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Preface

The history of modern physics taught us that several phenomena which, at first,
appeared to their observers as independent and unrelated with each other, later on have
been recognized as different aspects of a same physical reality. The theories which
brought to conceptual unification of such apparently unrelated aspects of the physical
world, generally took their first steps when it was realized that, even if different, such
phenomena presented systematically some common occurrences.

1. Sometimes the way leading to unification has been suggested just by similar, but
regular coincidences, as it was the case of general relativity, born by the recognition
of coincidence between inertial and gravitational masses, the values of which are
always directly proportional.

What does it happen if they are taken as being the “same thing”, observed in
different conditions? The circumstance that the gravitational forces and the
apparent forces arising respect to a non inertial frame are locally
indistinguishable, assumed as a new physical principle (today known as
equivalence principle) allowed Albert Einstein (1879-1955) to develop his theory
of general relativity (1916).

2. Previously, the unification between electricity and magnetism was suggested, to
James Clerk Maxwell (1831-1879), by symmetry criteria concerning the
mathematical laws governing electrodynamics. In fact the equations of
electromagnetic fields become more symmetric if one introduces the displacement

current term.

It was starting from such assumption that the electromagnetic waves were
predicted. Later, special relativity has shown as electric and magnetic fields are the
components of the same antisymmetric tensor field F ≡ (Fµν).

3. Moreover a partial unification between waves and particles was performed by
quantum mechanics.

Einstein’s interpretation of photoelectric effect (1905), for which he was awarded
the Nobel prize (1921), showed that light, which until that time was treated as a
wave (after the failure of Newton’s corpuscular theory), at least in the case of the
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photoelectric effect, behaves as a flow of discrete particles (photons), the energy of
each one being proportional to the wave frequency according to the equation:

E = hν,

which became famous as Einstein-Planck relation, h being the now well known
Planck constant.

A further step towards wave-particle unification was made when Louis de Broglie
(1892-1987) proposed his matter waves, associated to particle motion according to
the equation, later called De Broglie relation, between the wave length λ and the
momentum p of the particle:

λ =
h

p
.

Following a more advanced mathematical approach, which actually gave rise to
quantum mechanics, Erwin Schrödinger (1887-1961) pointed out that the
variational equation of light rays in the context of geometrical optics (which can
be obtained as approximation of wave optics when the wave lengths are negligible
respect to the optical paths):

δ

∫
k · dx = 0,

and the variational equation of particle trajectories, provided by analytical

mechanics:

δ

∫
p · dx = 0,

were formally the same and could be identified assuming that:

p = ~ k.

In fact, if one evaluates the modulus in the last equation, one just obtains De Broglie
relation, since ~ = h/2π is the reduced Planck constant and k = 2π/λ is the wave
number.

In the frame of Newtonian (i.e., non relativistic) analytical mechanics of
conservative systems, the variational principle can be written also in the equivalent
form:

δ

∫
n ds = 0,
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which represents, in a variational formulation, the Fermat’s principle of shorter
optical path (or least time), n being the refractive index of the medium across which
light propagates. And:

δ

∫ √
2m(E − V ) ds = 0,

is the Maurpertuis’ principle for the determination of particle trajectory of motion,
δ being here the isoenergetic variational operator.

After such a comparison the idea that analytical mechanics was an approximation
of an exact still unknown wave mechanics, like geometrical optics is an
approximation of wave optics, was seriously considered. The equation candidate
to govern such wave mechanics was obtained by Schrödinger, through a backward
way, leading to his famous equation:

i~
∂ψ

∂t
= Hψ,

where here the Hamiltonian H has become a differential operator.

At the present stage of unification process we can wonder wether a further step is
legitimate in order to fully unify waves and particle approaches.

Can waves and particles be viewed as two different ways of interpreting the same

equation of motion arising from a continuos unified field of some nature?

Were it possible, the wave-particle unification would be actually complete.

A single equation could be viewed, at the same time, as equation of motion of a

wave-front and as equation of motion of a particle, or better of a family of particles. And
the theory would no longer be approximated, but exact. Since it would no longer identify
only optical rays with mechanical particle trajectories, but also the evolution laws of their
motions along the respective paths. In other words the identification would involve the
space-time paths.

A wave-particle family gathers together all the initial conditions which determine all
the actual states or wave functions at some time and place, collected within an infinite
component vector in some Hilbert space. At a macroscopic (classical) level the observer
himself chooses the initial conditions, so identifying an individual particle. While at
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a microscopical (quantum) level the observer can only select some interval where the
initial conditions live, because of the uncertainty principle which arises because of the
non-commutative algebra of the operators. At an intermediate (semiclassical) level the
observer is able to approximate the uncertainty volume in phase space by choosing a
point representative of the volume itself, so interpreting the probability cloud as a single
particle.

Starting from similar and other questions we have attempted to attack the problem of
such unification in the present volume.

The book is organized in two parts, as follows:

1. In the first part:

(a) Chapter 1 introduces the problem following a heuristic approach which
suggests a meaningful and intriguing way to attack the matter.

(b) Chapter 2 offers a non-explicitly covariant formulation of the proposed
wave-particle unified mechanics, referred to a synchronous frame (i.e., under
an assumption which simplifies the formalism), while

(c) Chapter 3 extends the same results to an explicitly covariant formulation of
the theory to a quite general frame, with no co-ordinate choice assumptions.

2. In the second part,

which is devoted to investigate possible models for the unification of physical
(interaction and matter) fields the solutions of which are interpreted as
wave-particles, according to the approach presented in the first part of the volume,

(a) Chapter 4 presents an attempt to test usual Kaluza-Klein theories as possible
candidates. It is shown that such an approach is unsatisfactory.

(b) Chapter 5 proposes a new original perspective according to which the fields
governing the fundamental interactions and matter are included within the
eigenvectors of the metric tensor of a suitable space-time endowed with more
than four dimensions.

(c) Chapter 6 is dedicated to a physical interpretation of the theory in order to fit
the fundamental interaction fields (bosons) of the standard model of
elementary particles theory.
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(d) Chapter 7 is devoted to a physical interpretation of the theory in order to fit the
matter fields (fermions) of the standard model of elementary particles theory.

(e) Chapter 8 shows possible applications to cosmology including suggestions to
interpret new energy-momentum tensor contributions as related to dark matter
and dark energy.

(f) Chapter 9 deals with a possible way to field quantization including quantum
gravity.

Some concluding remarks and a bibliography end the whole volume.
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Part I

Wave-Particles





The Part I of the book deals with unification of wave and particle equations of motion.

The same partial differential equation is interpreted either as wave-front equation of
motion or as Hamilton-Jacobi equation governing the dynamics of a family of particles.





Chapter 1

Heuristic Approach

Abstract
Conditions required in order to identify a wave-front propagation p.d.e and a Hamilton-
Jacobi equation governing motion of a family of particles, are presented following a
heuristic approach. We show how such identification, which unifies mathematically waves
and particles can be reached if and only if both waves and particles travel at the speed of
light so that particles result to be massless. A rest mass may be allowed in the observable
four-dimensional space-time if this latter is embedded within a higher dimensional one.
Interaction potentials are replaced by a suitable metric and connection.





Chapter 1 Heuristic Approach

1.1 The Historical Context

It is known that Louis De Broglie, at the very beginning of quantum
mechanics – attempting to reconcile wave-particle dual behavior of matter
– conjectured that the particle motion was guided by a sort of pilot wave.
(His original papers are collected in [13]. An historical survey on the
relationship between relativity and quantum mechanics is presented, e.g.,
in [18]).

Later David Bohm proposed the so called realistic interpretation of
Schrödinger equation (see [4]). In both cases something artificial was
required to provide consistency to the theory, like the request that the
particle velocity is different from the wave phase speed, rather being
equal to the wave group velocity, so that particles generally travel slowly
than waves. As a consequence we cannot speak, properly of a conceptual
unification between waves and particles, but rather of complementarity of
two ways of representing some physical reality, as it was suggested by
Niels Bohr (A wide survey on Bohr “philosophy” about complementarity
may be found in [5]). A solution that may appear somehow
unsatisfactory. A further step, in order to identify even the wave and
particle speeds, was made later by Guy Boillat who advanced the idea –
which was especially appreciated by Leopold Infeld – that stable particles
could be thought as exceptional discontinuity waves traveling across the
physical space and running along a path which represents, at the same
time, a particle trajectory and a wave ray. His approach is significantly
different respect to the previous ones since he operates in the context of a
quite general non-linear wave propagation theory obtaining also the well
known Born-Infeld electrodynamics and some other relevant results. (The
most relevant results about the theory are collected in [6,8] and [9]).
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Here we intend to investigate a deeper level of unification, by requiring
that beside the geometry (i.e., particle trajectory and wave rays in physical
3-dimensional space) also the kinematics (i.e., the evolution laws of
motion) are the same. Therefore we will impose that both the
Hamilton-Jacobi evolution law along wave rays and the Hamilton-Jacobi
equation of motion governing particles motion are the same equation. In
other words we suggest to identify the world lines describing waves and
particles in a relativistic space-time, so probably opening also a way
towards relativity and quantum mechanics unification. As a consequence
it will result that waves and particles run on the same ray/trajectory and
travel at the same velocity, which is equal to the wave phase velocity.

After the present introductory section, the chapter approaches the
problem in a non-explicitly covariant formulation, beginning,
heuristically, to work within a 3-dimensional physical space. The problem
itself will lead us naturally into a relativistic context.

In the next chapters 2 and 3, the same results will be represented with
more rigor and generality.

1.2 Identifying Wave and Particle Mechanics

In the present section we will proceed following three subsequent steps:
in the first step we show how to identify the wave-front motion equation
and the Hamilton-Jacobi equation; in the second one we introduce a space
metric in order to describe interaction forces and in the third step we show
how to provide particle rest mass embedding the observable 4-dimensional
space-time within a higher dimensional one.

8 Science Publishing Group



Chapter 1 Heuristic Approach

1.2.1 First Step – Wave-Front and Particle Motion

Let us start, heuristically, considering the 3-dimensional physical space.
The co-ordinates xi of each point x are labelled, as usual, by the Latin
indices i = 1, 2, 3. We now consider any scalar differentiable real valued
function ϕ(t, x), which we can always assume to be dimensionless. The
equation:

ϕ(t, x) = 0, (1.1)

may be interpreted as the equation of motion of a wave-front traveling
across the physical space. We point out that ϕ is determined by (1.1) except
for an arbitrary non-vanishing factor. A degree of freedom which will be
important later in order to guarantee the constance of particle mass (see
§1.2.3).

The trajectory (ray) of each point of the wave-front can be described by
its parametric equation:

x ≡ x(t). (1.2)

Substituting (1.2) into (1.1) and differentiating with respect to t we
obtain the differential equation governing the wave motion:

∂ϕ

∂t
+ V·∇ϕ = 0, (1.3)

where:

V =
d
dt

x(t), (1.4)

is the ray velocity of the point of the wave-front and · means the scalar
product in the physical space. Assuming ∇ϕ 6= 0, the eq. (1.3) can be
written also in the equivalent form:

∂ϕ

∂t
+ V |∇ϕ| = 0, (1.5)
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where:
V = V·n, n =

∇ϕ
|∇ϕ|

, (1.6)

is the normal wave speed of the wave-front at the point x and time t. The
first step of our approach consists in wondering whether and at which
conditions the wave-front equation (1.5) can be interpreted also as a
Hamilton-Jacobi equation:

∂S

∂t
+H = 0, (1.7)

governing motion of some family of particles across the physical space,
each one being identified by a suitable choice of the initial conditions on
the wave-front at initial time. In order to make possible such an
interpretation we may think of the Hamilton generating function S

governing motion of the particles as proportional to the function ϕ

according to the relation:
S = αϕ, (1.8)

where α is a suitable universal constant, which will be seen later to be
equal to the reduced Planck constant ~, in order that the physical
interpretation of the theory is consistent with quantum mechanics.
Immediately one realizes that (1.5) and (1.7) identify if the Hamiltonian
of the particle is given by:

H = V |∇S|. (1.9)

Since, according to the theory of Hamilton-Jacobi:

p = ∇S , E = H, (1.10)

(where p is the canonical momentum of the particle, and the Hamiltonian
H is its generalized energy) from (1.9) it results:

E = V p, p = |p|. (1.11)
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It is immediate to see that (1.11-a) is compatible with particle mechanics
only in the frame of special of relativity if and only if:

V = c, (1.12)

i.e., when the particle has zero rest mass, so that the correct
energy-momentum relation:

E = cp, (1.13)

is obtained. The Hamilton equations (where ∂/∂x means the gradient
operator respect to the co-ordinates and ∂/∂p is the gradient operator
respect to the momentum components):

dp
dt

= −∂H
∂x

,
dx
dt

=
∂H

∂p
, (1.14)

which here become:
dp
dt

= 0,
dx
dt

= cn, (1.15)

describe the motion of a massless particle traveling at the speed of light c
along a straight line of direction n:

n =
p
p
. (1.16)

We emphasize that the wave-front equation (1.5), which we have
identified with the Hamilton-Jacobi equation (1.7), properly involves
motion of an entire family of identical particles, traveling along the wave
rays. Each particle starts, at t = 0, from some point x0 (initial condition)
on the initial wave-front of equation ϕ(0, x0) and reaches at the time t the
position x(t) on the actual wave-front of equation ϕ(t, x(t)) = 0.

Even if the identification of wave-front and particle Hamilton-Jacobi
equations arose in a very natural way, now two non-trivial problems
emerge.
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1. The problem of interaction of the particle with external fields, and

2. The problem of the non-vanishing particle rest mass.

The problem of vanishing particle rest mass, well known within the
standard model of elementary particles appears here naturally as a
consequence of our wave-particle unification approach. Starting from
chapter 6 we will see how to solve it within a unified field theory.

In the next sections we will examine both questions and we will see how
they may be solved if a space with more than 3 dimensions is introduced.

1.2.2 Second Step – Interaction of Particles with Fields

In particle mechanics interactions of particles with fields are usually
treated adding a potential V to the Hamiltonian of a free particle:

H = Hfree + Vint. (1.17)

Manifestly a similar way of dealing with interactions appears to
immediately destroy any possible identification of the wave-front
equation (1.5) with the Hamilton-Jacobi equation (1.7) governing particle
motion. Perhaps this may be one of the reasons why such identification
was not conceived until now, resulting incompatible with Schrödinger
equation which is non-relativistic.

