the trials and no positive data were obtained. That the fault was not with the engine was sufficiently proved by the later success of the latter in the aeroplane "Silver Dart" to which it was transferred.

After having previously made over a dozen practice flights at Hammondsport, N. Y., Mr. J. A. D. McCurdy flew completely around Lake Bras d'Or, a distance of about $41 / 2$ miles, at 'a speed of about 40 miles an hour and at an elevation of about 30 feet, on February 24th.

The aviator and power plant of the ${ }^{\boldsymbol{\sigma}}$ Cygnet II."
Much of the framework is constructed of bamboo. The aviator sits at the front end of a triangular body frame while the motor and radiator are located at the rear of this frame.

Selfridge went up to a height of 168 feet, and remained aloft for seven minutes. He was greatly impressed with the stability of the kite and the feeling of security he had when in it. An illustrated account of this test was published in Supplement No. 1681.

A trial flight of half a mile made the day before was the first to be made by any motor-driven aeroplane in Canada. Mr. McCurdy is anxious to compete for the Scientific American Trophy, and he may attempt to make the $\mathbf{2 5}$-kilometer flight required before he returns.

Rear view of the aeroplane, showing its shape and the arrangement of the tetrahedral cells. The large wooden propeller is chain-driven from the 8-cylinder engine placed below.

The 50-horse-power, 8 -cylinder water-cooled Curtiss motor. The valves are of the concentric type, mechanically operated. Copper water jackets The valves are of the concentric type, mechanical

A WIRELESSLY-CONTROLLED TORPEDO.

The attempts made by Tesla in this country, by Orling at. Stockholm, and by Armstrong at Portsmouth to control torpedoes by the wireless transmission of impulses, have recently been repeated in France by an engineer named Gabet, who seems to have attained more satisfactory results.

In appearance Gabet's torpedo resembles the standard Whitehead. Above it a float or longitudinal buoy is supported, which serves to carry the aerial and to serve as an indicator of the torpedo's direction of travel and its position. The length of the torpedo proper is $291 / 2$ feet; its weight is 8,800 pounds; its explosive charge is $1,980^{-}$pounds.
The experiments recently conducted at Chalons were limited to tests of buoyancy and stability. More rigorous trials, which will reveal any inherent defect in maneuvering ability, will be conducted at Paris on the Seine.

The torpedo necessarily includes in its construction a means for operating propelling and steering apparatus by wireless signals without interference. The main feature of the controlling mechanism is a kind of paddle wheel, which closes the proper electric circuit by bringing the corresponding blade of the wheel into horizontal position. The wheel is driven by a pawl attached to the armature of an electromagnet, each closure of the magnet circuit bringing the blade into the position occupied by the preceding blade. By sending short impulses, the operator can bring the blades successively into horizontal or contact position, and stop the rotation when the desired blade has reached that position. Obviously, several other blades besides the right blade are brought into the contact position during this process. To prevent the closure of the corresponding circuits, and to permit only the right blade to complete a circuit, Gabet delays the electrical action of each blade, so that the unrequired blades may turn without electrically disturbing the mechanism. Only the proper blade is held in place long enough to complete its circuit. To this end, each blade carries a serpentine glass tube containing a little mercury. When the blade is in its uppermost position, the mercury naturally collects at the lower end of the tube. When the rotation of the wheel carries the blade below the axis, the mercury naturally flows down to the outer end of the tabe. If a blade is arrested in the contact position, it is slightly inclined downward, so that the mercury winds slowly from one end to the other or contact end of the tube. Five seconds elapse for the transit. Hence if the impulses are made at intervals of less than five seconds, none of the circuits that operate the torpedo is closed until the desired blade has reached the contact position, and has been allowed to remain there longer than five seconds. Each operating circuit terminates in one of the rings shown on the axis of the wheel.
If the wheel has eight blades, two can be used to make and break the circuit of the magnet which drives the wheel and six to accelerate, re tard, or stop the torpedo, and to turn its rudder to the right or left, or to hold it straight. As each blade arrives at the contact posi tion, a light flashes up so that the operator on ship or shore can follow the torpedo's behavior. Five seconds are always allowed him to correct mistakes.

Waluable Postage Stamps.

Postage stamp issues of the Canal Zone, Porto Rico, the Philippine lslands, and Cuba have recently had a decided influence on the stamp values, owing to the fact that collectors have found odd issues among these stamps. Many new prices will be placed in the 1909 catalogue for the first time.
Among these are the stamps of Puerto Principe, the chief of these rarities being the orange-brown stamp surcharged "3 Cents" on a Cuban stamp of the denomination of 3 milesimas. This stamp has been erroneously quoted by some of the foreign catalogues at $\$ 30$, although recently a specimen sold for $\$ 87$, and is now catalogued. in this country at $\$ 100$. The new quotation on the used 3-milesimas orange-brown stamp of the same issue, with the " 3 Cents" surcharged, but with the letters on the surcharge : upside : down; is worth to-day $\$ 75$. The 5 -cent surcharge on the unused 1-milesima

The paddle-wheel signal distributor. (Eight blades.)
orange-brown stamp is now catalogued for 1909 at $\$ 75$, and the same stamp which has been used for postage holds to the same value as the unused. Of the Puerto

Diagram of a distributor with four blades.
Principe blue-green stamps with the black surcharge very few were quoted in the catalogue for 1908, but the book for 1909 will show many new prices far above
the previously quoted ones. Among these the used 5 -cent surcharged on the 2 -milesimas blue-green stamp is quoted at $\$ 65$, and the 5 -cent on 4 -milesimas bluegreen stamp is quoted at $\$ 100$; the 3 -cent surcharged on the 1 -milesima blue-green stamp is listed at $\$ 30$; the 3 -cent on 2 -milesimas blue-green at $\$ 40$, and the same stamp showing the misspelled surcharge "eents" for "cents" has by its rarity been boosted to $\$ 60$.
Many errors were made in the printing of the Canal Zone stamps, all of which are valued highly. The price of the used 5 -cent blue stamp, with the inscription spelled "Panaam," is placed at $\$ 20$ in the new catalogue. Another stamp of the same kind, but with a final " A " raised, is to bring $\$ 25$, and a third with a bar at the bottom is valued at the same price.
The greatest attraction to the collector of the surcharged Cuban and Canal Zone stamps is their very recent issue, and careful watch of correspondence often enables a colfector nowadays to pick up a rare specinen of these makeshift stamps which happens to be floating áround.
The recent changes that have been made in the value of the Philippine stamps are marked. The one real slate-blue stamp of 1854 , showing the misspelled word "Corros," is now recorded with a value of $\$ 80$ unused and $\$ 75$ for the used ones. The 5 -cent pale vermilion stamp of 1855 is now listed at $\$ 65$ unused and $\$ 27$ used. Another error stamp is the 8 -cent on the 100 -milesimas carmine stamp of 1879 , with the inscription," "Coreros." This stamp, is listed at $\$ 3$ used and $\$ 15$ unused. The Philippine stamps of 1881-8 issue, with the surcharge inverted, are now quoted at good prices. The 20 -cent on 8 -cent brown inverted surcharged stamp is listed at $\$ 10$, either used or unused, the 2-cent on 248 -cent ultramarine inverted surcharge stamp at $\$ 20$, and the 10 -cent on 2 -cent carmine inverted at $\$ 12.50$, unused.
Quite a number of substantial increases have taken place in the value of certain Chinese stamps. The unused 3 -cent red stamp of the 1877 issue, with $\$ 5$ surcharged in black, advanced from $\$ 25$ to $\$ 40$. Of the Chinese 1873-5 issue, the 16 -cent green stamp surcharged "3 Cand" (candareens) is now placed in the catalogue at $\$ 75$, unused. The 8 -cent gray-blue stamp surcharged " 1 Cand" is likewise valuable, having recently been catalogued at $\$ 60$ in either the used or unused condition. The Chinese 12 -cent light brown stamp, with " 1 Cand" surcharged of the 1877 issue, is priced at $\$ 75$ unused and $\$ 65$ used. A variety of the Chinese recent issue of 1893,5 cents in denomination, blue and black in color, with the black inscription inverted, when unused is valued at $\$ 30$.

That man is prone to error is shown by the many mistakes made in the engraving of plates and the printing of stamps. It would seem an utter impossibility for so many slips to happen where a work is checked and proofed by a great number of persons, and it only goes to prove the old saying that the man that never makes a mistake does not exist.

Electrolytic Reduction of Indigo. An attempt to reduce indigo to indigo white by the electrolysis of a solution of sodium carbonate containing finely divided indigo in suspension having proved unsuccessful, the failure was attributed to the possible recombination of the nascent hydrogen atoms into inert molecules, before coming in contact with the particles of the indigo.
The correctness of this theory was proved by the success of the experiment when a conducting powder, graphite or metal filings, was mixed with the indigo. The caustic soda which is set free by electrolysis aids in effecting the compowders are too coarse or insuffibut its practical application preIn theory, the process is perfect, plete solution of the indigo-white. sents certain difficulties. The mixtration by and suspension in the ture of the conducting powder and indigo must not be so intimate or so compact as to prevent its peneliquid. The electrodes must be of uniform character and must possess a moderate degree of conductivity, as otherwise the reduction takes place only at the edge of the cathode, and the yield is diminished. It is diminished, also, if the ciently mixed. About $41 / 2$ kilowatt hours are required for the reduction of 1 pound of indigo.

The Editor of Handy Man's Workshop will be glad to receive an hints for this department and pay for them if available.

ANNOUNCEMENT.

Several letters have recently been received from readers of Handy Man's Workshop asking for articles on special subjects. The editor desires to keep in touch with the requirements of all who are interested in this department of the Scientific American and as far as he is able is glad to respond to any sug gestions they may offer. The instructions for making a brass furnace, and the two articles on fireless cookers, published below, have been prepared in response to special requests. The editor has been asked to publish directions for making a small flash boiler for use with a 1 -horse-power engine. Possibly some of the readers of this department could furnish good practical suggestions on this subject.

