Python 3 code
##############################################################
# Sequential ordered steps of a 2D Newton's method set
# generation - Polynomial f(z) = z**6+1
# (graphics module)
##############################################################

# specify the absolute path of mod graphics folder (depends on user's choice)
import sys
sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import*   # import graphics module
import numpy as np   # import numpy module

Radius = .5   # set escape rate threshold
Cx = 0.0   # set initial x parameter shift
Cy = 0.0   # set initial y parameter shift
Side = .8   # set square area side
M = 300    # set side number of elementary squares
N = 1   # set color map scale factor
Num = 256*N  # set number of cycles
sT=2   #  set step jump

win = GraphWin("Newton's method set", 5*M/3,5*M/3)  # set window title
win.setBackground(color_rgb(230,220,10))    # set background color

def rectCol(p,q,w):   # define elementary cell
  Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),
  Point(int(p+sT/2),int(q+sT/2)))
  Rect.draw(win).setOutline(color_rgb(np.int(255*np.sin(w)**2),
  np.int(255*np.cos(w)**2),np.int(255*np.cos(w/2)**2)))

# Alternative values Cx 0.1747, 0.1747    Cy -.072,-1.072
# Side 0.0015, 0.00015 Num 1024

for p in range(1,M,sT):   # column scanning cycle
  Incy = - Side + 2*Side/M*p   # define column scanning function
  for q in range(1,M,sT):   # raw scanning cycle
    Incx = - Side + 2*Side/M*q   # define raw scanning function
    x = Incx   # set starting increment of x co-ordinate
    y = Incy   # set starting increment of y co-ordinate
    w = 0   # set starting escape modulus value
    for n in range(1,Num):   # recursion cycle
      xx = 5*x/6.0 - x*(x*x*x*x - 10*x*x*y*y +5*y*y*y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/6.0
      yy = 5*y/6.0 + y*(5*x*x*x*x - 10*x*x*y*y + y*y*y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/6.0
      x = xx
      y = yy
      if (x-Cx)*(x-Cx) + (y-Cy)*(y-Cy) < Radius:  # escape rate condition
        w = n/N   # escape modulus normalization
        rectCol(int(M/3+q),int(M/3+p),int(w))   # plot elementary cell
        break  # interrupt cycle

win.getMouse()   # wait for mouse click
win.close()   # close window