An elegant alternative to the potential V , as suggested by general
relativity, is provided by the introduction of a suitable metric within the
physical space. In fact, if we endow the 3-dimensional space with a
metric, here defined by the tensor of contravariant components g jk[3] , we
obtain the result of describing the interaction of a particle by means of a

12 Science Publishing Group
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gravitational field without altering the form (1.9) of the Hamiltonian H .
Simply, now the modulus of particle momentum is evaluated taking into
account the metric, avoiding any potential V . In fact at those conditions it
results:

E = cp, p =
√
g jk[3] pj pk, j, k = 1, 2, 3, (1.18)

where:

pi =
∂S

∂xi
, i = 1, 2, 3, (1.19)

and signature of
(
g jk[3]

)
here is (+,+,+) so that the line interval is ds2 =

g
[3]
jkdxidxk, where g[3]

jk are the covariant components of the metric. Then
the Hamilton equations become:

dpi
dt

= − c

2p
g jk[3], i pj pk, (1.20)

dxi

dt
= c g ik[3] nk, (1.21)

being:

nk =
pk
p
. (1.22)

It is straightforward to realize that the present approach to wave-particle
mechanics strongly suggests that, in order to introduce all the
fundamental fields known in physics – i.e. the electromagnetic, weak and
strong interaction fields, beside the gravitational one – more than three
space dimensions need to be involved, in order to avoid potentials which
would break the correspondence between wave-front and particle
Hamilton-Jacobi equations of motion. We will be concerned with this
problem starting from chapter 5. It is remarkable, as we will see in the
following subsection, that the same assumption of higher space
dimensionality is required also in order that particles may acquire a
non-vanishing rest mass.
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Incidentally we observe that introduction of higher space
dimensionality apparently seems to avoid the need of introducing an
additional scalar boson field as previewed by Higgs mechanism in the
context of quantum field theory. In effect it is not so, since the vector
fields living in the extra space dimensions will appear as scalar fields into
the physical 3-dimensional sub-space and a sort of field confinement will
be required in order that the extra co-ordinates are not observable in the
ordinary physical space. The scalar boson will appear just as a gauge
function for the vector potentials of the interaction and matter fields. This
matter will be examined in chapter 6.

1.2.3 Third Step – Non-Vanishing Rest Mass

We have seen in §1.2.1 that the identification of wave-front and
Hamilton-Jacobi particle equations of motion requires that the particle
itself travels at the speed of light c across the 3-dimensional physical
space and then its rest mass is necessarily zero.

A simple way to introduce non-zero rest mass of particles, sometimes
exploited in literature (see, e.g., [27, 28], [30, 31] and related references)
is provided by the introduction of space extra dimensions, so that new
co-ordinates and new momentum components will be available. Then rest
mass may arise from the contribution of the extra components of
momentum. In fact, if we assume, e.g., that at least one extra space
dimension exists within a flat space-time, the energy (1.13) can be written
in the form:

E = c
√

p2 + p2
4, (1.23)

where:

p4 =
∂S

∂x4
. (1.24)
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Chapter 1 Heuristic Approach

Then we would obtain the energy of a particle of rest mass m:

E = c
√

p2 +m2c2, (1.25)

if we are able to interpret the extra momentum component p4 as a
contribution arising from a rest mass:

m =
p4

c
. (1.26)

The latter condition is equivalent to require that:

∂S

∂x4
= mc, (1.27)

and integrating:
S = S [3](t, xi) +mcx4, (1.28)

where S [3] is the Hamilton generating function governing motion in the
3-dimensional space and the particle mass m is assumed to be a constant.

Adding dimensions to space involves new problems to be examined
within the theory, as e.g., that of confinement of the new unobservable
co-ordinates and that of the particle rest mass constance. In particular the
problem of mass constance results soon to be related to a suitable choice
of the arbitrary non-vanishing scale factor for the function ϕ. In fact if we
rescale ϕ of a non-vanishing dimensionless factor f according to the rule:

ϕ = f ϕ, (1.29)

into (1.28) we have:

αfϕ = S [3](t, xi) +mcx4, (1.30)

which determines f as:

f =
1

αϕ

[
S(t, xi) +mcx4

]
, (1.31)
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for any xi, t external to the wave front (i.e., when ϕ 6= 0).

As we will see later in chapter 6 the previous choice of f will be related
to the gauge functions of the vector fields governing matter and
interactions.

1.3 Conclusion

In the present chapter we have seen, following a heuristic approach, a
possibile and interesting way to unify the concepts of wave ray and particle
trajectory together with the respective time evolution laws.

Since the identification of the Hamilton-Jacobi equations governing
wave-front propagation and particle motion requires, according to
relativity theory that the particles travel at the speed of light c, so resulting
massless, we suggested a manner to obtain a non null particle rest mass
by introducing additional space dimensions. Interaction of particles with a
gravitational field has also be provided thanks to a suitable choice of the
metric of space.

In the following two chapters we will present a more general and precise
development of the ideas we have just sketched until now.
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Chapter 2

Wave-Particles in V n

(Synchronous Frame)

Abstract
In this chapter we develop in a more rigorous way the approach we
presented heuristically until now. Wave and particle mechanics, governed
by the same p.d.e. will be treated within an n-dimensional space-time
V n in a synchronous frame. We will see how the well known Einstein-
Planck and De Broglie relations arise naturally following our unification
method. Moreover we will investigate the problem of looking for a suitable
Lagrangian field dynamics leading to wave-particles traveling at the speed
of light across the higher dimensional space. Klein-Gordon and Dirac
equations will be naturally obtained.





Chapter 2 Wave-Particles in V n (Synchronous Frame)

2.1 Introduction

In the first part of the present chapter (§2.2) we will develop, in a more
rigorous way some of the heuristic ideas we have just suggested in the
previous chapter. In particular we will be concerned with wave-particle
mechanics within an n-dimensional space-time manifold V n in a
synchronous co-ordinate frame.

In the second part of the chapter (§2.3) we will introduce the problem
of looking for the properties which are required to some suitable field to
describe wave-particles as solutions (see [27, 28]).

A completely covariant theory, independent of the co-ordinate choice,
will be presented in the next chapter 3.

2.2 Waves and Particle Dynamics

Let us start considering an n-dimensional (n > 4) real differentiable
manifold V n, modeling a space-time endowed with a symmetric metric g
the signature of which is (+,−, · · · ,−) and a torsionless connection ΓΓ .
On V n we represent any system of curvilinear co-ordinates with xµ̄ , µ̄ =

0, ī, with ī = 1, 2, · · · , n−1. The physically observable space-time is then
described by a 4-dimensional sub-manifold V 4 on which the observable
co-ordinates are labelled by the indices µ = 0, i, where i = 1, 2, 3, while
we will label the remaining co-ordinates x4, x5, · · · , xn−1 by underlined
Latin indices i = 4, 5, · · · , n− 1.

For the sake of simplicity we adopt, here, the synchronous gauge:

g00 = 1, g 0̄i = g ī0 = 0, (2.1)
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i.e., a co-ordinate choice which ensures time synchronization for all the
observers, implying:

x0 = ct (time synchronization). (2.2)

An explicitly covariant formulation, with no assumption on the
co-ordinate gauge, requires a more sophisticated technique and we prefer
to expose it later, in a dedicated chapter (see chapter 3).

Let us now consider any differentiable real valued function ϕ
(
t, xī

)
,

which we can always assume to be dimensionless, such that:

1
c2

(
∂ϕ

∂t

)2

+ g j̄ k̄
∂ϕ

∂x j̄
∂ϕ

∂x k̄
≤ 0, (2.3)

where, the contravariant components of the metric tensor, in the gauge
(2.1), result to be:

g00 = 1, g0̄i = g ī0 = 0, g j̄ l̄ g l̄ k̄ = δ j̄
k̄
. (2.4)

Then the equation:
ϕ
(
t, x ī

)
= 0, (2.5)

may be interpreted as the (time-like or light-like) world sheet of a
wave-front traveling across the (n − 1)-dimensional space. (Some notes
on the elements of non-linear wave propagation theory needed here, are
presented in Appendix A).

We emphasize that ϕ is determined by (2.5) except for an arbitrary non
vanishing factor, the choice of which, as we know, will be relevant later to
ensure particle mass constance.

The trajectory (ray) of each point of the wave-front can be described by
its parametric equations:

x ī ≡ x ī(t). (2.6)
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Substituting (2.6) into (2.5) and differentiating with respect to t we
obtain the differential equation governing the wave motion:

∂ϕ

∂t
+ V ī ∂ϕ

∂x ī
= 0, (2.7)

where:

V ī =
d
dt
x ī(t), (2.8)

is the ray velocity of the point of the wave-front.

Assuming ϕ, ī 6= 0 (comma denoting, as usual, partial derivative respect
to co-ordinates), equation (2.7) can be written also in the equivalent form:

∂ϕ

∂t
+ V |∇ϕ| = 0, |∇ϕ| =

√
−gj̄ k̄ ϕ, j̄ ϕ, k̄ . (2.9)

Here V is the normal wave speed being:

V = V īn ī , n ī =
ϕ, ī
|∇ϕ|

, g j̄ k̄ nj̄ n k̄ = −1. (2.10)

The first step of our approach consists in wondering whether and at
which conditions the wave-front equation (2.9-a) can be interpreted also
as a Hamilton-Jacobi equation:

∂S

∂t
+H = 0, (2.11)

governing motion of a family of particles, each one identified by its initial
position xī0 along the wave-front at t = 0.

In order to make possible such interpretation we require that the
Hamilton generating function of the particle dynamics is directly
proportional to the function ϕ according to the relation:

S = αϕ, (2.12)
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where α is a dimensional (positive) universal constant which, later will
result equal to Planck reduced constant ~, according to a physical
interpretation of the theory (see §2.2.2).

Then we can write (2.9-a) in the form (2.11) if the Hamiltonian of the
particle is required to be:

H = V |∇S|, |∇S| =
√
−gj̄ k̄ S, j̄ S, k̄ . (2.13)

Since, according to the theory of Hamilton-Jacobi:

p ī = S, ī , E = H, (2.14)

(where p ī is the canonical momentum of the particle, and the Hamiltonian
H is the generalized energy), from (2.13) it results:

E = V
√
−g j̄ k̄ pj̄ pk̄ . (2.15)

It is immediate to see that (2.15) is compatible with relativity theory if
and only if:

V = c, (2.16)

so that the particle is necessarily required to have zero rest mass. In fact at
those conditions it results:

E = cp, p =
√
−g j̄ k̄ p j̄ pk̄ . (2.17)

2.2.1 The Hamilton Equations

The Hamilton equations:

dp ī
dt

= − ∂H
∂x ī

,
dx ī

dt
=
∂H

∂p ī
, (2.18)
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result now:

dp ī
dt

=
c

2p
gj̄ k̄
, ī
pj̄ p k̄ , (2.19)

dx ī

dt
= −cnī , (2.20)

where:

nī =
p ī

p
, p j̄ = g j̄ k̄ p k̄ . (2.21)

One realizes that (2.19) is also equivalent to the geodesic condition:

dp ī
dt
− Γ k̄

ī j̄ p k̄
dx j̄

dt
= 0, (2.22)

which, thanks to (2.20), becomes:

dp ī
dt

+
c

p
Γ k̄
ī j̄ p

j̄ p k̄ = 0. (2.23)

In fact:
1
2
g j̄ k̄
, ī
pj̄ pk̄ ≡ −Γ k̄

ī j̄ p k̄ p
j̄ ,

being:

g j̄ k̄
; ī
≡ g j̄ k̄

, ī
+ Γ j̄

ī m̄
g m̄k̄ + Γ k̄

ī m̄ g
j̄ m̄ = 0, (2.24)

because of the metricity of g j̄ k̄ (semicolon denoting covariant derivative),
where:

Γ k̄
ī j̄ = 1

2
gk̄ m̄ (g j̄ m̄ , ī + g ī m̄ , j̄ − g ī j̄ ,m̄). (2.25)

Therefore we may conclude that the differential equation governing
wave motion may be identified with the Hamilton-Jacobi equation
governing motion of a massless particle traveling at the speed of light
across the (n− 1)-dimensional space, provided that the wave itself travels
at the speed of light.
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Now we can split the (n − 1)-vectors (p ī), (x
ī) into their components

onto the physical space pi, xi and the extra components pi, xi (remember
that, according to our convention i = 1, 2, 3 and i = 4, 5, · · · , n− 1).

We have:

dpi
dt

=
c

2p
g jk,i pj pk +

c

2p
g
j k

,i pj pk +
c

p
g j k,i pj pk,

(2.26)
dxi

dt
= −c p

i

p
,

dpi
dt

=
c

2p
g jk,i pj pk +

c

2p
g
j k

,i pj pk +
c

p
g j k,i pj pk,

(2.27)
dxi

dt
= −c p

i

p
.

We can interpret:

m = 1
c

√
−(2g j kpk + g j kpk)pj, (2.28)

as a constant rest mass of some particle provided that we assume:

−(2g j kpk + g j kpk)pj = non-negative constant. (2.29)

Such a choice is always possible, mathematically, since p ī = αϕ, ī and
ϕ is defined except for a non vanishing factor according to (2.5). It is
interesting to observe that this factor is not influent on wave propagation
since the wave-front remains unmodified whatever it is, but it is relevant
on particle propagation in order to ensure rest mass constance. It appears
as a sort of gauge condition on the function ϕ. More investigations in order
to understand a physical “mechanism” ensuring such a constance of mass
will be exploited in chapter 6, in Part II.
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Then we gain the Hamiltonian of a massive particle:

H = c
√
m2c2 + ~p 2, ~p 2 = −gikpipk. (2.30)

We observe that when gjk depends only on the observable variables
t, xi, relation (2.26-a) identifies with the equation of the geodesic
trajectory of a particle of rest mass m crossing the 3-dimensional physical
space in presence of a gravitational field, while gj k, gj k, could represent
possible non-gravitational fields in the frame of a filed theory in more
than four space-time dimensions like a Kaluza-Klein type theory or some
alternative to this latter.

2.2.2 De Broglie and Einstein-Planck Relations

The Hamilton generating function S, proportional to the function ϕ

characterizing the wave-front, can now be evaluated by integration of
(2.7), in which the ray velocity V ī has the direction of the normal vector
of components nī , resulting:

V ī = −cn ī . (2.31)

Then the equation to be integrated becomes:

∂ϕ

∂t
− cn ī ∂ϕ

∂x ī
= 0. (2.32)

The solution is any function of type:

f ≡ f
(
n ī x

ī − ct
)
. (2.33)

In fact it results:
∂ϕ

∂t
= −f ′c, ∂ϕ

∂x ī
= f ′n ī , n ī =

p ī
p
,
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p ī , x
ī being independent canonical variables and prime denoting here the

derivative respect to the whole function argument.

In detail we have:

ϕ, t−cnīϕ,̄i = f ′nj̄ ;tx
j̄−f ′c−f ′cnī nj̄ ;̄i x

j̄−f ′cnī nī ≡ f ′nj̄ ;tx
j̄−f ′cnī nj̄ ;̄i x

j̄ ,

being nī nī = −1. Since the wave propagates along a ray of equation
xj̄ = cnj̄ t it follows:

nj̄ ;tx
j̄ − cnī nj̄ ;̄i x

j̄ ≡ nj̄ ;tn
j̄ ct− cnī nj̄ ;̄i n

j̄ ct = 0,

resulting nj̄ ;tn
j̄ = 0, nj̄ ;̄i n

j̄ = 0.

It follows:
∂ϕ

∂t
− cn ī ∂ϕ

∂x ī
≡ −(1 + n ī n ī)f

′c = 0,

the norm of (n ī) being the negative unit (n ī n ī = −1).