A CHEAPLY-CONSTRUCTED FIRELESS COOKER.

 by EDWARD THORPE.

 by EDWARD THORPE.}A cheap and efficient fireless cooker was made by the writer as follows: A box measuring $341 / 2$ inches long, 12 inches wide and 16 inches deep inside measure was bought from the grocer. After lining it well with newspapers lapped at the corners and tacked in place, a bed of newspapers A was placed on the bottom to a depth of 4 inches. The false bottom B was then nailed above them, and a sheet of asbestos placed upon it.

Three pieces of sheet zinc, $7 \times 261 / 2$ inches, were made into CROSS SECTION THROUGH ONE cylinders and soldere OF THE ZINC CYLINDERS. at the joint. Thes cylinders were then soldered to a sheet of zinc, D, cut to fit the false bottom, B, the cylinders being spaced 10 inches between centers. To facilitate the soldering of the cylin ders E to the zinc plate D, small ears may be left in the cutting and bent outwardly.
Three holes the diameter of the outside of the cylinders, 10 inches between centers, were made in a board $F 341 / 4$ inches long and $81 / 2$ inches wide, and nailed in place around the cylinders, the cylinders being nailed to the board F. A strip of asbestos was then wrapped around each cylinder and tied in place with string.
The space around the cylinders was now well packed with sawdust, K, and the small strips of wood, f, were inserted and nailed to the box to complete the shelf F. Three half bricks, G, and three enameled-ware pails $5 \times 61 / 2$ inches covered by an old feather pillow F, which in turn was pressed firmly over the pails by a hinged lid, L, held closed by a suitable fastening, completes the cooker. To improve the appearance of the box the outside, with the exception of the bottom, was padded with paper tacked in place and covered with cretonne. Handles placed at the ends were found useful as well as ornamental. The novelty and efficiency of this cooker lies in the use of the halfbricks, G, which being placed around the gas burner, or on the stove with the pail resting on them, while bringing the contents of the pail to the boiling point,

a cheaply-constructed fireless cooker.
absorb considerable heat (the hotter they get the better). They are then used as shown in the illustrations.

FURNISHING THE WORKSHOP.-IV.

 by i. g. bayley.(Continued from the issue of February 2才th.) A Shoulder chest.
When called to do outside jobs, it is very necessary to have some suitable box or chest in which to carry

CONSTRUCTION OF THE CHEST.

a few tools, either in the hand, on the shoulder, or on the back if a bicycle is used. The writer is acquainted with a mechanic who took more interest in making his shoulder chest than any other furnishings of his shop, claiming that it would be an advertisement of what he could do if called upon.

The chest is illustrated in Fig. 8, and detailed in Fig. 7. A trunk strap was put through the handles and thrown over the shoulders, when he mounted a wheel to go to his job, or the strap shortened to make a comfortable handle, if within walking distance of his employment.
The chest should be made from half-inch stuff; chestnut being a good wood, on account of the grain showing off to an advantage when the finished article is given an oil polish.
Select a prettily-grained piece of board, sufficiently large to cut the whole box. The sides are to be

marked out in such a way that when the chest is put together, the markings of the grain will match all round, as seen in Fig. 8.
The detail view, Fig. 7, gives a general idea of the construction, and needs but little explanation. The board from which the sides and ends are cut is 8 inches wide by 7 feet in length, accurately divided into four parts, 9 inches and 2 feet 9 inches long, and the edges chamfered 45 deg., when they should be nailed together with long fine nails, and glued. The beaded finishing strips, top and bottom, are cut in the same manner. The top strip is 1 inch deep, and the bottom $11 / 2$ inches. The strips of wood from which they are cut are 7 feet 4 inches long. Allowance must be made for the saw cuts, both in the sides and the strips. The bottom is made from a plain board, 9 inches wide by 2 feet 9 inches long. The top is $5 / 8$ inch thick, $101 / 8$ inches wide, and 2 feet $101 / 8$ inches long with a panel $1 / 8$ inch deep, gouged at the corners and chamfered down to $3 / 8$ inch all round, $11 / 2$ inch from the edge, as shown in the illustrations. When the mitered edges of the sides and the finishing strips are glued, they can be held until perfectly dry, by an arrangement of blocks and cords, as shown in Fig. 7. There should be a clearance space between the lid and the box, all around, of about $1 / 16$ of an inch. The corners throughout should be nicely rounded, so that there will be no sharp edges to annoy one when carrying the chest.

Hinges and a fiush lock should be nicely let in the front and back, as shown in detail in several of the
iews. The hinges must be attached to the box first and then to the lid, when open full. A neat brass chain will prevent any accident of the lid opening too far. The handles should be fairly strong, and attached very securely to the ends of the chest. A neat tray 3 inches wide by $11 / 2$ inches deep, of $1 / 4$ or $3 / 16$-inch stuff, is made to fit the chest.
(To be continued.)

an electrical fireless cooker.
 by frederick e. ward.

The so-called "hay-stove" or fireless cooker has now become so popular and its advantages so well known that it is hardly necessary to call attention to them. One serious drawback to its general use, however, is the fact that the food to be cooked must first be heated up to the boiling point on a stove of some kind be fore it is placed in the cooker. This is not only inconvenient, but in warm weather it goes far to defeat one of the important objects of the fireless cooker namely, the elimination of heat from the kitchen.
Wherever there is a supply of electric current available it is quite feasible to combine the electric heating and fireless cooker principles in such manner that the food may be placed in the cooker cold and the current be turned on for about fifteen minutes to heat it up, for which time the cost for electric power will be only about three cents.

In its general construction such an electrical fireless cooker may be made as shown in the sectional view, where A is an ordinary stone crock with cover, imbedded in a suitable heat-insulating packing, B, such as mineral wool, and covered with a mattress, C, of the same material, the whole being contained in the wood box, D, having a hinged cover, E. For an

Fig. 1.-SECTION OF THE ELECTRIC COOKER AND method of making the heating coil.
average-sized cooker an ordinary four-gallon stone crock, which measures $101 / 2$ inches in diameter inside by about the same in height, will be found to be well adapted to the purpose.
To make the electrical heating element suitable for use on a circuit of about 110 volts, procure 70 feet of bare No. 18 " 30 -per-cent nickel" German-silver wire. Such a piece of wire should have a resistance of about 12 ohms, so that when connected to the mains about 9 amperes will pass, and the heater will thus consume about 1,000 watts. As 70 feet of the wire will weigh only $1 / 3$ of a pound and cost but a few cents, it is advisable to buy a pound of it, so as to have a couple of extra pieces on hand to use when repairs become neces sary.
To form the heating coil, first anneal the wire by heating it to a dull red (but not white) heat in a suit able fire or gas fiame, and after allowing it to cool form it into a helix by winding it closely on a metal lic rod $5 / 16$ inch in diameter and about 36 inches long See Fig. 1, G. It is best to do this winding in a lathe if possible, as hand work is not. only tedious, but the coil is likely to be uneven. After winding slip the

Fig. 2.-ARRANGEmENT of the heating ELEMENT.
helix off the rod, take hold of one end in each hand and stretch it to a length of about five feet. This will separate the individual turns of wire so that they look something like Fig. 1, \boldsymbol{H}.
The support for the heating coil, Fig. 2, A, should be made of a piece of asbestos board or magnesia board $1 / 4$ inch thick and of such a diameter as to fit easily in the bottom of the crock-in this case about $101 / 4$ inches. If the asbestos or magnesia boards cannot be obtained, a good substitute may be found in slate, or in a disk of $1 / 16$ inch thick sheet iron covered on top with several thicknesses of asbestos building paper. Ten porcelain insulators, each about 1 inch in diameter by 1 inch high and having a shallow groove near its upper end, should be fastened to the base with fiatheaded stove bolts in the positions shown. When stretched on these insulators zigzag fashion, the heating coil will be retained in the grooves by its own elasticity. For the electrical connection to the heater use two pieces of No. 14 white asbestos-covered copper wire, each about two feet long. Attach these to the German-silver wire by twisting the ends, and tie them securely to the end insulators with wire. Place the heater in the bottom of the crock and bend the terminal wires close up against the inside of the latter and over the edge, so as to be out of the way of the cooking vessels that are to stand on the porcelains. The outer ends may be attached to a double-pole knifeswitch mounted on the side of the cooker.

The electrical connections to the house circuit must be of a substantial character. Do not try to connect the cooker to a lamp socket or with small lamp cordneither will carry the current safely. If no baseboard receptacle has been provided in the kitchen, wire all the way back to the panelboard with No. 14 rubbercovered wire and provide a pair of inclosed 10-ampere fuses. It is well to remember that it will be necessary to move the cooker occasionally, so that it is worth while to make provision for easily disconnecting it.

The operation of a cooker made as described is very simple. The prepared food is put in a covered tin vessel of suitable size and placed on the heater in the bottom of the crock, after which everything is closed up tightly. The current is then turned on for ten to twenty minutes, depending on the quantity and kind of food to be cooked, after which the cooker will keep hot for several hours. A little experience soon teaches one how long to keep the current on, and then the whole operation becomes as easy as the boiling of an egg in the old-fashioned way. In the cooking of roast meats it is well to apply the current a second time for two or three minutes after an hour has elapsed.

No danger of fire is to be anticipated from a cooker made and installed as described, but it is almost selfevident that if one were to forget to turn off the current both the food and the heating coil would soon be destroyed, since the heat is generated very rapidly and has no means of escape. To guard against such a mis hap, procure about a foot of $1 / 8$ inch brass or copper tubing and a very small whistle. Arrange the tube so that one end opens into the crock alongside of one of the connecting wires while the other end passes out through the wood case. To the outer end solder the whistle in such manner that it will be blown by steam escaping from the crock. With this device in working order, if the current be left on too long the steam escaping from the food will sound the alarm in good time.

HOME-MADE BLOWPIPE.
 bY F. d. sweet.