Such kind of solution is what, in non-linear wave propagation theory,
generalizes a plane wave in linear wave theory and it is known in literature
as a simple wave (see, e.g., [8]).

Being S = αϕ, it results also:

S = αf(n ī x
ī − ct). (2.34)

Then, thanks to (2.14), the relation between the canonical momentum
of the particle and the wave-front solution, during wave-particle motion,
becomes:

p ī = αf ′n ī , (2.35)

and the relation between the Hamiltonian of the particle and the wave-front
solution results:

H ≡ E = αcf ′. (2.36)
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If we introduce the following quantities related to wave propagation:

k ī = f ′n ī , ω = cf ′, (2.37)

and we choose α equal to the reduced Planck constant ~, the previous
equations arise as a generalization of well known quantum mechanical
relations.

In fact we obtain:

p ī = ~k ī (De Broglie relation),

E = ~ω (Einstein-Planck relation).
(2.38)

In the special case of a periodic wave it is immediate to recognize the
quantities k ī , ω, as the usual wave number vector and frequency, of which
the definitions (2.37) represent a generalization to non-linear waves.

In general it is convenient to choose kixi − ωt as argument of wave
solutions, since it results simply:

ϕ = kix
i − ωt, (2.39)

because of compatibility with (2.38), resulting now ϕ ′ ≡ f ′ = 1.

2.3 Wave Dynamics and Field Equations

The preliminary level of the problem of wave dynamics consists in
determining a class of fields governed by field equations which yield the
wave solutions equivalent to the solutions to the equation of
Hamilton-Jacobi for particles, as examined in the previous sections. Of
course the main condition required to the system of field equations is that
it leads to wave solutions traveling with the speed of light across an
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(n − 1)-dimensional space. But that condition alone is too loose to
characterize a physically meaningful class of field equations. So we need
some more reasonable assumptions. Therefore we will require the
following ones:

1. The system of field equations is required to be Lagrangian. This
condition is usual for physical fields and needs no special explanation.

2. The production term of the system must be zero (at least in
correspondence to the simple wave solutions when the system is
non-linear). This second assumption is required in order to provide
regular solutions to the system as simple waves are (see Appendix
A). Moreover it ensures that the particles travel along the rays with
characteristic speeds. In principle also discontinuity waves could be
considered, but if we want to be able to compare the results with
quantum mechanical ones we need regular solutions which can be
expanded into Fourier series.

3. The normal speed of all simple waves needs to be equal to the speed
of light c. This is just the condition we have previously determined.

2.3.1 The Lagrangian System

Let us consider a candidate field φφ, which in general may be a complex
column vector belonging to an N -dimensional Euclidean complex space,
and is assumed to be a set of regular functions of t, x ī , invariant respect to
any regular co-ordinate transformation. And let:

L ≡
√
|g| `

(
v, v+,wī ,w+

ī

)
, v =

∂φφ

∂t
, wī =

∂φφ

∂x ī
, (2.40)

be a Lagrangian density governing the field dynamics (where + denotes
transposed complex conjugation). Such a Lagrangian is supposed to
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depend only on v,wī , in order to fulfill the assumption (2), or, at least to
involve φφ in such a way that the production term ∂L/∂φφ vanishes in
correspondence to the simple wave solutions, we are interested in, or at
least it results to be negligible under physically suitable conditions. (Here
and in the following, notations like ∂/∂φφ denote the gradient operator
respect to the components of the vector φφ). So, in the following of the
present section we will drop it. Then the system of first order field
equations results:

∂

∂t

(√
|g| ∂`

∂v+

)
+

∂

∂x ī

(√
|g| ∂`

∂w+
ī

)
= 0, (2.41)

∂wī

∂t
− ∂v
∂xī

= 0, (2.42)

together with its complex conjugate. We are looking for simple wave
solutions, i.e., functions φφ

(
ϕ(t, xi)

)
which depend on t, xi by means of

an argument function ϕ.

On applying the correspondence rules:

∂

∂t
(·) −→ −λ ∂

∂ϕ
(·) ≡ −λ(·)′,

(2.43)
∂

∂xī
(·) −→ n ī

∂

∂ϕ
(·) ≡ n ī(·)′,

prime denoting here differentiation respect to the argument ϕ, we obtain,
according to wave propagation theory, the algebraic system for the simple
waves eigenvalue problem:

−λ
(√
|g| ∂`

∂v+

)′
+ n ī

(√
|g| ∂`

∂w+
ī

)′
= 0, (2.44)

−λw′ī − n ī v
′ = 0, (2.45)

in which λ is the characteristic normal speed of the simple waves and the
unknown field variables v,wī are functions of ϕ. We point out that even
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if the wave propagation theory we are applying here was originally carried
out in the context of real valued fields, its extension to complex fields is
straightforward (see e.g., [26]).

Simple manipulations on (2.44)-(2.45), after eliminating wī by direct
substitution, lead to:{

λ2 ∂2`

∂v+∂v
g ī j̄ − λ

(
nī

∂2`

∂v+∂wj̄

+
∂2`

∂w+
ī
∂v
nj̄
)
−

− ∂2`

∂w+
ī
∂wj̄

}
n īnj̄ v′ = 0. (2.46)

Since the Lagrangian density cannot depend on the wave-front geometry,
i.e., on n ī , the following conditions must hold:

λ2 ∂2`

∂v+∂v
gī j̄ − ∂2`

∂w+
ī
∂wj̄

= 0, (2.47)

∂2`

∂v+∂wj̄

= 0 ⇐⇒ ∂2`

∂w+
ī
∂v

= 0. (2.48)

The latter condition implies that the fields v,wī , and their respective
conjugates, are decoupled, resulting:

` = `1(v, v+) + `2(wī ,w+
ī

). (2.49)

Substitution into the former equation yields:

λ2 ∂2`1

∂v+∂v
g ī j̄ − ∂2`2

∂w+
ī
∂wj̄

= 0. (2.50)

Thanks to our assumption (3), the normal speeds of simple wave
propagation are to be set equal the speed of light, and therefore (2.47)
becomes:

c2 ∂2`1

∂v+∂v
g ī j̄ =

∂2`2

∂w+
ī
∂wj̄

. (2.51)
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The Hessian matrices of `1, `2 are manifestly independent of the fields
v,wī , so we may write them as:

∂2`1

∂v+∂v
= 1

c2
a, (2.52)

∂2`2

∂w+
ī
∂wj̄

= g ī j̄ a, (2.53)

where a is a non singular Hermitean matrix, independent of the fields.
From those conditions the form of the Lagrangian density is determined to
be:

L = 1
2

√
|g|
(
g ī j̄ w+

ī
a wj̄ + 1

c2
v+a v

)
. (2.54)

The Euler-Lagrange equations are given by:

∂

∂t

(√
|g| a v

)
+

∂

∂xī

(
c2
√
|g| g ī j̄ a wj̄

)
= 0, (2.55)

or: (
a v
)

;0
+
(
c g ī j̄ a wj̄

)
; ī

= 0, (2.56)

where ;0 denotes the covariant derivative respect to x0 = ct. We observe
that a, beside being independent of the fields v,wī , must be independent
also of t, x ī , otherwise a non vanishing production term would arise into
the field equations. Then, since a is a non singular matrix, taking account
of the metricity condition (g ī j̄

; k̄
= 0) and symmetries, the field equations

result simply:

v;0 + c g j̄ ī wj̄ ; ī = 0, c wī ;0 − v ; ī = 0. (2.57)

The coefficient matrix a disappears in the equations and its role becomes
irrelevant in the Lagrangian. So it is not a restriction to choose:

a = κ I, (2.58)
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with κ a suitable dimensional constant and I the identity matrix in the field
space.

Then the scalar Lagrangian density becomes finally:

` = 1
2
κ
(
g ī j̄ w+

ī
wj̄ + 1

c2
v+v
)
. (2.59)

We observe that the algebraic system which determines the simple
waves, arising from (2.57), which is given by:

1
c
λv′ − cn ī w′ī = 0, λw′ī + n ī v′ = 0, (2.60)

yields, through direct substitution:

(λ2 − c2)v′ = 0, (2.61)

from which the characteristic speeds become:

λ = ±c, (2.62)

as expected. Such values imply, significantly, that the energy of the particle
associated to wave propagation, thanks to (2.15), taking into account that
V = λ, results to be:

E = ±
√
m2c4 + c2p 2. (2.63)

It is remarkable that, corresponding to any simple wave-front traveling
at normal speed +c, there exists an identical wave-front traveling in the
opposite sense, i.e., at speed −c, as it is usual in wave propagation. So,
corresponding to a particle of energy +|E|, associated with the former
wave, there exists another particle of negative energy −|E| (anti-particle),
associated to the latter wave. Such circumstance, as it is well known, was
noticed for the first time by P.A.M. Dirac (see Dirac original papers [14,
15]), examining the solutions of his famous equation. According to our
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present approach the result arises naturally as a consequence of wave
particle correlation expressed by (2.15), being V = λ, and the assumption
that the system of field equations is Lagrangian.

2.3.2 Hamiltonian Density

Starting from the Lagrangian density given by (2.54), (2.59) we can
evaluate the Hamiltonian density:

H = v+∂L
∂v
− L, (2.64)

of the field φφ in terms of its derivatives v,wī .

We obtain soon:

H = 1
2
κ
√
|g|
(

1
c2

v+v− g ī j̄ w+
ī

wj̄

)
. (2.65)

In particular, in correspondence to a periodic wave-particle solution
(boson) to the field equations (2.57), like:

v = −iωφφ0e
i(kīx

ī−ωt) + iωφφ+
0 e

i(kīx
ī+ωt),

wj̄ = ikj̄ φφ0e
i(kīx

ī−ωt) + ikj̄ φφ
+
0 e

i(kīx
ī+ωt),

(2.66)

it results:

H = 1
2
κ
√
|g|
(
ω2

c2
− g ī j̄ kī kj̄

)(
φφ+

0φφ0 + φφ0φφ
+
0

)
. (2.67)

Now H represents the energy density of the field φφ (or equivalently of
the fields v,wī ). Since in V n it results also:

E2

c2
+ g ī j̄ p ī pj̄ ≡ ~2

(
ω2

c2
+ g ī j̄ kī kj̄

)
= 0, (2.68)

it follows:
H = κ

c2

√
|g|ω2

(
φφ+

0φφ0 + φφ0φφ
+
0

)
. (2.69)
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Quantization is obtained now introducing the annihilation/creation
operators a,a+ such that:

√
κ
c
ωφφ0 =

√
~ω
2

a, (2.70)

for which:
aa+ − a+a = I, (2.71)

so that we have:
H =

√
|g| ~ω

(
a+a + 1

2

)
. (2.72)

In presence of many wave-particles H results to be the summation of
each contribution, i.e.:

H =
√
|g|
∑
n

~ωn
(
a+
nan + 1

2

)
. (2.73)

2.3.3 The Klein-Gordon Equation

Let us now study in more detail the system of field equations (2.57).

Second Order Formulation

First of all we observe that we can always replace the fields v,wī , with
their original definitions in terms of derivatives of the field φφ, according to
(2.40). We obtain a system of N second order equations:

φφ ;0;0 + gī j̄ φφ ; ī ; j̄ = 0, (2.74)

instead of the original system of 2N first order equations (2.57).

This generalized D’Alembert equation, governing the propagation of
the field φφ across the (n − 1)-dimensional space, is equivalent to a

34 Science Publishing Group



Chapter 2 Wave-Particles in V n (Synchronous Frame)

Klein-Gordon equation for the propagation of the same field across the
physical 3-dimensional space. In fact the solutions for the field, being
simple waves, depend on the argument nī x

ī − ct or equivalently
kī x

ī − ωt, being composite functions through ϕ of the same argument.
Now, thanks to (2.38) we have:

p ī x
ī − Et ≡ ~(k ī x

ī − ωt), (2.75)

so that we may express k ī xī − ωt in terms of p ī xī − Et. Therefore we
can consider the field φφ as a function of the argument p ī xī − Et, rather
than nī xī − ct:

φφ ≡ φφ(p ī x
ī − Et). (2.76)

Conveniently we split the scalar product in a contribution arising from
the ordinary space components (pixi) and the extra-space components
(pixi), obtaining:

φφ ≡ φφ(pix
i + pix

i − Et). (2.77)

Without affecting time we may choose the space co-ordinates xi in such
a way that:

xn = xiNi, gnn ≡ g j kNjNk = −1, g ij = gj i = 0, (2.78)

Ni being the unit vector along the direction of the of momentum extra
component:

Ni =
pi√

−g j kpjpk
, (2.79)

which results to be equivalent to:

pi = mcNi, (2.80)

thanks to (2.28).
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Then the simple wave will travel across a 5-dimensional sub-space-time,
resulting:

φφ ≡ φφ(pix
i +mcxn − Et). (2.81)

If we require the additional assumption that φφ belongs to the Hilbert
space L2, as usual in quantum mechanics, so that it can be expanded into
Fourier series, we may write:

φφ =
+∞∑
r=−∞

cre
i
~(prixi+mcxn−Er t) ≡ e

i
~mcxn

+∞∑
r=−∞

cre
i
~(prixi−Er t), (2.82)

where the energies result to be:

Er = c
√
|~pr| 2 +m2c2, |~pr| 2 = −gjkprj prk. (2.83)

Now we are able to evaluate the Laplacian:

g ij φ ;i ;j ≡ gnnφ;n ;n = m2 c2

~2 φ.

Then the field equation (2.74) leads to the Klein-Gordon equation in
generalized co-ordinates:

φ ;0;0 + gijφ ;i ;j + m2c2

~2 φ = 0. (2.84)

First Order Formulation

A further relevant consideration arises on evaluating the divergence of w ī

in terms of the field variables wi and wn. Taking into account the previous
results we have:

wj = wnδjn, wj ;n = imc
~ wnδj n. (2.85)

It follows into the system (2.57):

v;0 + c gij wj ;i + imc2

~ wn = 0. (2.86)
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c wi ;0 − v ;i = 0, (2.87)

c wn ;0 − v ;n = 0. (2.88)

This result is equivalent to say that we need al least one extra space
dimension to introduce the rest mass of a single particle. More dimensions
will be required to deal with several kinds of particles as it is the case of
elementary particles standard model. Then the space-time needs to have
five dimensions if the particle travels across a gravitational field or six if
the electromagnetic field is added or more if other fundamental fields are
present.