The blowpipe shown in the accompanying illustration will be found a very useful adjunct to any mechanic's workshop. For tempering tools, heating soldering irons, brazing, and melting metals in a crucible, 'it answers the purpose of the more expensive outfits, which the amateur as a rule does not feel able to invest in. Furthermore, there are no bulky air

tanks and pumps to take up room, which to most amateurs means a great deal. The one illustrated can easily be carried in the pocket, so it is evident that the space required is indeed small. To construct one of this size, about 6 feet of copper or brass tubing $5 / 16$ of an inch outside diameter will be required, also 2 feet, of band iron about $1 / 16$ of an inch thick by $3 / 4$ of an inch wide. Before bending the tubing to the required shape, it is necessary to fill it with lead or sand to prevent buckling. Either of these will be found to give good results, though for the smaller sizes of tubing lead is preferable. It is not advisable

THE BLOWPIPE IN USE.
to attempt pouring the molten lead in the tube, as it cools too rapidly. The safest way is to use wire solder. A piece two or three feet longer than the tube will as a rule be enough. The lower end of the tube will have to be closed by hammering it down. Insert the wire solder, hold the lower end of the tube over a fiame to melt the solder, at the same time pressing the wire slightly. Move the tube slowly over the fire and it will quickly melt the lead, and one may feel sure there are no bubbles. To form the coil, use a round bar about $7 / 8$ of an inch in diameter. A broom handle will prove useful. It is best to reduce the nozzle a slightly, to increase pressure of the gas as it becomes heated in the coil. After this is done, and the coil assumes the shape shown, we can proceed to remove the lead, which may be easily done by heating over a fire until the lead melts, then by shaking slightly it will run out and leave the tube clear. The valve may be dispensed with, and a rubber tube from a convenient gas jet may be slipped on.

UNSCREWING A TIGHT JAR TOP.
 by a. r. van der verr.

The writer desires to thank the Handy Man's Workshop for a suggestion that was printed in the issue of November 7th, 1908. The item referred to is the description of an improvised pipe wrench, consisting of a lever passed through a loop of rope, which is coiled about the pipe. When recently called upon to unscrew a jar cover that resisted all other efforts to loosen it, the writer bethought himself of the rope and lever pipe wrench. A length of strong twine was procured, and coiled double around the cover. Through the loop in the end of the doubled twine, a

UNSCREWING A TIGHT JAR TOP.

stick of wood was inserted. Then with the thumb of the left hand pressing lightly against the twine to prevent it from slipping, it was an easy matter to pry open the cover with the right hand in the manner illustrated in the accompanying photograph.

CONSTRUCTION OF A SELENIUM CELL.

by J. carlton paulmier.
The materials required for the construction of a selenium cell are as follows: Twelve feet of spring brass $1 / 2$ inch wide, $1 / 16$ inch thick, two small machine screws, two 3 -inch bolts and nuts, a piece of thin mica 6×12 inches, $1 / 4$ ounce of selenium, a small piece of thin board, some wood screws, and a piece of glass about 3×3 inches.
From the brass cut 40 pieces 3 inches long, and drill a hole to take the bolts, $1 / 8$ inch from one end. Also make up 39 washers by cutting pieces $1 / 2$ inch long and drilling holes in the center. From the mica cut 39 pieces $21 / 2$ inches long by $5 / 8$ inch wide. Take half the brass strips, place a washer between each, pass a bolt through the holes in the ends, and screw up the nut. Do the same with the rest of the strips, and you have two sections of the cell.

Now slide one section into the other, tighten up the nuts, and place in a vise. File down and polish the edges of the strips so as to form a perfectly smooth surface on one side.
Next separate the two sections again, place a piece of the mica between each strip, so as to insulate one section from the other, then assemble as before, being careful to get the top surface perfectly level and smooth.

Take another piece of the brass, $41 / 2$ inches long; $1 / 2$ inch from each end drill and tap a hole to take the machine screws, and bend up $3 / 4$ inch of each end. Use this piece to clamp the two sections together in the center, being careful to insulate it from them. After making sure that the sections are properly insulated from each other, the selenium may be applied as follows: Hold the brass over a fiame until the selenium melts freely, then rub the stick of selenium over the polished surface. If the brass is hot enough the selenium will adhere readily, but if too hot it will burn off. After applying the selenium, and while it is still soft, pass. a knife blade lightly over the surface. This removes the surplus selenium, and leaves a thin smooth coating.
Now bake the cell in an oven for one hour, having the temperature just below the melting point of the selenium. Then take out and allow to cool in the open air.
Make a box with a glass cover, and wedge the cell in this with small pieces of wood. Fasten two binding posts in one end, and connect each binding post to one of the sections. The cell is now complete.
The advantages of this type of cell are that it is easy to get the top surface of the brass strips perfectly smooth; and as the insulation is of mica, there is no danger of burning it and thus spoiling the cell. It is not necessary to tin the edges of the brass strips, and it is better not to do so, as the solder used in tinning is apt to melt and run between the strips, short-circuiting the cell.

HOME-MADE BRASS FURNACE.
 by ALBERT F. BISHOP.

The accompanying sketches show how the amateur can make a brass furnace. One of the views represents the furnace set up in the pit, which is best made by bricking up, leaving room enough in front for removing ashes and clinkers. .The grate is held up by placing a brick under the front projection. It is important to have the draft warmed before entering the furnace at the bottom. The pit produces this result. The form of the tongs and crucible are outlined, although they are pretty well known. Another view represents the parts separated. It will require three patterns; one pattern for the rings with about a 10 -inch hole, made of wood about $7 / 16$ of an inch thick and 13 inches square. Put a lug underneath for hanging the grate. This pattern will answer for top and bottom. The cylinder is made of heavy sheet iron, joint riveted. Cut out an opening near the top for the stove pipe, which can be attached to any ordinary chimney.
The diameter of sheet iron is $123 / 4$ inches and height 20 inches. Fill up the inside of the sheet iron with fireclay even with the hole in top ring, which should be $11 / 4$ inches thick; but it would be much better to make the lining thicker if the furnace is to be used a great deal. The cover on top should be cast iron, cast from a pattern about $1 / 2$ inch thick and $111 / 4$ inches in diameter, with a small fiange on the bottom edge and an iron rod put in the center standing up about 3 feet high. Grate pattern should be about $91 / 4$ inches diameter outside, with ordinary straight bars, and with lugs as represented in the sketch. Four $5 / 16$ inch rods will answer to clamp the rims together. Project the brick outward for the bottom ring to rest on while building the pit. This will take the weight of the furnace. In operating, start a coal fire in the bottom of the furnace, place the crucible on the fire, then pack coal around it to its full height. Put in the metals as desired.

A HOME-MADE BRASS FURNACE.

RECENTLY PATENTED INVENTIONS.

Pertaining to Apparel.

WRISTLET.-R. N. THomas, Shenandoah, Towa. The body of the wristlet is composed
of an approximately rectangular sheet of flexi le material such as leather, and the two straps are connected with the sheet by mean of slits. The rivets are prevented from contact with the skin by the straps passing there under. Only one rivet is needed for each of
the portions, and no additional material is equired for attaching the buckles.
SKirt.-W. Epstein and S. Epstein, New York, N. Y. The aim in this instance is to provide a skirt or petticoat provided with an expansible and contractible waistband for use
in fitting different sized waists, and arranged in fitting different sized waists, and arranged
to form the desirable dip at the front and to to form the desirable dip at the front and to
dispense with the undesirable slit or placket at the back.

Electrical Devices.

CONTROLLER FOR ELECTRIC MOTORS.R. L. Munson, Seattle, Wash. The invention is in the nature especially of that form of
controller of compact limits and portable char acter known as starting-boxes, the same being also capable of use as "phase splitters." An
object is to provide a starting box which can ee either dust proof or of ventilated pattern in which easy access may be had to the re
sistance coils for conveniently inspecting, resistance coils for conveniently
pairing or replacing the same.
CIrcuit-Closer.-W. E. Hubbard, Den nis, Texas. The special object of the inven-
tion is to provide a timer or circuit close fion is to provide a timer or circuit closer terminals are not only insulated from each other, but are also insulated from the engine frame. In this patent stray currents cannot deplete the battery and the minimum amoun electricity may be employed.
DISK-INSULATOR.-L. Steinberger, New York, N. Y. This invention enables several
disks of insulating material to be locked together upon a pin independently of the sup port for the pin; enables the disks to fit
together watertight without undue strain upon ogether watertight without undue strain upon their material; provides the disks with cor
rugations of various kinds for providing in creased surface for surface leakage; facilitates drainage of moisture to render it harmless enables certain disks to be screwed directly together independently of the support; en
ables the disks to be readily removed; and provides an insulator disk as an improved article of manufacture.
CIRCUIT - CONTROLLER. - S. Holland Park River, N. D. In the present patent the nvention relates to ignition devices for multi ple cylinder explosion engines, and its object
is the provision of a new and improved ciris the provision of a new and improved cir
cuit controller, arranged to permit of varying the time of the contact, to take up wear to a minimum, and to prevent oxidation of the contracting parts, thus insuring at all ti ELECTRIC-CORD RETRIEVER. - W Rew, Eureka, Cal. The construction comprises a reel or spool upon which the cord is wound, and the invention resides especially in the construction of the reel, which facilitates
the attachment of the electric wires and the arrangement for conducting the current t them through the device. It also resides in the mechanism for controlling the rotation th the reel and locking it so
length of the pendent cord.

Of Interest to Farmers.