2.3.4 The Dirac Equation

In the N -dimensional linear space of the field variables wī , v it is always
possible to find four non singular matrices relating a component of the
vectors wi, v with the vector wn; so we can introduce a vector of matrices
ααi, αα, such that:

wi = −Kααiwn, v = −Kcααwn, (2.89)

where K is a suitable constant to be determined. The previous relation
implies also:

ααv + cααiwi = −Kc(αα2 + ααiααi)wn, ααi = gijααi. (2.90)

Assuming that αα2 + ααiααi is non singular it is possible to introduce
another set of matrices ai,a such that:

wn = − 1
Kc

(
a v + caiwi

)
, (2.91)

Combining (2.91) with (2.89) we get:

wn =
(
aαα + aiααi

)
wn.
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And therefore:
aαα + aiααi = I. (2.92)

Thanks to (2.91) and taking account of Schwarz condition (holding for
the scalar components of the field φφ), the field equations (2.57) may be
written only in terms of v,wi,wn. We have:

v;0 +Kc gijwj ;i +Kcgnnwn;n = 0, (2.93)

with the additional conditions:

cwn;0 − v ;n = 0, (2.94)

c wi ;n − v ;n = 0. (2.95)

Substitution of (2.91) into the last relations yields:

a ;nv + av;n −Kv;0 + c
(
ai ;nwi + aiwi ;n −Kgijwj ;i

)
= 0, (2.96)

K v;n + a ;0v + caj ;0wj + av;0 + cajwj ;0 = 0, (2.97)

Kcwi ;n + a ;iv + caj ;iwj + av;i + cajwj ;i = 0. (2.98)

On taking the scalar product of (2.97) by a and (2.98) by ai, we have:

Ka v;n + a a ;0v + ca aj ;0wj + a2v;0 + ca ajwj ;0 = 0, (2.99)

Kcaiwi ;n+aia ;iv+caiaj ;iwj+aiav;i+caiajwj ;i = 0. (2.100)

Since v,wi are partial derivatives of a field which is scalar, according to
(2.40-b-c), it follows that:

(v = φ ;0 ≡ φ ,0, wj = φ ;j ≡ φ ,j) =⇒ (wj ;0 = v;j, wi ;j = wj ;i).
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Then the second derivatives being symmetric respect to indices, eqs (2.99),
(2.100) become:

Ka v;n+ a a ;0v + ca aj ;0wj + a2v;0 + 1
2
c
(
a aj + aja

)
wj ;0 = 0, (2.101)

Kcaiwi ;n + aia ;iv + caiaj ;iwj + aia v;i +

+1
2
c
(
aiaj + ajak

)
wj ;i = 0. (2.102)

Addition of (2.101), (2.102) to (2.96), multiplied by K, after some
manipulations, leads to:(

Ka ;n + a a ;0 + aja ;j

)
v + (a2 −K2 I)v;0 + 1

2

(
aia + a ai

)
v;i +

+c
(
Kaj ;n + a aj ;0 + aiaj ;i

)
wj + 1

2

(
a aj + aja

)
wj ;0 +

+1
2
c
(
aiaj + ajai − 2K2gij I

)
wj ;i = 0. (2.103)

The last condition (2.103) holds for any value of the field variables and
their derivatives, if:

a2 = K2 I, (2.104)

Ka ;n + a a ;0 + aja ;j = 0, (2.105)

a aj + aja = 0, (2.106)

aiaj + ajai = 2K2gij I. (2.107)

Contraction of indices i, j in (2.107) yields:

ajaj = 3K2 I, (2.108)

being gij gij = 3. Now addition of (2.104) and (2.108) leads to:

a2 + ajaj = 4K2 I. (2.109)
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Comparison of (2.109) and (2.92) implies, eventually:

a = 4K2αα, aj = 4K2ααj. (2.110)

Now if we choose K = 1
4
, and introduce (2.110) into (2.107) we obtain:

ααiααj + ααjααi = 2gij I. (2.111)

Moreover, from (2.106) and (2.111) it follows that:

αα;0 = 0, αα;i = 0, ααj ;0 = 0, ααj ;i = 0. (2.112)

In fact, we have e.g.:

αα1αα1 = g11 I =⇒ αα1αα1
;i = 0, (2.113)

and being αα1 non-singular, it follows:

αα1
;i = 0. (2.114)

The same happens for any other index value. It is easy to recognize in
the previous relations a general relativistic extension of the same
anti-commutation rule holding for the Dirac matrices.

So the equation (2.57-a) or (2.86), thanks to (2.89), finally results to be
equivalent to a field equation of the form:

ααwn ;0 + ααiwn ;i + i
mc

~
wn = 0, (2.115)

which is recognized to be the Dirac equation:

∂ψ

∂t
+ cααiψ ;i + i

mc2

~
βψ = 0, (2.116)

when it is set:
wn = βψ, αα = β−1. (2.117)
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2.4 Operators

2.4.1 Correspondence Principle

As we have seen until now the analytical unification between waves and
particles we have performed, has led us to conceive a front wave as a family
or set of the actual positions of particles of the same rest mass m.

The introduction of a suitable field dynamics shows that each wave front,
in its turn, is required to be a solution of the equations governing some field
φφ (or ψ). Therefore the field appears as a family of all the waves allowed
as solutions of the field equations. In some sense we can conceive the field
as a family of families of particles. Now the correspondence principle of
quantum mechanics:

pα −→ Pα = −i~ ∂

∂xα
, (2.118)

appears to replace the momentum of an individual particle of rest mass
m with an operator involving the momenta of the all the particles of the
family of families governed by the field.

Then the Klein-Gordon equation, when written in terms of the operator
Pα, i.e.:

gαβPαPβφφ = m2c2φφ, (2.119)

looks like a natural generalization, to a family of families of particles, of
the on-shell condition:

gαβpαpβ = m2c2, (2.120)

holding for a single particle of rest mass m. The Hamiltonian density of
the field, given by (2.69), provides also information about the number n of
particles (i.e., quanta of energy ~ω) which are present in the volume V of
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the region filled by the field, resulting:

H =
n~ω
V

. (2.121)

Comparison of (2.121) and (2.69) yields:

n~ω
V

=
κ
√
|g| ω2

c2
|φφ|2. (2.122)

So the probability density of finding a particle in the unit volume of the
region occupied by the field φφ results:

$ ≡ n

V
=

κ
√
|g| ω

~c2
|φφ|2. (2.123)

A suitable normalization of the field φφ allows to interpret |φφ|2 just as
equal to the probability density of particle presence. The latter result which
is usually postulated in quantum mechanics, here results naturally from
energetic considerations about the field.

2.4.2 Uncertainty Principle

Introduction of operators, through the correspondence principle, leads
also to the uncertainty principle:

∆A∆B ≥ 1
2

∣∣∣[A,B]
∣∣∣, (2.124)

where:
[A,B] = A B − B A, (2.125)

because of non-commutative algebra of any pair of conjugate operators
A,B. In particular when:

A = P ≡ −i~ d
dx
, B = X ≡ xI, (2.126)
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it results:
∆P∆X ≥ 1

2
~, (2.127)

being:
[X,P ] = i~I. (2.128)

The result is not surprising since the energy of the field φφ is not sharply
localized on a wave front of equation ϕ = 0, being distributed along the
whole extension ∆x of a wave pulse which depends on the superposition
of the Fourier components required to localize the pulse extension. The
frequencies and the wave numbers of such Fourier components stretching
along the ranges ∆ω,∆k determine, in the meanwhile an uncertainty of
the energy and momenta ∆E = ~∆ω, ∆p = ~∆k of the wave-particle.

2.5 Conclusion

In this chapter we have formulated, in a more rigorous way, the ideas
suggested heuristically in the first chapter and we have developed non-
trivial consequences in order to a possible conceptual unification of waves
and families of particles.

Moreover we have investigated some requested conditions for the
possible fields which may govern the dynamics of wave-particles.
Remarkably we have been quite naturally driven to the Klein-Gordon and
Dirac equations as field equations, the solutions of which provide waves
and particle families. The results have been obtained with the aid of a
simplifying assumption that the metric is synchronous. In the next chapter
such special condition will be removed and a quite general theory will be
developed.
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Chapter 3

Wave-Particles in V n (Covariant
Formulation)

Abstract
The present chapter generalizes in a fully covariant formulation all the
results presented in the previous ones. In particular wave and particle
mechanics, governed by the same p.d.e. will be treated within a n-
dimensional space-time V n with no assumptions on the co-ordinate system.
A covariant Lagrangian density and the related energy-momentum tensor of
a field which is responsible of wave-particles living on light-like paths in
a higher dimensional space-time is obtained. Covariant Klein-Gordon and
Dirac equations will be naturally deduced.





Chapter 3 Wave-Particles in V n (Covariant Formulation)

3.1 Introduction

In this chapter we present a generalization of the results, previously
obtained under the restrictive assumption of the synchronous gauge
condition. Here we will remove the time synchronization co-ordinate
condition on the metric choice (i.e., g00 = 1, g0̄i = 0) and present an
explicitly covariant formulation of the proposed wave-particle unification
approach, with no gauge assumptions. For the sake of facility for the
reader, we will organize the sections following the same scheme and steps
as in the previous chapter (see [29]). As we will see the results assume a
more elegant and compact form when expressed in the explicitly covariant
formalism, as it is usual in relativity.

3.2 Waves and Particle Dynamics

Let us consider a n-dimensional differentiable manifold V n,
representing a space-time endowed with a symmetric metric g of
signature (+,−, · · · ,−) and a torsionless connection ΓΓ . On V n we
represent any system of curvilinear co-ordinates with xᾱ (ᾱ = 0, ī, with
ī = 1, 2, · · · , n − 1). The physically observable space-time is then
described by a 4-dimensional sub-manifold V 4 on which the observable
co-ordinates are labelled by the indices α = 0, i with i = 1, 2, 3, while we
will label the remaining co-ordinates x4, x5, · · · , xn−1 by underlined Latin
indices i = 4, 5, · · · , n− 1. Let us now consider any differentiable real
valued scalar function ϕ(xᾱ), which we can always assume to be
dimensionless. Then we can interpret the equation:

ϕ(xᾱ) = 0, (3.1)
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as the space-time world-sheet of a wave-front traveling across the
(n − 1)-dimensional space. (Some notes on covariant non-linear wave
propagation theory have been proposed in Appendix B to facilitate the
reader). Of course the function ϕ is determined by (3.1) except for an
arbitrary non vanishing scalar factor, the choice of which is related to
particle mass constance condition. The space-time path (world-line) of
each point of the wave-sheet can be described by the parametric
equations:

xᾱ ≡ xᾱ(σ), (3.2)

where σ is a suitable evolution parameter. Substituting (3.2) into (3.1)
and differentiating ϕ with respect to σ we obtain the differential equation
governing the wave space-time geometry:

dϕ
dσ
≡ V ᾱ ∂ϕ

∂xᾱ
= 0,

where:
V ᾱ =

d
dσ

xᾱ(σ), (3.3)

is a tangent vector to the path at the point of co-ordinates xᾱ . We precise
that σ can be chosen equal to the proper time or proper length (which are
Riemannian invariant scalars) only if the trajectory is time-like, while a
light-like trajectory can be treated only as a limiting case. Anyway the
scalar condition:

V ᾱ ∂ϕ

∂xᾱ
= 0, V ᾱ Vᾱ ≤ 0, (3.4)

is always preserved and the light speed is included as a limiting case when
the vector of components V ᾱ has null length. The first step of our work
consists in asking whether and at which conditions the wave ray equation
(3.4) can be interpreted also as a covariant Hamilton-Jacobi equation:

gᾱ β̄
∂S

∂xᾱ
∂S

∂xβ̄
−m2c2 = 0, (3.5)

governing the motion of some family of particles of rest mass m.
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In order to make such interpretation possible, we may think of the
Hamilton generating function S of the particle dynamics as proportional
to the function ϕ.

So we set the relation:
S = αϕ, (3.6)

where α is a suitable dimensional (positive) constant which we have
already recognized to be equal to Planck reduced constant ~ for
compatibility with a physical interpretation of the theory (see §2.2.2 in
chapter 2).

Now we can identify (3.4-a) with (3.5) provided that the following
conditions are fulfilled:

V ᾱ = gᾱ β̄
∂ϕ

∂xβ̄
, m = 0. (3.7)

It is immediate that compatibility requires:

V ᾱ Vᾱ = 0, (3.8)

i.e., the particle must travel at the speed of light c, having zero rest mass.

According to the covariant theory of Hamilton-Jacobi, the canonical
momentum of the particle is given by:

pᾱ =
∂S

∂xᾱ
, (3.9)

and the Hamiltonian assumes the form:

H = 1
2K g

ᾱ β̄ ∂S

∂xᾱ
∂S

∂xβ̄
, K = constant. (3.10)

(On the covariant formulation of the theory of Hamilton-Jacobi, see
Appendix C and also [17]).
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3.2.1 Covariant Hamilton Equations

Then the Hamilton equations:

dpᾱ
dσ

= − ∂H
∂xᾱ

,
dxᾱ

dσ
=
∂H

∂pᾱ
, (3.11)

become explicitly:
dpᾱ
dσ

= − 1
2K pµ̄pν̄ g

µ̄ ν̄
, ᾱ , (3.12)

dxᾱ

dσ
= 1
K p

ᾱ . (3.13)

One realizes that (3.12) is equivalent to the geodesic condition:

dpᾱ
dσ
− Γ µ̄

ᾱ ν̄ pµ̄
dxν̄

dσ
= 0, (3.14)

which, thanks to (3.13), becomes:

dpᾱ
dσ
− 1
KΓ

µ̄
ᾱ ν̄ pµ̄ p

ν̄ = 0, (3.15)

which leads to (3.12). In fact:

1
2
g µ̄ ν̄, ᾱ pµ̄ pν̄ ≡ −Γ

µ̄
ν̄ ᾱ pµ̄ p

ν̄ , (3.16)

being:
g µ̄ ν̄; ᾱ ≡ g µ̄ ν̄, ᾱ + Γ µ̄

ᾱ ρ̄ g
ρ̄ ν̄ + Γ ν

ᾱ ρ̄ g
µ̄ ρ̄ = 0, (3.17)

thanks to the metricity condition.

Therefore we may conclude that the differential equation governing
wave kinematics may be identified with the Hamilton-Jacobi equation
governing the motion of a massless particle traveling at the speed of light
across the (n− 1)-dimensional space, provided that the wave itself travels
at the speed of light. Now we can conveniently split the n components of
the vectors (pᾱ) and (xᾱ) into the components onto the physical
sub-space-time pα, xα and the extra space components pi, xi.
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We obtain the following decompositions:

dpα
dσ

= − 1
2K

(
gµν,αpµpν + g j k,αpj pk

)
− 1
K g

µk
,αpµpk,

(3.18)
dxα

dσ
= 1
K p

α,

dpi
dσ

= − 1
2K

(
gµν,ipµpν + g j k,ipj pk

)
− 1
K g

µk
,ipj pk,

(3.19)
dxi

dσ
= 1
K p

i.

We can interpret as a particle rest mass the term:

m = 1
c

√
−g j kpj pk − 2gαkpαpk, (3.20)

being:
pᾱpᾱ ≡ gαβpαpβ + g j kpjpk + 2gαkpαpk = 0. (3.21)

The rest mass m results to be constant if we assume:

−g j kpjpk − 2gαkpαpk = non-negative constant. (3.22)

Such a choice is always, at least mathematically, possible since
pᾱ = αϕ, ᾱ and ϕ is defined except for a non vanishing factor according
to (3.1). More investigations remain to be exploited in order to understand
a physical “mechanism” ensuring such a constance of mass (see chapter 6
in Part II).

Then we gain, in the physical sub-space-time, the momentum of a
massive particle, resulting:

gαβpαpβ = m2c2. (3.23)
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We point out that when gαβ depends only on the observable
co-ordinates xµ, (3.18-a) becomes the equation of the geodesic path run
by a particle of rest mass m crossing the physical space-time V 4 in
presence of a gravitational field, while the fields described by gj k, gµk,
may be interpreted as non-gravitational fields in more than four
space-time dimensions like a Kaluza-Klein type theory or some
alternative to this latter.

3.2.2 Covariant De Broglie-Einstein-Planck Relation

The Hamilton generating function S, proportional to the function ϕ, can
easily be evaluated by integration of (3.4-a), obtaining:

ϕ = f(Vᾱ x
ᾱ). (3.24)

In fact it results:

∂ϕ

∂xᾱ
= f ′Vᾱ , Vᾱ = 1

K pᾱ ,

pᾱ , x
ᾱ being independent variables and prime denoting the derivative

respect to the function argument.

In detail we have: ϕ,ᾱ ≡ f ′Vᾱ + f ′Vβ̄ ;ᾱx
β̄ , being Vβ̄V β̄ = 0.

Since the wave propagates along a path of equation xᾱ = V ᾱσ, it
follows:

Vβ̄ ;ᾱx
ᾱ ≡ Vβ̄ ;ᾱV

β̄σ = 0, since: Vβ̄ ;ᾱV
β̄ = 0.

It follows:

V ᾱ ∂ϕ

∂xᾱ
≡ V ᾱ Vᾱ f

′ = 0,

the norm of V ᾱ being null, since the wave-particle is traveling at the speed
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of light in V n. Then the canonical momentum, evaluated during wave-
particle motion, becomes:

pᾱ = αϕ ′Vᾱ , (3.25)

thanks to (3.6) and (3.9). Now we can introduce the following quantity
related to wave propagation:

kᾱ = ϕ ′Vᾱ . (3.26)

On identifying the constant α with Planck constant the covariant relation
including both De Broglie and Einstein-Planck relations arises naturally,
i.e.:

pᾱ = ~kᾱ . (3.27)

In the special case of a periodic wave it is immediate to recognize the
quantities kᾱ as the usual components of the n-dimensional wave number
vector. In general it is convenient to choose kᾱxᾱ as argument of wave
solutions, since it results simply:

ϕ = kᾱx
ᾱ , (3.28)

because of compatibility with (3.27).

3.3 Wave Dynamics and Field Equations

The problem of wave dynamics consists in determining a class of fields
governed by field equations which yield the wave solutions equivalent to
the solutions to the equation of Hamilton-Jacobi for particles, as examined
in the previous sections.

Of course the main condition required to the system of field equations is
that it must provide waves traveling with the speed of light c across an
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(n− 1)-dimensional space, but that condition alone is too loose to
characterize a physically meaningful class of field equations. So we need
some other reasonable assumptions.

Therefore we will require the following ones:

1. The system of field equations is required to be Lagrangian.

2. The production term of the equations governing φφ must be zero, or
at least null in correspondence to the simple wave solutions. This
second assumption is required in order to provide regular solutions to
the system as simple waves, ensuring that the particles travel along
the rays at characteristic speeds. In principle also discontinuity waves
(see [7]) could be considered, but if we want to be able to compare
the results with quantum mechanical ones we need regular solutions
which can be expanded into Fourier series.

3. The normal speed of all simple waves must be equal to the speed of
light c. This one is the true kinematic condition we have previously
examined.

3.3.1 The Lagrangian System

Let us consider a candidate field φφ, which in general may be a complex
column vector belonging to an N -dimensional Euclidean complex space,
and is assumed to be a set of regular scalar functions of xᾱ , which is
invariant respect to any regular co-ordinate transformation. And let:

L ≡
√
|g| `

(
wᾱ ,w+

ᾱ

)
, wᾱ = φφ, ᾱ , (3.29)

be a Lagrangian density governing the field dynamics. Such a Lagrangian
density is supposed to depend only on wᾱ , in order to fulfill assumption(2).
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Possible production terms depending explicitly on φφ will be assumed to be
null or negligible. In the present section, for simplicity, they will simply
be dropped. Then the system of first order field equations results:(√

|g| ∂`

∂w+
ᾱ

)
,α

= 0, (3.30)

wβ̄ , ᾱ − wᾱ , β̄ = 0, (3.31)

together with its complex conjugate. The second equation arises from
Schwarz compatibility condition which holds for each scalar component
of φφ.

On applying the correspondence rule:(
·
)
,α
−→ ϕ, ᾱ

(
·
)′
, (3.32)

prime denoting here differentiation respect to ϕ, we obtain, according to
wave propagation theory, the algebraic system for the simple waves:

ϕ, ᾱ

(√
|g| ∂`

∂w+
ᾱ

)′
= 0, (3.33)

w′β̄ ϕ, ᾱ − w′ᾱϕ, β̄ = 0, (3.34)

in which the unknown field variables wᾱ are functions of ϕ. From (3.33)
we have soon:

ϕ, ᾱϕ, β̄
∂2`

∂w+
ᾱ ∂wᾱ

φφ ′ = 0. (3.35)

Since the Lagrangian density is to be independent on the wave-sheet
geometry, i.e., on ϕ, ᾱ , and the only admissible simple waves are supposed
to travel at the speed of light, so that we have:

gᾱ β̄ ϕ, ᾱϕ, β̄ = 0,

the following conditions must hold:

∂2`

∂w+
ᾱ ∂wβ̄

= gᾱ β̄ a, (3.36)
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where a is some non singular Hermitean matrix, independent of the fields.
From those conditions the form of the Lagrangian density is determined
as:

L = 1
2

√
|g| gᾱ β̄ w+

ᾱ a wβ̄ . (3.37)

Then the Euler-Lagrange equations are given by:(√
|g| gᾱ β̄a wβ̄

)
,α

= 0 ⇐⇒ (gᾱ β̄ a wβ̄ ); ᾱ = 0. (3.38)

We observe that a, beside being independent of the fields wᾱ , must be
independent also of xᾱ , otherwise a non vanishing production term would
arise into the field equations.

Then, since a is a non singular matrix, taking into account the metricity
condition gᾱ β̄; µ̄ =0, the field equations result simply:

gᾱ β̄ wβ̄ ; ᾱ = 0, wβ̄ ; ᾱ − wᾱ ; β̄ = 0. (3.39)

Since the coefficient matrix a disappears form the equations its role
becomes irrelevant in the Lagrangian. So it is not a restriction to choose:

a = κ I, (3.40)

where κ is a suitable dimensional constant and I is the identity matrix in
the space of the field φφ. Then the scalar Lagrangian density becomes:

` = 1
2
κ gᾱ β̄ w+

ᾱ wβ̄ . (3.41)

We point out that the algebraic system which determines the simple
waves, arising from (3.39), through direct substitution of wᾱ = φφ ′ϕ ; ᾱ ,
yields:

gᾱ β̄ ϕ ; ᾱϕ ; β̄ φφ
′2 = 0. (3.42)
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Then for a non trivial solution (φφ ′ 6= 0) we have a wave traveling at the
speed of light, as expected, resulting just:

gᾱ β̄ ϕ ; ᾱϕ ; β̄ = 0. (3.43)

3.3.2 The Energy-Momentum Tensor

Starting from the Lagrangian density of the field φφ, given by (3.37),
(3.41) we can evaluate the energy-momentum tensor, defined by:

1
2

√
|g| Tµ̄ ν̄ =

∂L
∂gµ̄ ν̄

−
( ∂L
∂gµν,α

)
,α
, (3.44)

obtaining:
Tµ̄ ν̄ = κw+

µ̄ wν̄ + 1
2
κ
g

|g|
gᾱ β̄ w+

ᾱ wβ̄ gµ̄ ν̄ . (3.45)

From which we have the filed Hamiltonian density:

H ≡ T00 = κ
(

1 + 1
2

g

|g|

)
w+

0 w0 + κ
g

|g|
gjβ̄ w+

j wβ̄ g00, (3.46)

which generalizes (2.65) which was obtained in the special case of a
synchronous frame (see, §2.3.2 in chapter 2).

3.3.3 The Klein-Gordon Equation

Let us now study in more detail the system of field equations (3.39).

Second Order Formulation

First of all we point out that we can always replace the fields wᾱ , with
their original definitions in terms of derivatives of the field φφ, according to
(3.29-b), obtaining a system of N second order equations:

gᾱ β̄ φφ ; ᾱ ; β̄ = 0, (3.47)
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instead of the original system of 2N first order equations (3.39). The
latter generalized D’Alembert equation governing the propagation of the
field φφ across the (n − 1)-dimensional space, is equivalent to a
Klein-Gordon equation for the propagation of the same field across the
physical 3-dimensional space. In fact the solutions for the field φφ, being
simple waves, are composite functions through ϕ of the argument:

pᾱ x
ᾱ = ~kᾱ xᾱ ≡ ~ϕ ′Vᾱ xᾱ . (3.48)

Therefore we can consider the field φφ as a function of the form:

φφ ≡ φφ(pαx
α + pix

i). (3.49)

Without affecting the four physical co-ordinates xα, it is always possible
to choose the extra space co-ordinates xi in such a way that:

xn = xiNi, gnn ≡ g j kNjNk = −1, (3.50)

g ij = gj i = 0, (3.51)

being:
pi = −mcNi, Ni =

pi√
−g j kpjpk

. (3.52)

Then the simple wave live in a five dimensional sub-space-time, and:

φφ ≡ φφ
(
pαx

α −mcxn
)
. (3.53)

If we require the additional assumption (usual in quantum mechanics)
that φφ belongs to the Hilbert space L2, so that it can be expanded into
Fourier series, we can write:

φφ =
+∞∑
r=−∞

cre−
i
~ (prαxα−mcxn) ≡ e

i
~mcxn

+∞∑
r=−∞

cre−
i
~ (prαxα). (3.54)
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Then we are able to evaluate the Laplacian:

g ij φφ ;i ;j ≡ gnn φφ ;n ;n ≡ m2 c2

~2 φφ.

The field equation (3.47) leads to the Klein-Gordon equation in
generalized co-ordinates:

gαβφφ ;α ;β + m2c2

~2 φφ = 0 ⇐⇒ �φφ = m2c2

~2 φφ. (3.55)

First Order Formulation

A further relevant consideration arises on evaluating the divergence of
wᾱ in terms of the field variables wα,wi. Taking into account the previous
results we have:

wj = wnδjn, wj ;n = imc
~ wnδj n. (3.56)

It follows into the system (3.39):

gαβwβ ;α + imc
~ wn = 0, (3.57)

wα ;n − wn ;α = 0. (3.58)

We observe that we need at least one extra space dimension to introduce
the rest mass. Then at least five dimensions are required if the particle
travels across a gravitational field. A result that suggests that a suitable
Kaluza-Klein type theory could be a candidate to govern the matter field
φφ together with gravitational and electromagnetic fields. More than five
space-time dimensions are required if other fundamental fields are
present, like Yang-Mills fields, to describe also weak and strong
interactions. Starting from the next chapter we will attack the problem of
field unification. However we will see how the usual Kaluza-Klein
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approach proves inadequate and we will propose an alternative model,
which results to be more natural both on a mathematical and a physical
standpoint.

3.3.4 The Dirac Equation

In the N -dimensional linear space of the field variables wᾱ it is always
possible to find four non singular matrices relating a component of the
4-vector wα with the vector wn. So we can introduce a vector of matrices
γα such that:

wα = −Kγαwn, (3.59)

whereK is a suitable constant to be determined. (The notation is motivated
since such matrices will be shown to be just the covariant Dirac matrices).
The previous relation implies also:

γαwα = −Kγαγαwn, γα = gαβγα. (3.60)

Assuming that γαγα is non singular it is possible to introduce another
vector of matrices aα such that:

wn = − 1

K
aαwα, (3.61)

Combining (3.61) with (3.59) we get:

wn = aαγαwn.

And therefore:
aαγα = I. (3.62)

Thanks to (3.61) and taking account of Schwarz condition (holding for
the scalar components of the field φφ), an equivalent system to the field
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equations (3.39) may be written only in terms of wα:

aα ;nwα + aαwα ;n −Kgαβwβ ;α = 0, (3.63)

Kwα ;n + aβ ;αwβ + aβwβ ;α = 0. (3.64)

On taking the scalar product of (3.64) by aα we have:

Kaαwα ;n + aαaβ ;αwβ + aαaβwβ ;α = 0. (3.65)

Since wβ is a gradient of a field which is scalar, according to (3.29-b), it
follows that:

wβ = φφ ;β ≡ φφ ,β =⇒ wβ ;α = wα ;β.

Then wβ ;α being symmetric respect to α, β, (3.65) becomes:

Kaαwα ;n + aαaβ ;αwβ + 1
2
(aαaβ + aβaα)wβ ;α = 0. (3.66)

Taking the sum of (3.66) and (3.63), after multiplying the latter by K,
after some manipulations, we eliminate wα;n. Therefore we obtain:(
Kaβ ;n + aαaβ ;α

)
wβ + 1

2

(
aαaβ +aβaα−2K2gαβ I

)
wβ ;α = 0. (3.67)

The last condition (3.67) holds for any value of the field wβ and its
derivatives wβ ;α if and only if:

Kaβ ;n + aαaβ ;α = 0, (3.68)

aαaβ + aβaα = 2K2gαβ I. (3.69)

Contraction of indices α, β in (3.69) yields:

aαaα = 4K2 I, (3.70)
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being gαβ gαβ = 4. A comparison between (3.62) and (3.70) implies now:

aα = 4K2γα. (3.71)

Now we choose K = 1
4
, and introduce (3.71) into (3.69) obtaining:

γαγβ + γβγα = 2gαβ I. (3.72)

Moreover, from the latter anti-commutation relations it follows that:

γ β ;α = 0. (3.73)

In fact, we have e.g.:

γ1γ1 = g11 I =⇒ γ1γ1
;α = 0. (3.74)

Since γ1 is non-singular, it follows:

γ1
;α = 0. (3.75)

The same happens for any index value. It is easy to recognize in the last
relation a general relativistic extension of the same anti-commutation rule
holding for the Dirac matrices.

So the equation (3.39-a) or (3.57), thanks to (3.59), finally results to be
equivalent to a field equation of the form:

γαwn ;α + i
mc

~
wn = 0, (3.76)

which is recognized to be the Dirac equation:

γαψ ;α + i
mc

~
ψ = 0, (3.77)

when it is set:
wn = ψ. (3.78)
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3.4 Conclusion

In the present chapter we have developed the theory presented in the
previous one, in a completely general formulation, with no conditions on
the co-ordinate system.

Se we were able to provide a fully covariant formulation of the theory of
wave and particle family unification.

The dynamics led us to covariant Klein-Gordon and Dirac field equations
in a very natural and elegant way as field equations required to govern
unified wave-partcles.