CULTIVATOR.-J. T. Miller, West, Texas, pre object of this invention is to prove low can be quickly and conveniently set to any desired pitch for use in deep or shallow plow-
ing, and without requiring the loosening of bolts or like cumbersome manipulations. COTTON-CHOPPING MACHINE. - E. McReynolds, Stanford, Ill. This invention has reference to a class of implements em
ployed for use in removing alternate equa ployed for use in removing alternate equa
portions of growing rows of cotton plants, portions of growing rows of cotton plants,
permit access to the blocks of plants left re maining, and promote their growth by sub sequent cultivation around the plants.
TAPPING DEVICE FOR COTTON-PRESS preferably used in those ba. The device is bale chambers which can be swung under the tamping device and the cotton packed down into one chamber, while the cotton in the
other chamber is being compressed by a hydraulic plunger or other suitable means. CHECK-ROW PLANTER.-O. BROWN, Mo rison, Iowa. The more particular purpose
here is to provide a type of planter, in which the spacing apart of the hills in the genera
direction of travel of the planter is done direction of travel of the planter is done
without the necessity of a stationary actuat ing wire. Means are provided which are con trollable by the automatic action of the ma-
chine for varying the spaces between the hill so as to render the same suitable for land surfaces of varying conformity as the machine
passes over such surfaces. harvester.-C. M. McCormick. La Junta Colo. The invention relates more particularly
to machines for harvesting crops such as sugar to machines for harvesting crops such as sugar
beets, and the like. Specifically, it relates to one having a topper for removing the top or leaves of the beets, and including means
for severing the leaves which lie upon the
ground as well as the standing beet tops from
the roots. Mr. McCormick has invented anthe object of the im ment is orovide an apparatus for use for an be operatively and inoperatively arranged a plurality of positions in which a feeder provided for laterally in whisplacing a feeder eet tops or other foreign bodies from in front of the plow, as the latter travels along.
SEED-PLANTER.-W. A. Rockwell, Har-SEED-PLANTER.-W. A. Rockwell, Har-
iman, Tenn. In the present patent the improvement pertains to the plunger attach means for use in governing the discharge of seed from the hopper and the wheel. The nvention is not limited to corn or peas, but is available for planting oats in drills, also
or planting sorghum, cane-seed, beans, etc SEED-BOX.-A. G. Yates, Friend, Neb. The box is such as is used in connection with seed depositing implements. The object of the in-
vention is to produce a box having means for vention is to produce a box having means for
dropping different numbers of seed or seeds dropping different numbers of seed or seeds
of different sizes. The seed-box is particularly of different sizes. The seed
applicable to corn-planters.
GATE.-P. H. WILSon, Talent, Ore. Thi winging gate is of a type usually termed farm gate and employed for guarding open-
ngs into fields from a roadway. The object of the invention is to provide novel details of construction for a gate, and afford means for manually
rections.
Shock-LOADER.-E. Pitcher, Verona, N. D. The loader is designed to continuously pick prain shocks and discharge them on a de-
ivery mechanism while still in an upright position, and by the mechanism convey them a wagon. In this manner of gathering up she shocks they are not roughly shaken,
much grain is thereby saved from waste.
COTTON-CHOPPER.-S. T. HogAN and COTTON-CHOPPER.-S. T. Hogan and F.
KNETSCH, Jr., Creedmooe, Texas. When the KnETSCH, Jr., Creedmooe, M a field gearing means rotate the shaft, thus swinging the ade of a hoe into and out of contacers the front end of the frame to cause the hoe to cut more or less deep in the ground and
nother lever moves the frame longitudinally nother lever moves the frame longitudinall otton row regardless of the position of the angue. The frame is tilted both vertically and longitudinally with respect to the tongue troke of the hoe and to adjust the trans verse position of the impact.

Of General Interest
MULTIPLE COLOR AIR BRUSH.-E. J. razier, Buffalo, N. Y. The invention relates zers in which a plurality of containers are mers in which a plurality of containers different fluids may be sprayed from a single device and under the influence of a single air jet. It is primarily designed for spraying paints and colorse where it is desi
APPARATUS FOR APPLYING INTERNAL MASSAGE.-F. L. TALCOL, New York, N. Y The invention is designed for the cure of in ammation of the prostate gland, whether of
a acute, sub-acute, or chronic nature, and elieving all symptoms arising therefrom. The water, or other fluid, at the proper temperature, which by a succession of intermittent hydraulic pulsations is made to impart a massage effect, without the water actually coming in contact with the walls of the passage into wich the instrument is inserted.
FIRE-ESCAPE.-P. Nigro, Clarksville, Tenn. The frame is placed on the wearer's shoulders with the opening engaging the neck, and the
crossing of the straps on the back. The free rossing of the straps on the back. The free
ends of the strap are then brought upwardly ends of the strap are the brought upwardy under the arms and to the opposite shoulder eing buckled around the waist. The wearer ow engages the loops with the hands and is
prepared to leap, the air imprisoned beneath the fabric material serving to uphold the wearer and break the force of the fall.
POTTERY ORNAMENTATION. Rock, Yokohama, Japan. The ornamentation is arranged to produce a permanent glass on porcelain vases and other pottery rticles, in such a manner that the colorless ransparent glass beads are fused in position on the body of the pottery article by a fusing
pigment which produces color effect in any pigment which prod
SHow-CaSE.-A. C. Ucker, Everton, Mo. The inventor's object is to provide a showcase which is open at the bottom and in which
is disposed a frame with shelves, the frame being. readily removable through the opening in the bottom of the case and being held catch.
MOLD.-L. DIAz, Habana, Cuba. The invention relates to the manufacture of tiles, fags and like articles, and its object is to
provide a new and improved mold, arranged to permit of quick opening of the mold frame for removal of the pressed article, and to
allow convenient handling of the mold plate allow
or die.
DETACHABLE HOOK FOR SHAFT-WORK C. O. Vowell, Red Lodge, Mont. The ob
ject of the invention is to provide a hook
which may be used as a safety device for the
protection of the .lives of miners who are
carried up and down a shaft it is applicable to certain types of elevators whic are drawn up and down a shaft by means o cables attached to the upper part of a cage
and which pass over pulleys at the top of a gallows frame.
projecting apparatus.-V. e. Mellre New York, N. Y. The invention involves box or cabinet, having a plurality of mirrors
arranged upon the inner surface of the walls of the box, so that the light rays from the odies will be reflected and converged through project the image upon the screen.

Hardware.

HOSE-CLAMP.-P. E. Erickson, Port Ches ter, N. Y. In this patent the object is to strengthen hose clamps at points subjected to the greatest strain, i. e., points where the nut
for the screw is applied, and the bearing for he inner end of the screw; and further aug ment this strengthening by locating the screw able.
BRIDLE AND THROAT-LATCH SNAP. L. Miller, Yazoo City, Miss. The more vide a device which may be applied to throat latch straps, to slide thereon and snap int engagement with the straps, to more quickly and conveniently secure the latter in the ad justed position on the horse's head, without use of the ordinary buckle.
TOOL-HOLDER.-G. F. Krieger, Grand Rapids, Wis. This holder has an adjustable member which will enable a tool to be clamped adjustably upon the tool holder in any desire positon, the construction being such that th the tool upon the adjustable member also erates to secure the adjustable member upo the body of the tool holder.
AUTOMATIC WINDOW - LOCK. - A. Davis, New York, N. Y. In the present inlocks that are used upon windows, sliding doors and analogous closure members, the spe cial purpose of the inventor being to increase the adaptability and uses of a
kind by changes in its structure
PAPER-CLTP.-C. W. SANDERS, Chicago, Ill. The clip is made of suitable spring wire and can, if desired, be made in various sizes, the
usual size being about one inch square, and usual size being about one inch square, and
it may be plated or otherwise finished. The it may be plated or otherwise can fold over the same readily, whichever side of the clip is upward,
sectional Stand.-F. G. Grimler, Buf falo, N. Y. The invention resides in an improved means by which the several movable
members or units of the stand are held in assembled relation; also in improvements in certain species of units themselves, together with means for detachably holding the lamp
socket at the upper end of the stand. It is socket at the upper end of the stand. It is
an improvement in stands disclosed in Letters an improvement in stands disclosed in Le
Patent formerly granted to Mr. Grimler.
LOAD LIFTING AND RELEASING DE VICE.-M. C. Myers, Oroville, Cal. In thi Instance in the nature of tongs adapted for lifting a load such as bales, packages, logs, weights, and various other articles. The im
provement relates chiefly to means attache to the tongs proper for gripping and releasing
nut-Lock.-C. H. Ferguson, Jersey City, N. J. This invention relates to certain im-
provements in nut locks, and more particularly to a special construction whereby an ordinary nut may be locked to an ordinary bolt or to second nut, without necessitating any
changes whatsoever in the construction either the nut or the bolt.
PACKAGE-FASTENER.-W. M. Cleaveprovide a device, for convenient herd is liable service, as a means for releasably securing a cord or band in wrapped condition upon a package of mail matter or other materia
it is desirable to temporarily secure, in manner which will permit the package to be quickly opened and re-fastened.
BELT-FASTENER.-P. A. Hudson, New York, N. Y. The object of this inventor is to provide an improved belt fastener, more espe cially designed for fastening the ends of laminated leather belts, fabric belts and othe of unduly weakening the laminations of the weave. The prongs are preferably of a length corresponding to the thickness of the belt.
LOCK.-V. Bily, New York, N. Y. The indoors. It relates especially to that type lock in which the lock may be unlocked from the outer side of the door by means of a key, Which may be opened by means of a sliding the door.
SAW-HANDLE.-F. L. Blomquist, La Honda, Cal. The handle is of the detachable class. The aim is to provide a construction
which affords a light handle that may be eadily mounted upon the heel of a saw blade, manner, and be readily released and removed from the blade

Heating and Lighting

GAS-BURNER.-G. S. Andrews, Butler, Pa The main objects here are to facilitate the eral direction and about a turning piug having horizontal axis; to provide closer connections between mixing tube and nipple; to utilize the tube for normally preventing the lateral movement of the nipple; to provide for regulating nfiow of air to tube; to provide an improved orm of tube; to provide for lateral adjust ment of chimney and mantle-carrying part,
and to provide a regulating plate at which the burning takes place.
PERFECT RADIATOR.-O. T. Brown, New Vienna, Ohio. By changing the position of esser travel. By arranging the slides, a por tion of the tubes might be cut out from the direct travel of the fluid. Tubes are spaced apart a sufficient distance, so that air can circulate freely, and every part of the radiator embling. In damage to such tubes can be closed without interfering with the fluid flow through the remaining tubes, thus permithg a closure of leaking Heating siove a
Hair and fumaces, and the object is to provide a stove which is simple and durable in construction, cheap to manufacture, very economical in the consumption of coal and other uel, and arranged to provide an exceedingly arge amount of heating surface.

Household Utilities.