The problem of field unification involving all the known physical
interactions (gravitational, electro-magnetic, weak and strong) in a
conceptually unified field will be the subject of a theory proposed in the
second part of this book.
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Part II

Field Unification





The Part II of the book deals with the problem of field unification and
examines the possible field theories candidate to govern the
wave-particles dynamics and their interactions with fundamental fields.
Cosmological application is also examined and a way to gravity
quantization is conjectured.





Chapter 4

Kaluza-Klein Theories

Abstract
This chapter opens the second part of the book, which is devoted to
investigate what kind of unified field dynamics may be adequate to
provide unified wave-particle solutions, as conceived in the previous
chapters. Kaluza-Klein type theories seem to be reasonable candidates to
be considered at first. Here we limit ourselves to sketch a possible way to
deal with the dilaton φ as a massive particle field. But, as we will see a
similar approach will not prove to be satisfactory and successful.





Chapter 4 Kaluza-Klein Theories

4.1 Introduction

In part I we proposed a possible strategy of unification of the concepts of
wave and particle (or better, family of particles) centered on the idea that
a formally identical partial differential equation allows a two-fold physical
interpretation:

1. Either as the evolution law of a wave, the front of which is traveling
across the physical space;

2. Or as the Hamilton-Jacobi equation governing motion of a family of
particles.

We have seen how such dual interpretation of the same equation has a
physical meaning provided that both the wave-front and the particles travel
at the speed of light c. Therefore the particles need necessarily to have zero
rest mass. So, in order to preserve such wave-particle unification scheme,
even when non-vanishing rest mass particles exist, as it happens within
the real world, a space-time with more than four dimensions seems to be
required.

A second step we developed in the previous chapters was concerned
with the investigation of the properties which are required to some field so
that the unified wave-particle are possibile solutions of the field equations.
In other words we have tried to answer to the question: “Our unified
wave-particles are waves and particles of what?”

We have seen that what we need is a field or a set of more fields
governed by a D’Alembertian equation in higher dimensional space-time,
which results to be equivalent either to a Klein-Gordon equation (to
describe bosons) or a Dirac equation (to describe fermions) in four
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dimensional space-time.

In Part II of this book we intend to investigate which of the known
physical fields can be actually involved with the unified wave-particles as
solutions, within a space-time endowed with more than four dimensions.
The results presented in the previous chapters seem to suggest to
investigate first of all the opportunity of interpreting the scalar dilaton of
Brans-Dicke theory (in presence of pure gravitation), or of Kaluza-Klein
theory (in presence of electromagnetic field) as a matter field responsible
of particle rest masses. (On Brans-Dicke and Kaluza-Klein theories one
can see the original papers [3], [23] and the more recent review article
[25]. Some authors suggested also that the dilaton might be the scalar
field observed at Cern LHC in 2012. see, e.g., [2], [11]).

So in the present chapter we will investigate how to include one scalar
field φ, into the metric tensor of the manifold V n following a Kaluza-Klein
type scheme (see [28, 29] and also [25], [30]).

Here we limit ourselves to sketch a possible way to deal with dilaton
φ as a massive particle field. But, as we will see a similar approach will
not prove to be satisfactory. So, in the next chapter a more physically and
mathematically intriguing approach to the problem will be exploited.

4.2 Wave-Particles as Solutions in a Brans-Dicke Theory

Let us start considering the simple case of one only scalar field φ

involved as dilaton in a Brans-Dicke theory, i.e. in a purely gravitational
field (absence of Abelian electromagnetic and non-Abelian Yang-Mills
fields).

So we suppose to work in a 5-dimensional space-time V 5 on which we
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represent the metric tensor and its inverse as:

(gµ̄ ν̄ ) ≡

(
gµν 0

0 −φ2

)
, (gµ̄ ν̄ ) ≡

(
gµν 0

0 − 1
φ2

)
. (4.1)

In order to obtain non-vanishing wave-particle rest masses we have to
consider a non-compactified theory, assuming that gµν and φ depend both
on xα and on x4. The non-vanishing connection coefficients arising from
the 5-dimensional metric tensor (4.1), given by:

Γ ᾱ
µ̄ ν̄ = 1

2
gᾱ β̄
(
gµ̄ β̄ , ν̄ + gν̄ β̄ , µ̄ − gµ̄ ν̄ , β̄

)
, (4.2)

become:

Γα
µν ≡ 1

2
gαβ(gµβ,ν + gνβ,µ − gµν,β) = Γα

<4>µν , (4.3)

Γ 4
µν ≡ 1

2
g44(gµ4,ν + gν4,µ − gµν,4) = 1

2φ2 gµν,4, (4.4)

Γα
µ4 ≡ 1

2
gαβ(gµβ,4 + g4β,µ − gµ4,β) = 1

2
gαβ gµβ,4, (4.5)

Γα
44 ≡ 1

2
gαβ(g4β,4 + g4β,4 − g44,β) = φ gαβφ,β, (4.6)

Γ 4
µ4 ≡ 1

2
g44(gµ4,4 + g44,µ − gµ4,4) = 1

φ
φ,µ, (4.7)

Γ 4
44 ≡ 1

2
g44(g44,4 + g44,4 − g44,4) = 1

φ
φ,4, (4.8)

where the label <4> denotes quantities related to the ordinary
4-dimensional space-time.

From the latter coefficients one is able to evaluate the Ricci tensor
components:

Rµ̄ ν̄ = Γ ᾱ
µ̄ ν̄ , ᾱ − Γ ᾱ

µ̄ ᾱ , ν̄ − Γ ᾱ
µ̄ β̄ Γ

β̄
ν̄ ᾱ + Γ ᾱ

µ̄ ν̄ Γ
β̄

ᾱ β̄
. (4.9)

In particular we are interested in R44:

R44 = Γ ᾱ
44, ᾱ − Γ ᾱ

4ᾱ ,4 − Γ ᾱ
4β̄ Γ

β̄
4ᾱ + Γ ᾱ

44Γ
β̄

ᾱ β̄
, (4.10)
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in order to arrive at the field equation for the scalar field φ. We have:

R44 = (φ gαβφ,β),α − (1
2
gαβ gαβ,4),4 − (1

2
gαβ gγβ,4)(1

2
gγδgαδ,4)−

−2( 1
φ
φ,β)(φ gβγφ,γ) + (φ gαβφ,β)Γ β

<4>αβ +

+ 1
2φ
φ,4g

αβ gαβ,4 + gαβφ,βφ,α. (4.11)

After simplification it results:

R44 = φ gαβφ,α|β − 1
2
gαβ gαβ,4,4 −

−1
4
gαβ,4gαβ,4 + 1

4φ
φ,4g

αβ gαβ,4, (4.12)

where | denotes here the covariant derivative respect to the connection
ΓΓ<4> in V 4.

The equation for the scalar field φ:

R44 = 0, (4.13)

becomes now explicitly (when the cosmological constant is assumed to be
zero):

φ gαβφ,α|β − 1
2
gαβ gαβ,4,4 − 1

4
gαβ,4gαβ,4 + 1

4φ
φ,4g

αβ gαβ,4 = 0. (4.14)

We would have expected that a Klein-Gordon equation could arise from
the last equation but we have obtained a different result. In fact:

1. Either one assumes to work with a compactified x4 co-ordinate, then
the dependence of all fields on x4 disappears and (4.14) becomes a
D’Alembertian equation:

gαβφ,α|β = 0, (4.15)

governing massless wave-particles in V 4;
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2. Or no compactification is assumed to hold and then (4.14) can be
reduced to a Klein-Gordon equation only imposing the strange
condition:

1
2φ
gαβ gαβ,4,4 + 1

4φ
gαβ,4 gαβ,4 − 1

2φ2 g
αβ gαβ,4φ,4 = m2 c2

~2 φ, (4.16)

which results physically very improbable and difficult to be
interpreted.

We observe that, when the cosmological constant is not zero a
non-vanishing mass could be actually allowed.

In fact, from the trace of the Einstein equations in V 5 empty space-time:

Rµ̄ ν̄ − 1
2
Rgµ̄ ν̄ − Λgµ̄ ν̄ = 0,

we can solve by contraction of the indices:

R = −10
3
Λ, (4.17)

so reducing the field equations to the simpler form:

Rµ̄ ν̄ + 2
3
Λgµ̄ ν̄ = 0. (4.18)

Then the equation for the scalar field φ becomes:

R44 + 2
3
Λg44 = 0, (4.19)

which, when the co-ordintate x4 is compactified, leads to the Klein-Gordon
equation:

gαβφ,α|β − 2
3
Λφ = 0, (4.20)

where the particle mass is given by the identification:

mc2

~2 = 2
3
Λ, (4.21)
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from which we solve:
m = ~

c

√
2
3
Λ. (4.22)

Unphysically all the wave-particles would have the same mass!

Addition of the electromagnetic field according to the complete
Kaluza-Klein theory would lead to even more complicated and unnatural
results.

Therefore we are led to abandon this approach and to investigate an
alternative way to field unification which will be the topic of the following
chapters.
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Chapter 5

An Alternative to Kaluza-Klein
Theory

Abstract
In this chapter we present an original alternative approach to Kaluza-Klein
theory. We consider each fundamental interaction field as governed by
a vector potential which is an eigenvector of the metric tensor of some
multidimensional space-time manifold V n. We show that from Einstein
equations governing the gravitational field in empty V n space-time one is
able to obtain, in V 4, the field equations for each fundamental interaction
field, i.e., the Maxwellian equations both for Abelian and non-Abelian
fields, and more the Einstein equations in presence of matter, with the
expected energy-momentum tensor.





Chapter 5 An Alternative to Kaluza-Klein Theory

5.1 Introduction

Starting from the present chapter we present an alternative approach to
the previously exploited usual Kaluza-Klein way to field unification. Our
proposal is based on the idea of associating each fundamental interaction
field to a vector potential which is en eigenvector of the metric tensor of
some multidimensional space-time manifold V n.

As we will see in an n-dimensional space-time the metric tensor, when
represented onto the basis of its eigenvectors, leads to connection
coefficients involving a 2-index antisymmetric tensor of the same form as
a non-Abelian Maxwellian tensor. Abelian fields arise as a special case
when the structure constants vanish. In the present chapter we examine
such a formulation of general relativity in n dimensions, while the next
chapter will be devoted to provide a physical interpretation of the theory
so that all the known fundamental interactions (i.e., gravitational,
electro-weak and strong) may be included within the metric and
connection. As we will see a 16-dimensional space-time will be required
in order to fit the standard model of elementary particles. (For a review on
elementary particle standard model see, e.g., [20], [24]).

5.2 Representations onto the Metric Eigenvectors

Let us consider an n-dimensional manifold V n, endowed with a
symmetric metric g of signature (+,−, · · · ,−) and a torsionless
connection ΓΓ . In a generic local frame S each point x is identified in V n

by its co-ordinates xµ̄ with µ̄ = 0, ī = 1, 2, · · · , n − 1. As usual x0 is
interpreted as the physically observable time co-ordinate, while the xī are
interpreted as space co-ordinates. According to the convention established
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in the previous chapters the non-underlined indices like µ = 0, i = 1, 2, 3,

are reserved to the physically observable components, while the
underlined Latin ones like, e.g., k = 4, 5, · · · , n − 1 characterize the non
observable extra components. The invariant interval is defined in V n by:

ds2 = gµ̄ ν̄ dxµ̄ dxν̄ , (5.1)

where gµ̄ ν̄ are the components of the metric tensor relative to the frame
S. As usual, summation under repeated indices is intended according to
Einstein convention. The components of the connection are given by:

Γ ᾱ
µ̄ ν̄ = 1

2
gᾱ β̄
(
gµ̄ β̄ , ν̄ + gν̄ β̄ , µ̄ − gµ̄ ν̄ , β̄

)
. (5.2)

The components of the inverse metric tensor gᾱ β̄ are defined, as usual,
by the relation:

gᾱ β̄ gβ̄ γ̄ = δᾱγ̄ . (5.3)

5.2.1 Representations of the Metric and Connection

The metric tensor, being symmetric, admits n real eigenvalues and n real
linearly independent eigenvectors (basis) {aµ̄(σ̄ ), σ̄ = 0, 1, 2, · · · , n − 1}
fulfilling the orthonormality conditions:

gµ̄ ν̄ a
µ̄
(σ̄ )a

ν̄
(τ̄ ) = η(σ̄ )(τ̄ ), σ̄ , τ̄ = 0, 1, 2, · · · , n− 1, (5.4)

where, here, (η(σ̄ )(τ̄ )) ≡ diag(1,−1, · · · ,−1).

It follows that:

gµ̄ ν̄ = η(σ̄ )(τ̄ )a
(σ̄ )
µ̄ a

(τ̄ )
ν̄ ≡ a(σ̄ )µ̄a

(σ̄ )
ν̄ , (5.5)

is the representation of the metric tensor on the basis of its eigenvectors.
We observe that these eigenvectors are not univocally defined by the
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orthonormality condition (5.4) since they are undetermined by an
imaginary exponential factor eiθ which leaves unchanged the real metric
tensor components, provided that the complex scalar product a∗(σ̄ )µ̄a

(σ̄ )
ν̄

replaces the real product a(σ̄ )µ̄a
(σ̄ )
ν̄ .

As we will see in chapters 8 and 9 the latter degree of freedom will be of
main relevance in order to obtain periodic wave propagating solutions for
the fields a(σ̄ )

µ̄ .

In the following we will drop (leaving it as understood) the ∗ complex
conjugation operator, when it is not necessarily required, in order to avoid
too heavy notations.

The representation of the connection coefficients relative to the basis
{a(σ̄ )

µ̄ } follows from the previous definitions:

Γ ᾱ
µ̄ ν̄ = 1

2
gᾱ β̄
[(
a

(σ̄ )
µ̄ , ν̄ + a

(σ̄ )
ν̄ , µ̄

)
a(σ̄ )β̄ +

+a(σ̄ )µ̄

(
a

(σ̄ )

β̄ , ν̄
− a(σ̄ )

ν̄ , β̄

)
+
(
a

(σ̄ )

β̄ , µ̄
− a(σ̄ )

µ̄ , β̄

)
a(σ̄ )ν̄

]
. (5.6)

It is remarkable that possible non-Abelian contributions may be added
and subtracted without altering the previous result:

Γ ᾱ
µ̄ ν̄ = 1

2
gᾱ β̄
[(
a

(σ̄ )
µ̄ , ν̄ + a

(σ̄ )
ν̄ , µ̄

)
a(σ̄ )β̄ +

+a(σ̄ )µ̄

(
a

(σ̄ )

β̄ , ν̄
− a(σ̄ )

ν̄ , β̄
+ C

(σ̄ )
(τ̄ )(ῡ )a

(τ̄ )

(β̄ )
a

(ῡ )
ν̄

)
+

+
(
a

(σ̄ )

β̄ , µ̄
− a(σ̄ )

µ̄ , β̄
+ C

(σ̄ )
(τ̄ )(ῡ )a

(τ̄ )

(β̄ )
a

(ῡ )
µ̄

)
a(σ̄ ) ν̄

]
, (5.7)

since:
C

(σ̄ )
(τ̄ )(ῡ )a(σ̄ ) µ̄ a

(τ̄ )

β̄
a

(ῡ )
ν̄ + C

(σ̄ )
(τ̄ )(ῡ )a(σ̄ ) ν̄ a

(τ̄ )

β̄
a

(ῡ )
µ̄ = 0, (5.8)

because of total antisymmetry of the structure constants C
(σ̄ )
(τ̄ )(ῡ )

characterizing non-Abelian field theories. (On non-Abelian field theories,
beside the original paper by Yang and Mills [32], see e.g., [10]).
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Introducing the antisymmetric tensors:

f
(σ̄ )
µ̄ ν̄ = a

(σ̄ )
ν̄ , µ̄ − a

(σ̄ )
µ̄ , ν̄ + C

(σ̄ )
(τ̄ )(ῡ )a

(τ̄ )
µ̄ a

(ῡ )
ν̄ , (5.9)

and the symbols (which manifestly are not Riemannian tensors):

h
(σ̄ )
µ̄ ν̄ = a

(σ̄ )
µ̄ , ν̄ + a

(σ̄ )
ν̄ , µ̄ , (5.10)

and taking into account the orthonormalization relation (5.4), we reach the
following representation of the connection coefficients:

Γ ᾱ
µ̄ ν̄ = 1

2

(
aᾱ(σ̄ )h

(σ̄ )
µ̄ ν̄ − a

(σ̄ )
µ̄ f ᾱ(σ̄ )ν̄

− f ᾱ(σ̄ )µ̄
a

(σ̄ )
ν̄

)
, (5.11)

where:

f ᾱ(σ̄ )µ̄
= gᾱ β̄ f(σ̄ ) β̄ µ̄ . (5.12)

It is relevant that the connection coefficients involve antisymmetric
tensors the structure of which is the same as that of non-Abelian
Yang-Mills fields together with a symmetric non-tensor additional field
h

(σ̄ )
µ̄ ν̄ .

Let us now introduce a new symbol which we could name “reduced
connection” defined by:

γᾱµ̄ ν̄ = 1
2
aᾱ(σ̄ )h

(σ̄ )
µ̄ ν̄ . (5.13)

Finally we are led to represent the full connection coefficient in V n as:

Γ ᾱ
µ̄ ν̄ = γᾱµ̄ ν̄ − 1

2

(
a

(σ̄ )
µ̄ f ᾱ(σ̄ )ν̄

+ f ᾱ(σ̄ )µ̄
a

(σ̄ )
ν̄

)
. (5.14)

The latter representation of Γ ᾱ
µ̄ ν̄ means that the gravitational strength in

V n is generated by a tensor contribution depending on the non-Abelian
fields f ᾱ(σ̄ )µ̄

, the vector potential a(σ̄ )
µ̄ , and the reduced connection γᾱµ̄ ν̄ .
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The presence of the antisymmetric tensors f ᾱ(σ̄ )µ̄
, in the connection

coefficients reasonably suggests that, when the space-time dimensionality
is greater than 4, the electro-weak and strong interaction fields may be
included into the metric tensor in a unified field theory. We will follow
this suggestion.

5.2.2 Representation of the Ricci Tensor

The Ricci tensor is given by:

Rµ̄ ν̄ = Γ ᾱ
µ̄ ν̄ , ᾱ − Γ ᾱ

µ̄ ᾱ , ν̄ − Γ ᾱ
µ̄ β̄ Γ

β̄
ν̄ ᾱ + Γ ᾱ

µ̄ ν̄ Γ
β̄

ᾱ β̄
. (5.15)

In order to be able to manage calculations it proves convenient to
introduce the following notations:

Γ ᾱ
µ̄ ν̄ = γᾱµ̄ ν̄ + Gᾱµ̄ ν̄ , (5.16)

Gᾱµ̄ ν̄ = −1
2

(
a

(σ̄ )
µ̄ f ᾱ(σ̄ )ν̄

+ f ᾱ(σ̄ )µ̄
a

(σ̄ )
ν̄

)
, (5.17)

from which we have also:

Γ ᾱ
µ̄ ᾱ = γᾱµ̄ ᾱ + Gᾱµ̄ ᾱ , Gᾱµ̄ ᾱ = −1

2
f ᾱ(σ̄ )µ̄

a
(σ̄ )
ᾱ , gµ̄ ν̄ Gᾱµ̄ ν̄ = −a(σ̄ )

µ̄ f ᾱ µ̄(σ̄ ) , (5.18)

thanks to the symmetries. The Ricci tensor can now be written in the form:

Rµ̄ ν̄ = R̃µ̄ ν̄ + Gᾱµ̄ ν̄ : ᾱ − Gᾱµ̄ ᾱ : ν̄ − Gᾱµ̄ β̄ G
β̄
ν̄ ᾱ + Gᾱµ̄ ν̄ G

β̄

ᾱ β̄
, (5.19)

the trace of which results to be:

R = R̃ + gµ̄ ν̄
(
Gᾱµ̄ ν̄ : ᾱ − Gᾱµ̄ ᾱ : ν̄ − Gᾱµ̄ β̄ G

β̄
ν̄ ᾱ + Gᾱµ̄ ν̄ G

β̄

ᾱ β̄

)
. (5.20)

The tensor:

R̃µ̄ ν̄ = γᾱµ̄ ν̄ , ᾱ − γᾱµ̄ ᾱ , ν̄ − γᾱµ̄ β̄ γ
β̄
ν̄ ᾱ + γᾱµ̄ ν̄ γ

β̄

ᾱ β̄
, (5.21)
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we have just introduced, will be named the “reduced Ricci tensor”, being
evaluated respect to the reduced connection. So we have:

Gᾱµ̄ ν̄ : ᾱ = Gᾱµ̄ ν̄ , ᾱ − γ
β̄
µ̄ ᾱ Gᾱν̄ β̄ − γ

β̄
ν̄ ᾱ Gᾱµ̄ β̄ + γᾱβ̄ ᾱ G

β̄
µ̄ ν̄ , (5.22)

and:

Gᾱµ̄ ᾱ : ν̄ = Gᾱµ̄ ᾱ , ν̄ − γ
β̄
µ̄ ν̄ Gᾱβ̄ ᾱ . (5.23)

We have denoted by a colon (:) the covariant derivative evaluated
respect to the reduced connection, which will be named the “reduced
covariant derivative”, to be distinguished by the usual covariant
derivative denoted by semicolon (;), which is evaluated respect to the full
connection. Replacing the full connection ΓΓ ≡ (Γ ᾱ

µ̄ ν̄ ) by the reduced
connection γ ≡ (γᾱµ̄ ν̄ ) in evaluating covariant derivatives means that the
gravitational field in V n is only partially treated as hidden within the
geometry of space-time, its remaining part being still described by
physical fields the stress tensor of which are f (σ̄ ) ≡ (f

(σ̄ )
µ̄ ν̄ ).

Now, in order to evaluate the Ricci tensor we proceed in two steps:
(a) we calculate Gᾱµ̄ ν̄ : ᾱ and (b) we evaluate the quadratic contributions
Gᾱ
µ̄ β̄
Gβ̄ν̄ ᾱ and Gᾱµ̄ ν̄ G

β̄

ᾱ β̄
.

1. Developing calculations in (5.22) the divergence term becomes:

Gᾱµ̄ ν̄ : ᾱ = −1
2

(
a

(σ̄ )
µ̄ f ᾱ(σ̄ )ν̄ : ᾱ

+ f ᾱ(σ̄ )µ̄ : ᾱ
a

(σ̄ )
ν̄

)
−

−1
2

(
a

(σ̄ )
µ̄ : ᾱf

ᾱ
(σ̄ )ν̄

+ f ᾱ(σ̄ )µ̄
a

(σ̄ )
ν̄ : ᾱ

)
. (5.24)

We observe that since:

a
(σ̄ )
µ̄ : ᾱ = f

(σ̄ )
ᾱ µ̄ + a

(σ̄ )
ᾱ : µ̄ , (5.25)
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in (5.24) we can write equivalently:

Gᾱµ̄ ν̄ : ᾱ = −1
2

(
a

(σ̄ )
µ̄ f ᾱ(σ̄ )ν̄ : ᾱ

+ f ᾱ(σ̄ )µ̄ : ᾱ
a

(σ̄ )
ν̄

)
−

−f (σ̄ )
ᾱ µ̄ f

ᾱ
(σ̄ )ν̄
− 1

2

(
a

(σ̄ )
ᾱ : µ̄f

ᾱ
(σ̄ )ν̄

+ f ᾱ(σ̄ )µ̄
a

(σ̄ )
ᾱ : ν̄

)
. (5.26)

2. The quadratic contributions assume the following explicit form:

Gᾱ
µ̄ β̄ G

β̄
ν̄ ᾱ = 1

4
a

(σ̄ )
µ̄ f ᾱ(σ̄ )β̄

f β̄(τ̄ )ᾱ
a

(τ̄ )
ν̄ + 1

4
a

(σ̄ )
µ̄ f ᾱ(σ̄ )β̄

f β̄(τ̄ )ν̄
a

(τ̄ )
ᾱ +

+1
4
a

(σ̄ )

β̄
f ᾱ(σ̄ )µ̄

f β̄(τ̄ )ᾱ
a

(τ̄ )
ν̄ + 1

4
f ᾱ(σ̄ )µ̄

a
(σ̄ )

β̄
f β̄(τ̄ )ν̄

a
(τ̄ )
ᾱ , (5.27)

Gᾱµ̄ ν̄ G
β̄

ᾱ β̄
= 1

4

(
a

(σ̄ )
µ̄ f ᾱ(σ̄ )ν̄

+ f ᾱ(σ̄ )µ̄
a

(σ̄ )
ν̄

)
f β̄(τ̄ )ᾱ

a
(τ̄ )

β̄
. (5.28)

It is remarkable that when it happens that:

f ᾱ(σ̄ )µ̄
a

(σ̄ )
ᾱ = 0, (5.29)

we gain great simplification of the previous results.

In fact it results:

Γ ᾱ
µ̄ ᾱ = γᾱµ̄ ᾱ , (5.30)

Gᾱµ̄ ᾱ = 0, (5.31)

gµ̄ ν̄ Gᾱµ̄ ν̄ = 0. (5.32)

Therefore the Ricci tensor assumes the simplified form:

Rµ̄ ν̄ = R̃µ̄ ν̄ + Gᾱµ̄ ν̄ : ᾱ − Gᾱµ̄ β̄ G
β̄
ν̄ ᾱ , (5.33)

which can be written more explicitly as:

Rµ̄ ν̄ = R̃µ̄ ν̄ − 1
2

(
a

(σ̄ )
µ̄ f ᾱ(σ̄ )ν̄ : ᾱ

+ f ᾱ(σ̄ )µ̄ : ᾱ
a

(σ̄ )
ν̄

)
−

−f (σ̄ )
ᾱ µ̄ f

ᾱ
(σ̄ )ν̄
− 1

2

(
a

(σ̄ )
ᾱ : µ̄f

ᾱ
(σ̄ )ν̄

+ f ᾱ(σ̄ )µ̄
a

(σ̄ )
ᾱ : ν̄

)
− Gᾱµ̄ β̄ G

β̄
ν̄ ᾱ . (5.34)
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If we introduce the notation:

Jµ̄ ν̄ = −1
2

(
a

(σ̄ )
ᾱ : µ̄f

ᾱ
(σ̄ )ν̄

+ f ᾱ(σ̄ )µ̄
a

(σ̄ )
ᾱ : ν̄

)
−

− 1
2(n−2)

f
(σ̄ )

ᾱ β̄
f ᾱ β̄(σ̄ ) gµ̄ ν̄ − G

ᾱ
µ̄ β̄ G

β̄
ν̄ ᾱ , (5.35)

we can write equivalently:

Rµ̄ ν̄ = R̃µ̄ ν̄ − 1
2

(
a

(σ̄ )
µ̄ f ᾱ(σ̄ )ν̄ : ᾱ

+ f ᾱ(σ̄ )µ̄ : ᾱ
a

(σ̄ )
ν̄

)
−

−f (σ̄ )
ᾱ µ̄ f

ᾱ
(σ̄ )ν̄

+ 1
2(n−2)

f
(σ̄ )

ᾱ β̄
f ᾱ β̄(σ̄ ) gµ̄ ν̄ + Jµ̄ ν̄ . (5.36)

We point out that the tensor Jµ̄ ν̄ may be suitably represented as:

Jµ̄ ν̄ = 1
2

[
a

(σ̄ )
µ̄

(
J(σ̄ )ν̄ +A(σ̄ )ν̄

)
+ a

(σ̄ )
ν̄

(
J(σ̄ )µ̄ +A(σ̄ )µ̄

)]
, (5.37)

with:
J(σ̄ )µ̄ = Jµ̄ ν̄ aν̄(σ̄ ), A(σ̄ )µ̄ = Aµ̄ ν̄ aν̄(σ̄ ), (5.38)

whereAµ̄ ν̄ is an arbitrary antisymmetric tensor. In fact the additional term
adds an identically vanishing contribution to Jµ̄ ν̄ (and then to the Ricci
tensor) since:

Aν̄ ρ̄ aρ̄(σ̄ )a
(σ̄ )
µ̄ +Aµ̄ ρ̄ aρ̄(σ̄ )a

(σ̄ )
ν̄ ≡ Aµ̄ ν̄ +Aν̄ µ̄ = 0, (5.39)

thanks to antisymmetry, being:

aρ̄(σ̄ )a
(σ̄ )
µ̄ = δρ̄µ̄ . (5.40)

As we will see in chapter 7 the tensor Aµ̄ ρ̄ introduces a degree of
freedom that will play an important role to fit elementary particle
standard model.