Bedstead.-H. A. Sears, Portland, Ore. The object here is to provide a device which being adapted to be lowered so as to constitute the foot rest of a chair and a head portion being adapted to be raised so as to form a back rest, manually operable means being prosired positions
MOP-WRINGER.-J. Santin, El Reno, Okla ne object of this improvement is oprovide wringer which is adapted to carry a pail or other receptacle for water or the like, by means of which a mop or similar device can
be thoroughly wrung out and freed from adbe thoroughly wrung out and freed from ad-
hering water, and which is operable by the ressure of the foot upon a suitable foot-board. FLOAT-VALVE FOR FLUSHING-TANKS. w. N. Long, Eugene, Ore. It is the purpose valve, and one that whe a very quick acting the water to the bottom opened will divert which when closed will be the tank, and the operation of opening and closing the valve being automatic.
TABLE ATTACHMENT FOR BEDSTEADS. -Mary E. Cowdrey, Arlington, Ga. The inention is an improved attachment for bed over the cribs for use in supporting a table pplied bed. The attachment may be readily apied to, or removed from bedsteads, cots,
nd cribs and may be easily adjusted higher lower as required by conditions.
REFRIGERATOR.-G. MEY, Prinzenthal, Near Bromberg, Germany. In this apparatus the water drawn off say for cooking, washing, drinking, etc., in passing through the main pipe cools the refrigerator, and arrives
through an extension pipe into the ejector, it sucks in the ator through drives the air to ventilation are thus carried out without cost frying device.-J. Renner, Rockwell City, Iowa. The invention has reference to cooking utensils and it has for its object the ont of a frying device which will prehe kitchen floor; one which can be constructdittle expense and one which is econom cal in use.
Machines and Mechanical Devices.
ICE-MACHINE.-J. B. MCCALL, Colorado exas. The invention is an improved appa catus for use in the manufacture of ice in hose living in sparsely settled sections and solated places, where they are unable to or cannot reasonably, obtain a supply of ice from regular manufacturers.
MIXING AND KNEADING MACHINE.R. T. Griffiths, Pittsburg, Pa. In view in his invention is a construction embodying a pail provided with handles, a cross-bar on which the mixing and kneading are journaled, engaging with the handles and held against of the paill, and means for binding the on top he top and the pail, holding it from dis placement in a vertical direction. from dis provided for the device, and a cover for the pail to engage over the handles and a*U-shape clamp to hold the pail in fixed position.
ning of the engine
direction of rotation.
PUMP.-L. K. Pulitam, Pensacola, The invention relates more particularly to that type of combined engine and pump in
which there is employed a single cylinder having a piston therein, the space at one side of the piston serving as a power chamber
and the space at the opposite side of the piston serving as a compression chamber. Water-power blower.-J. L. Ware, for use in connection with the forges of chine shops and other metal working plants of a similiar nature. The object is to provide
a combined blower and water motor having comparatively connecting parts. It may be readily taken apart and reassembled
SAND-FEED FOR STONE-SAWING MA-CHINES.-J. M. Owens, Oolitic, and J. A.
Rowe and E. E. MITCHELL, Bedford, Ind. The invention provides a feed in which there is tank at higher elevation than the sand box parallel therewith, there being a plurality of
outlets for the tank and box those for the box outlets for the tank openings therein, above which are disposed the lower terminals of the tank outlets respectively, the tank having an overflow which leads into the box, and the box also being provided with an overflow, the outlets from the tank and from the box being commanded by
attachment for Sewing-machines. -E. J. Milekr, Shamokin, Pa. More particuas are adapted to be removably secured to the balance wheels of the machines, and each of
which consists of a frame having a grinding rim formed of emery, carborundum or the ${ }_{\text {rike, arranged thereon, and adjustable means }}^{\text {lim }}$ for removably securing the frame to any ordinary balance wheel.
attachment for type-setting maThe attachment is particularly useful in connection with linotype machines having movable metal pots. One object of the inventor is to provide an attachment which comprises a signal bell, a float arranged within the metal pot of
the machine and controlled by the metal level the machine and controlled by the metal level therein, and mechanism operable by the mem-
ber, and serving to sound the bells when the ber, and serving to sound the bells when the
member is in a certain position owing to the member is in a certain position owing to the
falling of the metal to a predetermined level:
aUtomatic locking-recertacle.-J. W. Carter, Turnersville, N. Y. The receptacle is especially useful as a holder for milk bot-
tles and the like, where there is a constant tles and the like, where there is a constant
danger of unauthorized removal of the bottles after they have been delivered. An object of after they have been einitered. is to provide a receptacle having means for automatically lceking the same when an object has been placed therein, and which necessitates the opening of the door or the like, the device.
MOUNTING FOR BOTTLE-WASHER brushes.-A. n. Davis, New York, N. Y. The invention relates to bottle washer brushes, the more particular object being to improve
the mountings of such brushes. The brushes the mountings of such brushes. The brushes are actuated in the usual manner, the water
being caused to flow through a spindle, the being caused to flow through a spindle, the
interior of the bottle being effectively washed The operation completed, the withdrawal of the cleaning device from the bottle causes the brushes to be forced toward each other for an instant, and they spring backward into normal position immediately afterward.
universal joint.-J. Elean, New York, N. Y. The improvement pertains to the transmission of power, and its object is to provide struction and arranged to permit of running shafts at any desired angle one to the other, and of changing the angle to suit existing contions.
MECHANICAL MOVEMENT.-W. H. GASKiLL, Wilson, N. Y. The invention refers to
mechanical movements, and more particularly to an automaton mechanical movement suitable for simulating the motions displayed by an
animal or a man in walking. It is of peculiar value in relation to propelling vehicles, for steering the same, and for use in sporting de-REVERSING-GEAR.-A. N. Woods, Corval provide. a new and improved reversing gear for traction engines and other power vehicles, and arranged to permit convenient and quick
reversing for driving the vehicle in the desired direction.
CASH REGISTER AND INDICATOR.-J F. Parker, Kansas City, Mo. A distinctive fea
ture in this case is a bank of keys provided ture in this case is a bank of keys provided
for registering and indicating the nine differ ent amounts, in conts, ending with the numera
" 5 " such as 15, 25, 35, etc. Machines of other classes operate two keys in order t
register any of the above amounts, while in the present, the same results are accomplished by one. Another, is the means for indicating amounts so that they are exhibited from th four sides of the register mat
from any part of the room.

Prime Movers and Their Accessories valve.-N. B. Creighton, New York, N. Y The aim in this case is to provide a valve
simple and durable in construction, and ar
ranged to reduce the friction of the moving ng and a minimum, to allow convenient openof interchanging the actuating parts for use n either side of the valve.
ROTARY ENGINE.-C. Ford and D. F. HelMer, Grand Rapids, Mich. While the invention elates more particularly to internal combus to steam engines, and its object is to provide a thoroughly efficient rotary engine with which the full force of the explosive or ex ment that is used for driving the engine may utilized
rotary engine.-G. L. Webster, Mid gine are arranged and the parts in this en each other at the proper time. Consequently high or low speed makes no difference in operation, the degree of speed being a question of
pressure and strength of material. Any form of governor may be used. Cams for opening and closing the abutment are independently adjustable on the shaft so they
with great accuracy to operate.
MEANS FOR INJECTING WATER INTO THE CYLINDERS OF COMPRESNORS.-A. E object of this invention is improvements in compressors for air or other gases and relates supplying the cylinders with injection water It comprises more particularly a coil supplied with live steam, arranged in the water circu-
lation jacket of the engine and opening into lation jacket
the cylinder.

Railways and Their Accessories.

WASTE-SUPPORTING ATTACHMENT FOR JOURNAL-BOXES.-R. A. Billingham, St. Marys, Pa. The boxes have lateral grooves
in which members of the attachment may be slid, there being grooved lugs disposed at for ward ends of the side members to permit of a
front waste retaining member being slid into front waste retaining member being slid into
position. The latter has its upper terminal curved outwardly and is adapted to angal the lid of the box, by which it may be pressed inwardly, the upper terminals of the side waste retaining members being disposed in close proximity with the journal to preven
waste from passing around the journal unde the brass. The attachment also prevents th waste from. working forward and hanging out of the box.

Pertaining to Recreation

BASE-BALL CURVER.-W. W. Winquest, Brady, Neb. The purpose of this invention is pensive ball curver adapted to be arranged ing the fingers, and having means for engag curve may be of the balt so that a decided GANG FISHING-HOOK.-S. R. SUTTON, groups known as gangs. The object is to provide reliable means for loosely coupling together groups of fishing hooks in sequence,
so that they will be free to turm or spin their coupled connections. An improved
swivel link forms a portion of the coupling swivel
device.

Pertaining to Vehicles,

WIND-SHIELD.-J. H. Sprague, Norwalk, Ohio. More particularly the invention relates to the construction of the frame of the shield and the method of holding the glass in place. It involves a construction of frame in which
the glass is resiliently held between oppolass wil not be brok by undue pressure yet will be securely held against movement in the frame.
WAGON-REACH.-H. Braun and G. L Wackerow, Mellette, S. D. The invention re wagon trucks, and the object is to provide a simple, cheap and efficient means for applying
the reach members to a truck. The improvement can be applied to practically all of the wagon trucks now in common use at a very small cost, and will
life of such trucks
FIREMAN'S TRUCK.-C. Holst, New York N. Y. In this truck two of the more impor having improved means for raising and lower ing the sections and holding them in adjusted position; and a novel form of bridge that is mounted on a carriage the wheels of whitu
travel vertically on the mast, the apparatus having means whereby the bridge may be
raised or lowered to the desired position for raised or lowered to the desired position for
the manipulation of a hose carried thereby.

Designs.

DESIGN FOR AN EMBLEM.-B. MArtin, Degraff, Ohio. The design includes on a foundation or base, a horse-shoe crossed by a pen-
nant with crossed base-ball bats between the lower ends of the bats, the whole forming an attractive design relating especially to base
ball matters and including with the good luck ball matters and including with the good luck
shoe the representation of the pennant and shoe the representation of
bats and ball of the game.

Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each.
Please state the name of the patentee, title of Please state the name of the patente
the invention, and date of this paper.
 When there are questions involving building or
other construction, or when calculations must
be made, an estimate of the cost will be furnished upon request. ${ }^{\text {and }}$ or decide wagers, nor
to examination papers, or dendertake to solve mathematical prob
can wo under
lems of any description whatsoever. Do not lems of any description whatsoever. Do not
use postal cards.
Queries from this vicinity not answered with-
in fourteen days. should be repeated in full. Queries from points more remote will require
a longer time.
We not make chemical analyses; but we We do not make chemical analyses; but we
are aways peased to give the names of min-
rals which are submitted to us, when it is possible for us to do so. The minerals should
be sent marked distinctly with the name of the
sender, and should be sent fully prepaid.
Buyers wishing to purchase any article not advertised in our coluumns will be suppliied wot with
the addresses of the houses manufacturing or arrying the same, as soon as possible, or is
we are unable to do so, their queries can be Any books on any scientific or technical sub-
ject can be furnished. We solicit requests for
quotations. The SCIENTIFIC AMERICAN SUPPLE-
MENTS referred to are mailed for ten cents each. MENTS referred to are mailed for ten cents each
Book and SUPPLEMENT catalogues will be sen
free on request. A careful reading of these
"Hints to Correspondents" will prevent any
Hill "Hints to correspondents" will prevent any
misconception as to the uses and will prevent
abuses of this column.
(12014) P. H. W. asks: Kindly state why the months of the year are numbered, some
with 31 days and some with 30 , February with with 31 days and some with 30 , February with
only 28? A. The arrangement of the days of our months is due to two Roman emperors, Julius and Augustus Cæsar. Julius Cæsar re vised the calendar, making the common year to have 365 days, and every fourth year to hav 366 days. The days of the year were distributed among the months, so that the odd
months, beginning with January, had 31 days, and the even months had thirty days, except years and in leap years had 30 days in common gave his name to the month of July. The months following were named from numerals name to the sixth month, August, and in or der to get 31 days for it, so that it should be as long as July, named for Julius, he took a This brought three months with 31 days to gether. To remedy this Augustus changed Sep tember and November to 30 days and October
and December to 31 days. Thus our peculiar and December to 31 days. Thus our peculiar
arrangement of days in the months is because

ugustus Cæsar.

(12015) J. P. B. asks: If a mine is from 600 feet to 800 feet deep, and when it
reaches this depth it branches in different directions, say several hundred vards in d direction, and it is necessary to force ai down to the workers, no matter in. what posi-
tion they may be, can air be forced through a large tube without any trouble to the abov tube, say 3 feet or 4 feet in diameter, and
air discharged through same, flowing to the 800 foot depth, and conveyed from there in other tubes to its destination? If this is
the case, do they have to pump the foul air the case, do they have to pump the foul air time driving fresh air in regularly? The other point is, is the air sucked from below throug charged from a pump abovead of being dis charged from a pump above to the mine be-
low? In which manner is it done, or can it be done either way, by the drawing of th air from below or discharging it from above
In either case, is it necessary to discharge In either case, is it necessary to discharg
the foul air from the mine? A. There are a number of different systems of mine ventila tion, some automatic and some mechanica of which argues, "If you get the bad air and smoke .out of the mine, the fresh air can be trusted to find its way in;" and the other,
"Get your fresh air to the remote place where it is most needed, and it will force the bad air out." If \circ mine has two shafts connected underground, one of which opens to
the surface higher on a hillside than the other sufficient natural draft will often be provided to ventilate the connecting workings. This condition is often artificially imitated by raison a collar of one or other of the shaf shaft and carrying a sort of chimney higher on one side, leading wooden or metal air duct from the workings into the bottom of the
"uptake" inside, where the warm air rising creates a current assisted by the heating effect of steam pipes down in automatically. In large fres especially collieries, with extensive workings, however, the air is almost entirely blown in by powerful fans, is conducted in large ducts to the bottom of the shaft, and from ther directed through the workings by means of carefully arranged system of double door wherever "roads" cross underground, so that
there may be a continuous current from the blower all through the workings to the foot In one colliery visited by the writer whate
the shaft is just over half a mile deep and
workings extend for two miles from the botworkings extend for two miles from the bot
tom in a more or less horizontal direction, comprising over 20 miles of "road" in all,
500,000 cubic feet of air per minute is blown 500,000 cubic feet of air per minute is blown into the mine, over 200 horse-power being re-
quired to drive the blowers alone. There are systems (for smaller mines) by which using a single blower and pipe the current may
be made either suction or inblowing, but none to our knowledge in which both mechanica exhaust of foul air and inblowing of fresh (12016) G. L. asks: What makes the gret i heavenly bodies and other matter in the power or original cause? A. The absolute origin of motion in the matter of the siderea universe is not positively known any more than the origin of energy or of life, nor is there any likelihood that it ever will be with regard to any one of them. At the same time there are certain developments in progress in the
universe, of each stage of which there are universe, of each stage of which there are
numberless repeated instances visible to astronnumberless repeated instances visible to astron
omers with high-power telescopes, of which planetary that of ours, that we may fairly assume the developments of our system to have been
analogous if not identical. These developments commence with a nebula, an immense body of highly-heated gas, revolving inconceivably slowly but unquestionably. Movement having been originated somehow, by molecular
attraction or otherwise as may be imagined, its development is comparatively easy. The the lighter ones, as they observably do in the chemical laboratory, and these small aggregations or nuclei would continually grow by accretion of smaller masses, continually deesulting in collisions, which again result in ncrease of size and decrease of number of the ndividual nuclei as they join each other. would become less, the resultant attractions being toward the center of the whole system, and this attraction being at first opposed by aseous expansion, and eventually tending to evolution of the nuclei around the center of the mass. This is most noticeable in the visihe nebulx, the observable form of many and the probable form of most of which is spiral,
long streamers of luminous gas containing olidifying parts trailing away from them in 11 directions. This permits of the more rapid fation, all the time with increasing density nd decreasing vclume, resulting in their inreasingly rapid motion as gravitation acts on a mass offering less and less frictional resistance to the gaseous atmosphere in which they
move. When the immense eruptive tendency of highly-heated gaseous body is taken into conideration, the tidal effect produced by the ttraction of two such bodies approaching each ther without collision is amply sufficient to he spiral form of the nebulæ, and, combined with the centripetal attraction, for the eventual circular or elliptic rotation of the planetary bodies. This theory, whether or not e at least sufficient to account for planetary and other universal motion
(12017) W. S. asks: 1. Why is twiight so much longer in England than in Spain
or North Africa? Is it true that the period of twilight increases as we approach the poles, and if so, what is the cause of the increase? A. Twilight lasts till the sun is about 18 deg. The sun in the torrid zone descends vertically in setting, and the duration of twilight is traverses 18 deg. in 1 hour and 12 minutes, which consequently is the shortest duration of twilight in the torrid zone all the year. The path of the sun makes the least angle with the horizon in the northern hemisphere in the summer, and hence a longer time is required to bring the sun 18 deg. below the horizon. Twilight then lasts about 2 hours in latitude
40 deg. north. On the Arctic circle the sun at the summer solstice just touches the northern horizon, and daylight lasts through the 24 hours. There is no night. At the north pole twilight is about $21 / 2$ months, or from the middle of January to March 22, when day be-
gins. Duration of twilight can be calculated gins. Duration of twilight can be calculated
for any latitude at the sea level by trigonometry. At high altitudes above the sea twilight altitudes, due probably to the clearness of the air from dust. We have seen it stated that it is not more than twenty minutes at Quito 2. Is there any means of determining the voltage and amperage of a current after passing
through a Ruhmkorff's coil? Could you give approximately an idea of the voltage you give perage of a current which has passed through a coil that yields a spark of six inches, and that is worked by seven Grove cells (ordinary
size)? A. The voltage required to force an electric discharge through air has been de electric discharge through air has been de
termined for various conditions. It is found to be different between needle points from what it is between balls. It varies also with the size of the balls. Between sharp points about inch long, while for six inches about 72,000 volts are required. These voltages have been determineu by experiments with alternating
currents. With direct currents also many tests
nave been made, using batteries giving enor-
mous pressures. 3. When lamps are lighted by electricity from alternate-current dynamos, how is it that the light appears constant and does not seem to flicker? I suppose commutators cannot be used with continuous-current dynamos. In the alternate-current machine
does not the current enter the lamp alternatedoes not the current enter the lamp alternaterent is the result of an alternating electromotive force, which is conceived to start from zero and rise to its highest point of voltage,
then to fall through zero to a point as far then to fall through zero to a point as far
below zero as it rose above zero, after which below zero as it rose above zero, after which
it returns to zero, thus making a cycle of changes. The polarity of the current is reversed while the E. M. F. is below zero. The
fluctuation of lamps is not visible under such a current, because the changes are more rapid than the eye can take note of. The shortest interval of time the eye can note is about a tenth of a second, while the alternating current passes through 30 to 60 cycles per sec-
ond. A commutator can be used witli a conond. A commutator can be used witl a con-
tinuous-current dynamo whose voltage is not tinuous-current dynamo whose voltage is not formation of a direct to an alternating current is usually made by a rotary converter or a
motor dynamo. We furnish Sloane's "Elecmotor dynamo. We furnish sloane's "Elecsuch matters, for $\$ 3.50$ by mail.
(12018) J. W. L. says: 1. Does a gyroscope consume the same amount of energy while rotating in either the vertical plane or
horizontal plane? R. P. M. Equal, I think, owing to the fact that while rotating in the vertical plane one side of the rotating part would be moving toward the earth; that the
force of gravity on that side should be decidforce of gravity on that side should be decid(which would be receding) the force of gravity erations would not gravity alone tend to bring the gyroscope to rest? A. The power necessary to maintain a gyroscope in motion would not seem to depend upon the angle made by the wheel with the horizon. Any up by as great half of a revolution is made up by as great ing the mean value the same. 2. Is this not
the reason that the moon does not rotate on the reason that the moon does not rotate on
its axis as viewed from the earth? A. The reason of the moon not rotating upon its axis as referred to the earth is that tides have in
the past acted to bring the moon to rest with reference to the earth. See Darwin's theory of tidal evolution in Moulton's "Astronomy." This theory is now quite generally accepted by
astronomers. We can send you the book for astronomers. W
$\$ 1.75$ postpaid.
(12019) J. E. W. asks: 1 . If at the
equator a hole 2 feet wide pierced the earth equator a hole 2 feet wide pierced the earth
through its center, and a ball a half inch in diameter were dropped into the hole, I figure that in about nine and one-half seconds, and impinge against the east side of the hole be cause at that depth the earth would be recause at that depth the earth would an inch
volving a little over one-tenth of an
slower than at the surface; and from that slower than at the surface; and from that
point down to the center the continually decreasing speed of revolution would cause the
ball to press continually against the east side. ball to press continually against the east side.
Supposing now, that there were neither air Supposing now, that there were neither air
nor friction to retard the ball, would it acquire the same velocity as if it could have it rise again to the opposite surface of the it rise again to the opposite surface of the the easterly deviation of falling balls, accord-
ing to Prof. Young in his "College Astronomy," showed from 160 trials, a deviation of 1.12 inches in a fall of 520 feet into a mine. If a ball were dropped into a hole in the earth it
would in time come against the side of the would in time come against the side of the
tube and roll down to the center of the earth and pass some distance beyond the center. How upon the degree of friction upon the sides of the hole. It could not rise as far as it had fallen, since it could not pass the center with the full velocity due to free fall. 2 . If the
earth were a hollow sphere inclosing a vacuum, earth were a hollow sphere inclosing a vacuum,
and a rock fell from the inner side, would it and a rock fell from the inner side, would it
not gradually assume a convolute course till it reached a point where its increasing momentum would equal the earth's decreasing at-
traction, and at that point begin to revolve in traction, and at that point begin to revolve in this occur? A. If the earth were a hollow shell a rock which had become detached from
its interior surface could not fall at all. A its interior surface could not fall at all. A
body anywhere within such a shell is equally body anywhere within such a shell is equally
attracted in all directions and has no weight. attracted in all directions and has no weight.
This is usually demonstrated in textbooks of mechanics. 3. In such a sphere a ball falling rom either pole would go to the center direct in the case of the earth, the poles themselves had a slight rotary motion in space, would cular orbit? A. A ball falling along the polar axis of the earth would not be deviated at all in the time required to fall from the surface to the center of the earth, since the deviation of the pole is very slow and very small.
(12020) T. H. asks: Do any of our planets ever swing beyond the zodiac? If so,
which ones, and how far beyond? A. All the which ones, and how far beyond? A. All the
major planets have their orbits wholly within the zodiac. The belt of the zodiac was orignally taken to be 8 deg. on eack side of the celestial equator, simply because with that
width it included all the known planets and the moon. Many of the minor planets depart the moon. Many
from the zodiac.

NEW BOOKS, ETC.
Vorlesungen Über Ingenieur-WissenBy G. C. Mehrtens. Leipzig: Wil helm Engelmann, 1908.800 pp.; 970 helm
ill.
t is
It is possible that the mathematics bridge construction may have been more fully
treated in some text book, the details some particular bridge more fully described a magazine article, but it is inconceivable to us that the whole subject of iron-bridge building could be more exhaustively treated in the
same compass than by the present volume. same compass than by the present volume.
Many of its pages could be used as text book for the calculation and distribution of strains and stresses in bridge members, but much as to the engineer. We cannot imagine that any history of bridge building could commence further back and conclude more up-to-date,
or include a wider range of examples from the most primitive to the most complex strue tures. The author begins with pictures from the Bayeux tapestry of Alexander the Great
bridging the Euphrates and coins commemorating Trajan's bridge over coins commemo rating Trajan's bridge over the Danube, and
includes representative work of all leading bridge builders from Vespasian and Maximian to Roebling, Baker, Brunel, and Lindenthal, leading up through twenty centuries to the
last word in braced arch and cantilever con struction. Mr. Mehrtens even goes outside his title and the above range of period to in-
clude all types from natural bridges in the clude all types from natural bridges in the
Cordilleras, and bamboo and rattan suspension bridges in Java, from the pyramid of Cheops the principle of which is illustrated by work Barcelona, to the latest developments of masonry and ferro-concrete. Many forms of fastenings and details are illustrated, each new system of strain distribution involved in a bridge described is explained by diagrams,
and the reader is conducted through the entire series of operations from the rolling from the ingot of members of various forms their location in the finished structure. glancing over the excellent illustrations on of the American iron-bridge in the development as it was suited to meet conditions nowher else encountered with the same limitations imposed, the artistic beauty so noticeably superior in many European bridges has had to
be to some extent sacrifced to economy and efficiency
Two Family and Twin Houses. New York: William T. Comstock, 1908. Small 4to.; 127 pages. Price, $\$ 2$.
This work consists of a variety of designs
Contributed by leading architects in all part of the country, showing the latest ideas in planning this class of dwellings in city, vil-
lage, and suburbs, together with very complete lage, and suburbs, together with very complete
descriptions covering all the latest improvedescriptions covering
ments in sanitation.
Old Edinburga. By Frederick W. Wal-
keys. Boston: L. C. Page \& Co., 1908 2 vols.; 16 mo. ; pp. $380-360$. Price, $\$ 3$. This is an account of the ancient capital of
the kingdom of Scotland, including its streets, houses, notable inhabitants, and customs in the
olden times. It is beautifully illustrated with reproductions of old prints and photographs. A charming book of travel, well written and ell illustrated.
Reservoirs. For Irrigation, Water Power, and Bames Dix Schuyler Supply. By man \& Hall, 1908. Imported by John
Wiley \& Sons. Large 8vo.; pp. 573. 281 ill. Price, $\$ 6$.
This is a second edition revised and en-
arged of the original work of the author well known to all engineers concerned in such work. The rapid development in dam construction since the original publication has necessitated the complete revision of the work in order to
bring it up to date and this having obviously bring it up to date, and this having obviously
been done with great care, must have involved bean one with great care, must have inver than, that of writing a new book. Much new matter has been added and some of the old describing practice obsolete or superseded by modern
methods addition being that descriptive of hydraulic fill dams, a method of using natural streams for the transportation of material and for the
natural solidification of dams of great height natural solidification of dams of great height at small cost almost unknown at the time of Improvements in phe author's first edition. creased the interest of the book especiall to the layman, by the addition of over 200 new illustrations, many of striking and historic dams.
The Mechanical Appliances of the Tries. By Oska Nello phd. Ne
York: Published by the Author, 1908.
8vo.; pp. 302 ; 292 ill. Price, $\$ 2$.
It must be diffic find a new field for authors and compilers nowadays, but we are
unfamiliar with any other work covering exunfamiliar with any other work covering ex-
actly the ground of the present. All the machinery used in industrial chemistry and metallurgy from the generation of steam and producer gas to the conveyance and disposal
of their waste and by-products, from the crush ing of ores to the handling of their residues ing of ores to the handling of their residues
after cyaniding and filtration, from reverbera-
scribed and classiffed, including all kinds of conveying apparatus for solids, liquids, and gases, grinders, mixers, separators, purifiers, of rather obvious compilation from manufac turers' catalogues, but this in a work of this
sort could hardly be avoided, and one of the uthor's professed objects is to save the manu acturer from the toils of the salesman and
the perusal of endless half-understood descriptions by presenting the eisentials of the differ ent systems. This he successfully achieves and leavens the work with a few usefully simple
formule for calculating drafts, etc., and rules ormulx for calculating drafts, etc., and
or the selection of material and fittings. The Elements of Physics. In Three Volumes. Volume 1I. Electricity and Magnetism. By Edward L. Nichols
and William S. Franklin. New York
The Macmillan Company, 1908.
pp. 303; 196 figures. Price, $\$ 1.60$.
This is a college textbook, being the second
olume of Nichols and Franklin's "Elements olume of Nichols and Franklin's "Elements
of Physics." The volume was originally pubished in 1896, but has since been entirely re same subject in beginning with magnetism and electro-magnetism and thence leading up to electrostatics. The latter subject is approached
from the standpoint of the ballistic galvanom$\begin{aligned} & \text { electros } \\ & \text { from } \\ & \text { eter. }\end{aligned}$

The Physical Properties of Soils. By
Arthur G. McCall. Fully illustrated Arthur G. Mccall. Fint and diagrams New York: Orange Judd Company 1909. 12mo.; pp. 100. Price, 50 cents.

This book is rather suggestive than didactic telling nothing of the physical properties of soils but giving rules for the carrying out of systematic experiments for determining them; or does it explain the relation to or effiect in agriculture of the physical properties so diserring the student to the best works extan on these subjects. As a guide to the student in the most practical methods of pursuing a study as yet little formulated while leaving
him free to original research the book should prove of great value.
How to Use a Camera. By Clive HolLand. London: Routledge \& Sons
Imported by E. P. Dutton. 12 mo . pp. 132.; ill. Price, 50 cents.
The object of the author is to supply up-to ate practical information, useful especially to and this he does in a readable and entertaining
manner. The advice as to the important matter of selection of the right camera is good, and whereas the artistic eye for the selection of the ight subject can hardly be taught, the chapte takes. The hints on variation of light and the way to estimate correct exposures are good, as
are especially the instructions for local im provement of the instructions for many a hopeless picture may be retrieved oning, and fixing baths, hints for finishing an or artistic applications of photography. The trate defects, are a little disappointing com-
ind pared with the excellent amateur work nowaays seen in newspaper competitions, and the
ubject matter is worthy of a better style o publication, the paper being poor and con-
spicuously different from that of the illustraspicuously different from th
The American Apple Orchard. By F A. Waugh. New York: Orange Judd
Company, 1908. 12mo.; pp. 215; fully illustrated. Price, \$1.
Although modestly described as a "sketch" this book forms a very complete treatise on contains is given in a very interesting manner Beginning with the geographical distribution of the industry and the difrerent varieties, the
author explains the desirable qualifications of soils for orchards as well as the exposures and the causection desirable. winter killing the preparation of land for an orchard, selection o trees, propagation, times of planting and al the methods of working, discusses the advan tages and disadvantages of cover crops, prun eases and the protection of them from insects including formulæ for all the best mixtures for spraying, and concludes with harvesting, sortbook makes our mouth water for the apples it the soil and the breezes blowing through the apple blossoms, and we should say that an intelligent farmer who has grown anything else should be well equipped for a start in com-
mercial apple growing by its careful perusal. Foundry Practice. By James M. Tate and Melville O. Stone, M.E. Revised
third edition. New York: John Wiley \& Sons, 1909 . 12mo.; pp. 234; 112 ill.; cloth. Price, $\$ 2$.
This work is essentially a text-book for the use of students, the work of the shop and of manner infrequently found in books on foundry practice, which are generally adapted to the requirements of the advanced foundryman
rather than to those of the beginner. In this respect the object of the authors seems to have
been achieved. The first-named of the authors been achieved. The first-named of the authors
adds to a life-long experience as practical
pattern-maker and foundryman some fifteen years of putting what he has learned in practice into the form of precept intelligible to
thers and has therefore an ability to explain what he knows rare in the practical perative. His associate has graduated under is instruction and made a special study of foundry chemistry and metallurgy. The re-
sult of their joint efforts is an eminently practical work, giving all the essentials and fundamental principles of foundry work, and, ithout going into details of special processes machines, covers sufficiently for the student to the latest machines for handling molds nd cleaning castings, concluding with tables alloys for foundry use. Not the least useful feature is a glossary of foundry terms, given specially to avoid waste of space in needless vents any possible obscurity

Legal Notices

PATENTS

INVENTORS are invited to communicate with Mann \& CO.. 361 Broadway, New York, or
to \mathbf{F} Street. Washington, D. C., in regard to securing valid patent protection for their in-
ventions. ventions. Trade-Marks and Copyrights
registered. Design Patents and Foreign Patents secured.
We undertake all Patent, Trade-Mark and
Copyright Practice, Copyright Practice, both before the Patent Omiee and the Courts. and we bave special facili
tes for banding Infringement and other suits in Federal and State jurisdictions.
A Free Opinion as to the probable patenta-
bility of an invention will be readily given to any bility of an invention will be readily given to any
inventor furnishing us with a model or sketch and inventor furnishing us with a model or skftch and
a brief description of the device in question. All a brief description of the device in question. All
communications are strictly confdential. Our
Hand-Book on Patents will be sent free on Hand-
request.
Every patent secured through us receives
special special notice in the Scientific American
Ours is the Oldest agency Ours is the Oldest agency for securing
it was established over sixty years ago.
MUNN \& CO., 361 Broadway, New York
Branch office, 625 F St., Washington, D. c.
INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending

March 2, 1909,
AND EACH BEARINGTHAT DATE [See note at end of list about copies of these patents.]

\qquad

 Chlorinthed \ldots ompound and making same, J

 Coffee urn, o. A. Nenninger
Conander
Conerete block machine
Con

\qquad
\qquad

POWER REQUISITES

A. B. C. AUTOMOBILE

SAVE YOUR NAILS

Thill coupling, F. Dean ...
Thil coupling and suport,
Ticket case, G. T. Haines.
Tile, drain, W. H. Booth.

Mullins Sheet Metal Statuary and Art Architectural Work

The March 20th Issue of THE SCIENTIFIC AMERICAN

Will contain a SPECIAL ARTICLE on the

"High - Wheel Buggy - Type Automobile"

This article will be of a very comprehensive nature, and will give full details of the mechanism of all the latest machines of this kind-a type which is becoming very popular with farmers and country physicians, on account of its simplicity and freedom from tire trouble and repairs. Watch for the March 20th Issue!

It will be well worth careful reading.

Classified Advertisements

Advertising in this column is 75 cents a line. No less
than four nor more than ten lines aceepted. Count
seren words to the line. All orders must be accom-
panied by a remittance. Further information sent on
request.
READ THIS COLUMN CAREFCLLY. - You will find READ THIS COLUMN CAREFCLLY.-You winand
inquiries for certain classes of articles numbered in
consecutive order. If you manufacture these goods consecutive order. If you manufacture these goods
write us at oncee and we will send you the name and is no charge for this service. In every case it is in no charge for this service. In every case it is
necessary to give the number of the inquiry
Where manufacturers do not respond promptly the Where manufacturers do not respond promptly th
inquiry may be repeated.
MUNN \& CO.

BUSINESS OPPORTUNITIES.

street, Decatur, Ill.
ungniry No. 8868.-Wanted to buy nickeloid for

 glasquiry गor pictures. ${ }^{\text {N }}$
 catalag free For full information and particuiars, ad

PATENTS FOR SALE.

 linguiry No. S889.-Wanted to buy a machine
 Inquir No. 8gs9.- For manupacturers of an auto
 2. T. Hoskins, 331 Michighan or Ave.. Chian agotent. Addres "Inguiry No, 8897,

 Inquiry No. 8903.-

 Cyla euto matically at at grea
Or Inairy No.

 Electro-Catalytic Sparking Plug.,

HELP WANTED

LOCAL REPRESENTATIVE WANTED.-Splendid

 Coorperative Real Extate Company, Suite 378, Marded
Buildink, Washington, t). C. Inquiry No. $\mathbf{~ d 9 2 0 . - F o r ~ a ~ s t i l l ~ f o r ~ e x t r a c t i n g ~ a l c o - ~}$
hol from saw dust. EnANTED BY COTTON MACBINE BUILDERES.-
 paper. WANTED.--Expert toolmakers conversant with sub-
pressidie work andiools for small interomaneable parts
of tine work. dddress Tools, Box 773 , New York. Inquiry No. 8922.-Wanted the address of Worth-
ington Boiler Co.

 TECHNICAL GRADUATE in mechanical engineer-
 for sterilizing water at ine tap by an ozonizer.
 teen years experinence, machinist, machine designer,
and university praduate A.
Boleman Bldg., Louisville, Ky. A. Knobel. Room 204,

 Inquiry ${ }^{\text {No. }} \mathbf{8 9 3 1 . - \text { For parties mha ma }}$ (he Western Stump Borer for boring stumps.

LISTS OF MANUFACTURERS.

 Inairy No. N934.-
of blank stock certitcate.

MISCELLANEOUS.

 UNITARLAN LTTERATURE, including sermons and Inquiry No. Sq41.-For manufacturers of ma-
 Inaniry No. S942. -Wanted to buy apparatus to
enable anyone with rheumatism or otb er causes to hold
 Inquiry $\begin{aligned} & \text { No. } \mathbf{N a 4 4} \text {.-For the address of the manu- } \\ & \text { facturers of the Kiug or lever collar button. }\end{aligned}$

 Inquiry No. 8949.-For
 linairy No. 8955.- For manufacturers of ma
chinery for making milk bottle manitary tber caps. Inquiry No. 8952-For irms making aparatus
for using oil for fuel under a steam boiler instead of
coal.

Voting machine uiiform paper feed mechan Voting mechanism, cumulative c. C. Abiot
Vulcanizing apparatus, J.

Water closet seat. hinge, J. C. Dun

Water, pantr, raturn, R.J. Grahn
Wape motor, Du, R. Rockwell, J Ir

\qquad

DESIGNS

TRADE MARKS.

Books sisumitic Books

AGRICULTURE.- The ${ }_{\text {By }}$ T. Byard Collin. 12 mo.; 374 pages
 ha bits of farm lifee it is on of the mont prae
ical treatises oit the subject which has ever been

ALCOIOL-Industrial Alcohol. Its Manu

AMUSEMERTSS.-The Scientifl
Boy.
By
American

 articles.
COMPPRSSERD ARR.-Compressed Air. It
Production. Uses, and Application. By Proauction. St. His
tardiner
40 illustrations. Tee most complete book on this sobject. an
 DIES. Their Construction and Use for the
Modern Working of Sheet Metals. By

Joseph V. Wood 505 illustrations.

HYDRAULICS.- Hydraulic Engineering. By
Garder D. Hiscox. 8vo.; 315 pages;
305 inlusstrations.
A practical work treating on the properties

LATHE.-Modern American Lathe Practice.

 professional and amateur alike. The illusions are
ali explained in detail. showin exetly how the

 and drattsman, and to all readers with MECHANTCAI APPLIANCESS-Mechanical
 trations. $\$ 3.0^{2}$ This book, while complete in itself, is in fact a
continuation of the author's
Meehanical
Move-
 plissing mechanical repalts.
specinc orrer:
These
$t w o$
volumes sell for $\$ 3$

 Containing raluabie information and advice on

 This book treats on the various topics of physics

 neet making, punch making, die sinkking, and

Eedias of The Sciptentific American Cyclo- Trotes and Queries.

 pedia of Receipts, Nrotes and Queries.taited by Albert A. Hokkins. Con-
taining 15,00 selected formulas. 8v.;
Thin

 This book deals with

 STEAM EngGINE-Mrodern Steam Engi-
neering in Theory and Practice. By

 T00LS. MModern Machine Shop Tools. BV
W7. H. Vandervort.
8vo.; 552 pages

 Switchboards. By
12mo.; 272 pages; 105 Newton
illustrations.
\$i.50

DU BRIE MOTOR CO., Guoin st. Detroit, Mich.

 not only in its system of transmissi
its day-in-and-day-out reliability.
The Lambert Friction Drive eives the Lambert
Car a degree of Car a degree of superior service quality not at-
tained in any other low-priced car and not in every tained in any other
high-priced car.
It transmitsomore of the power generated
than than any type of gear transmission.
transmission troubles and repair bills.
Every Lambert model, from the $\$ 800$ runabout up to the big, roomy 7 -passenger Lambert at
$\$ 2.000$, is a car of full value in power, speed and $\$ 2,000$, is a car of full value in power, speed and
endurance, style, finish and comfort-the choice endurance, syle, fanish and comfort-he choice
of people who want a good car at a moderate of people who want a good car at a mod.
price and who "find out" before they buy. Write for fully illustrated descriptive catalogue. BUCKEYE MANUFACTURING CO? 1814 Columbus Ave., Anderson, Ind.

Reduces Gas Bills Our GAS CONTROLLER stops
that Blowing and Breaking Mantles and will actually save you 15% to 30% on every gas
bill. We guarantee it.

Crescent Wood Working Machinery

Build Your Own Boat and Save Two-Thirds

size patterns and illustrated instructions. If you want to know how it can be done
Send today for my 1909 Catalog No. 22, Showing Over 100 New Models

PUT THE KNOCK-DOWN SECTIONS TOGETHER YOURSELF AND SAVE TWO-THIRDS
\qquad国

PIERCE Mator Boass

The Ball Transmission

Automobiles \& NotorBoats and

Roberts' Motors Are Trouble Proof

WRITE FOR OUR CATALOGUE and Book of Testimonials ROBERTS MOTOR CO., 1411 Columbus Ave., Sandusky, Ohio, U. S. A.

[^0]

KE-PA-GO-IN TIRES
 For discriminating buyers. No Skidding. No Punctures. No Trouble. They just keep agoin'

[^0]: Engineering
 News
 The Leading Engineering Paper of the World. For Civil, Mechanical, Mining and Electrical Engineers If you cannot locate desired engineering equipment write our "Readers Want" THE ENGINEERING NEWS PUBLISHING co
 py.
 14 Broad department.