Moreover we observe that we can replace the Riemannian covariant
derivatives with non-Abelian covariant derivatives:

Dᾱ f
ᾱ
(σ̄ )µ̄

= f ᾱ(σ̄ )µ̄ : ᾱ
+ C

(ῡ )
(σ̄ )(τ̄ )a

(τ̄ )
ᾱ f ᾱ(ῡ )µ̄ , (5.41)
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i.e. we may write:

a
(σ̄ )
µ̄ f ᾱ(σ̄ )ν̄ : ᾱ

+ f ᾱ(σ̄ )µ̄ : ᾱ
a

(σ̄ )
ν̄ ≡ a

(σ̄ )
µ̄ Dᾱ f

ᾱ
(σ̄ )ν̄

+ Dᾱ f
ᾱ
(σ̄ )µ̄

a
(σ̄ )
ν̄ , (5.42)

since:

a
(σ̄ )
µ̄ C

(ῡ )
(σ̄ )(τ̄ )a

(τ̄ )
ᾱ f ᾱ(ῡ )µ̄ + C

(ῡ )
(σ̄ )(τ̄ )a

(τ̄ )
ᾱ f ᾱ(ῡ )ν̄ a

(σ̄ )
µ̄ = 0. (5.43)

Finally we obtain the meaningful representation:

Rµ̄ ν̄ = R̃µ̄ ν̄ − f (σ̄ )
ᾱ µ̄ f

ᾱ
(σ̄ )ν̄

+ 1
2(n−2)

f
(σ̄ )

ᾱ β̄
f ᾱ β̄(σ̄ ) gµ̄ ν̄ −

−1
2
a

(σ̄ )
µ̄

(
Dᾱ f

ᾱ
(σ̄ )ν̄
− J(σ̄ )ν̄ −A(σ̄ )ν̄

)
−

−1
2

(
Dᾱ f

ᾱ
(σ̄ )µ̄
− J(σ̄ )µ̄ −A(σ̄ )µ̄

)
a

(σ̄ )
ν̄ . (5.44)

Then the Ricci scalar is given by:

R = R̃− n−4
2(n−2)

f
(σ̄ )

ᾱ β̄
f ᾱ β̄(σ̄ ) − a

(σ̄ )β̄
(

Dᾱ f
ᾱ
(σ̄ )β̄
− J(σ̄ )β̄ −A(σ̄ )β̄

)
. (5.45)

5.3 Field Equations

The Einstein field equations for the unknown components of gµ̄ ν̄ , or its
eigenvectors a(σ̄ )

µ̄ (vector potentials) become in general, in presence of a
cosmological constant:

Rµ̄ ν̄ − 1
2
Rgµ̄ ν̄ − Λgµ̄ ν̄ = 0. (5.46)

These field equations, written in a more expanded form, thanks to (5.19)
and (5.20) appear as follows:

R̃µ̄ ν̄ − 1
2
R̃gµ̄ ν̄ + Gᾱµ̄ ν̄ : ᾱ − Gᾱµ̄ ᾱ : ν̄ − Gᾱµ̄ β̄ G

β̄
ν̄ ᾱ + Gᾱµ̄ ν̄ G

β̄

ᾱ β̄
−

(5.47)

−1
2
gγδ
(
Gᾱγδ: ᾱ − Gᾱγᾱ :δ − Gᾱγβ̄ G

β̄
δᾱ + GᾱγδG

β̄

ᾱ β̄

)
gµ̄ ν̄ − Λgµ̄ ν̄ = 0.
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Before we proceed in examining the field equations we need choose
suitable additional conditions in order to determine the system of the
Einstein equations. In the next section we will show that the previously
found condition (5.29), which greatly simplifies the Ricci tensor is just
equivalent to the well known Lorentz gauge for each vector potential a(σ̄ )

µ̄ .

5.3.1 The Lorentz Gauge

The full expansion of the terms appearing in the equations (5.47) is very
heavy but we can lighten it with a suitable gauge choice. In fact n
conditions (as many as the space-time dimensionality) are needed to solve
Einstein equations.

Here we can just impose the n conditions (5.29), which are scalar
equations, being independent of the co-ordinate choice.

Now we observe that, because of the orthonormality of the metric tensor
eigenvectors, we have:

gᾱ β̄ a(σ̄ )ᾱ a
(σ̄ )

β̄
≡ gᾱ β̄ gᾱ β̄ = n, (5.48)

and thanks to the the metricity condition:

gᾱ β̄ ; µ̄ ≡ gᾱ β̄ , µ̄ + Γ ᾱ
ρµ̄ g

ρβ̄ + Γ β̄
ρµ̄ g

ᾱρ = 0, (5.49)

remembering that semicolon denotes the covariant derivative respect to the
full connection ΓΓ .

It follows:(
gᾱ β̄ a(σ̄ )ᾱ a

(σ̄ )

β̄

)
; µ̄
≡ 2gᾱ β̄ a(σ̄ )ᾱ ; µ̄ a

(σ̄ )

β̄
≡ 2aᾱ(σ̄ )a

(σ̄ )
ᾱ ; µ̄ = 0. (5.50)

Thanks to orthonormalization condition it results also:

aᾱ(σ̄ )a
(σ̄ )
µ̄ ; ᾱ = −aᾱ(σ̄ ); ᾱ a

(σ̄ )
µ̄ . (5.51)
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Thanks to the last results (5.51) we arrive at:

f ᾱ(σ̄ )µ̄
a

(σ̄ )
ᾱ ≡ f

(σ̄ )
ᾱ µ̄ a

ᾱ
(σ̄ ) ≡ aᾱ(σ̄ )a

(σ̄ )
µ̄ ; ᾱ − aᾱ(σ̄ )a

(σ̄ )
ᾱ ; µ̄ = −aᾱ(σ̄ ); ᾱ a

(σ̄ )
µ̄ . (5.52)

And taking into account (5.50) it remains:

aᾱ(σ̄ ); ᾱ
= 0. (5.53)

Therefore we may conclude that the conditions (5.29) are equivalent to
the Lorentz gauge (5.53).

Now being Gβ̄
ᾱ β̄

= 0, we have also:

aᾱ(σ̄ ); ᾱ
≡ aᾱ(σ̄ ), ᾱ

+ Γ ᾱ
ᾱ β̄ a

β̄
(σ̄ ) ≡ aᾱ(σ̄ ), ᾱ

+ γᾱᾱ β̄ a
β̄
(σ̄ ) ≡ aᾱ(σ̄ ): ᾱ

. (5.54)

So the Lorentz condition can be written equivalently also as:

aᾱ(σ̄ ): ᾱ
= 0, (5.55)

resulting fulfilled respect to both the connections ΓΓ and γ. More, the
same condition holds even in presence of non-Abelian terms, provided we
replace the usual covariant derivative with the non-Abelian covariant
derivative. Then it results:

Dᾱ a
ᾱ
(σ̄ ) = 0, (5.56)

being:

Dᾱ a
ᾱ
(σ̄ ) ≡ aᾱ(σ̄ ): ᾱ

+ C(σ̄ )(τ̄ )(ῡ )g
ᾱ β̄a

(τ̄ )
ᾱ a

(ῡ )

β̄
, (5.57)

where:

C(σ̄ )(τ̄ )(ῡ )g
ᾱ β̄a

(τ̄ )
ᾱ a

(ῡ )

β̄
≡ 0, (5.58)

because of symmetries.
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5.3.2 The Field Equations in the Lorentz Gauge

If we assume that the Lorentz gauge holds, the field equations (5.47)
simplify considerably becoming:

R̃µ̄ ν̄ − 1
2
R̃gµ̄ ν̄ + Gᾱµ̄ ν̄ : ᾱ − Gᾱµ̄ β̄ G

β̄
ν̄ ᾱ −

−1
2
gγδ
(
Gᾱγδ: ᾱ − Gᾱγβ̄ G

β̄
δᾱ

)
gµ̄ ν̄ − Λgµ̄ ν̄ = 0. (5.59)

Taking into account the previous relations (5.44) and (5.45) we can write
more explicitly:

R̃µ̄ ν̄ − 1
2
R̃gµ̄ ν̄ − 1

2
a

(σ̄ )
µ̄

(
Dᾱf

ᾱ
(σ̄ )ν̄
− J(σ̄ )ν̄ −A(σ̄ )ν̄

)
−

−1
2

(
Dᾱf

ᾱ
(σ̄ )µ̄
− J(σ̄ )µ̄ −A(σ̄ )µ̄

)
a

(σ̄ )
ν̄ +

+1
2
a(σ̄ )β̄

(
Dᾱf

ᾱ
(σ̄ )β̄
− J(σ̄ )β̄ −A(σ̄ )β̄

)
gµ̄ ν̄ − Λgµ̄ ν̄ =

= f
(σ̄ )
ᾱ µ̄ f

ᾱ
(σ̄ )ν̄
− 1

4
f

(σ̄ )

ᾱ β̄
f ᾱ β̄(σ̄ ) gµ̄ ν̄ . (5.60)

We can now introduce a new variable λ(σ̄ )µ̄ thanks to which we obtain
the following system:

R̃µ̄ ν̄ − 1
2
R̃gµ̄ ν̄ − a(σ̄ )

µ̄ λ(σ̄ )ν̄ − λ(σ̄ )µ̄ a
(σ̄ )
ν̄ +

+a(σ̄ )β̄ λ(σ̄ )β̄ gµ̄ ν̄ − Λgµ̄ ν̄ = f
(σ̄ )
ᾱ µ̄ f

ᾱ
(σ̄ )ν̄
− 1

4
f

(σ̄ )

ᾱ β̄
f ᾱ β̄(σ̄ ) gµ̄ ν̄ , (5.61)

Dᾱf
ᾱ
(σ̄ )µ̄
− J(σ̄ )µ̄ −A(σ̄ )µ̄ = 2λ(σ̄ )µ̄ , (5.62)

which is equivalent to the previous field equations. Now:

1. if we represent λ(σ̄ )µ̄ on the basis of the vector potentials, as:

λ(σ̄ )µ̄ = λ[σ̄ ]a(σ̄ )µ̄ , λ[σ̄ ] = λ(σ̄ )µ̄ a
(σ̄ )µ̄ , (5.63)

2. we introduce the energy-momentum tensor for the fields f (σ̄ )
µ̄ ν̄ :

κT
[f ]
µ̄ ν̄ = f

(σ̄ )
ᾱ µ̄ f

ᾱ
(σ̄ )ν̄
− 1

4
f

(σ̄ )

ᾱ β̄
f ᾱ β̄(σ̄ ) gµ̄ ν̄ , (5.64)
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3. and the current density:

J(σ̄ )µ̄ = J(σ̄ )µ̄ +A(σ̄ )µ̄ + 1
2n
f

(σ̄ )

ᾱ β̄
f ᾱ β̄(σ̄ ) gµ̄ ν̄ + λ[σ̄ ]a(σ̄ )µ̄ , (5.65)

we reach a physically meaningful form of the field equations:

R̃µ̄ ν̄ − 1
2
R̃gµ̄ ν̄ −

(
λ[σ̄ ] + Λ

)
a(σ̄ )µ̄ a

(σ̄ )
ν̄ = κT

[f ]
µ̄ ν̄ , (5.66)

Dᾱf
ᾱ
(σ̄ )µ̄

= J(σ̄ )µ̄ . (5.67)

Some care is required here with notations. In fact λ[σ̄ ]a(σ̄ )µ̄ a
(σ̄ )
ν̄ is equal

to λ[0]a(0)µ̄ a
(0)
ν̄ + λ[1]a(1)µ̄ a

(1)
ν̄ + · · ·+ λ[n−1]a(n−1)µ̄ a

(n−1)
ν̄ (shortly written

also as λ[σ̄ ]gµ̄ ν̄ ). So the new term λ[σ̄ ] in (5.66) introduces an anisotropy
which adds to the cosmological constant contribution.

We observe that the equation:

Dᾱf
ᾱ
(σ̄ )µ̄ = J(σ̄ )µ̄ , (5.68)

is equivalent to:
Dᾱ

(
gᾱ β̄ f(σ̄ )β̄ µ̄

)
= J(σ̄ )µ̄ . (5.69)

Now the following relation holds between the covariant divergences of
the metric tensor (remember that gᾱ ν̄; ᾱ = 0 thanks to the metricity
condition holding in V n respect to the connection ΓΓ ):

gᾱ ν̄ ; ᾱ ≡ gᾱ ν̄ : ᾱ + Gᾱᾱ β̄ g
β̄ ν̄ + G ν̄ᾱ β̄ g

ᾱ β̄ = 0, (5.70)

which, in the Lorentz gauge, thanks to (5.31) and (5.32), ensuring that the
second and third terms vanish, becomes:

gᾱ ν̄ ; ᾱ = gᾱ ν̄ : ᾱ . (5.71)

So, taking into account (5.41), eq (5.67) can be written also as:

gᾱ β̄ Dᾱ f
(σ̄ )

β̄ µ̄
= J

(σ̄ )
µ̄ . (5.72)
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Since the field strength tensor is given by:

f
(σ̄ )

β̄ µ̄
= Dβ̄ a

(σ̄ )
µ̄ − Dµ̄ a

(σ̄ )

β̄
− C(σ̄ )

(τ̄ )(ῡ )a
(τ̄ )

β̄
a

(ῡ )
µ̄ , (5.73)

from (5.72) we obtain, in the Lorentz gauge, also the second order equation
for the vector potentials:

gᾱ β̄ Dᾱ Dβ̄ a
(σ̄ )
µ̄ = J

(σ̄ )
µ̄ + gᾱ β̄ DᾱDµ̄ a

(σ̄ )

β̄
+

+C
(σ̄ )
(τ̄ )(ῡ )g

ᾱ β̄ a
(τ̄ )

β̄
Dᾱ a

(ῡ )
µ̄ . (5.74)

Thanks to symmetry of the metric tensor we may exchange the order of
covariant differentiation, so that it results:

gᾱ β̄ DᾱDµ̄ a
(σ̄ )

β̄
= gᾱ β̄ Dµ̄Dᾱ a

(σ̄ )

β̄
≡ η(σ̄ )(τ̄ )Dµ̄Dᾱ a

ᾱ
(τ̄ ) = 0, (5.75)

which is vanishing because of the Lorentz gauge condition (5.56). Then it
remains:

gᾱ β̄ Dᾱ Dβ̄ a
(σ̄ )
µ̄ = J

(σ̄ )
µ̄ + C

(σ̄ )
(τ̄ )(ῡ )g

ᾱ β̄ a
(τ̄ )

β̄
Dᾱ a

(ῡ )
µ̄ . (5.76)

The last term results to be vanishing. In fact we have:

C
(σ̄ )
(τ̄ )(ῡ )g

ᾱ β̄ a
(τ̄ )

β̄
Dᾱ a

(ῡ )
µ̄ ≡ Dᾱ

(
C

(σ̄ )
(τ̄ )(ῡ )g

ᾱ β̄ a
(τ̄ )

β̄
a

(ῡ )
µ̄

)
−

−a(ῡ )
µ̄ C

(σ̄ )
(τ̄ )(ῡ ) Dᾱ

(
gᾱ β̄ a

(τ̄ )

β̄

)
= 0, (5.77)

thanks to symmetries and Lorentz condition (5.56). We have finally the
second order field equation:

gᾱ β̄ Dᾱ Dβ̄ a
(σ̄ )
µ̄ = J

(σ̄ )
µ̄ . (5.78)

5.4 Comments and Conclusion

At the end of the chapter we want to comment especially the results
(5.66), (5.67).
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1. The field f (σ̄ )
µ̄ ν̄ fulfills a Maxwellian type equation as it is expected for

the non-gravitational interaction fields.

2. A new contribution λ[σ̄ ] is added to the cosmological constant,
representing a field which could possibly be physically interpreted as
related to some contribution to dark matter and energy. In particular,
applications to cosmology require the additional isotropy conditions
λ[0] = λ[1] = · · · = λ[n] = λ, in order to fulfill the cosmological
principle (see chapter 9).

3. The energy-momentum tensor exhibits the same structure as a non
-Abelian Maxwellian energy-momentum tensor. In principle one
should solve, from (5.66) the metric tensor, i.e., the vector potentials
a(σ̄ )µ̄ as functions of the unknowns λ[σ̄ ] and later solve the λ[σ̄ ] from
the Maxwellian equations (5.67).

Beginning from the next chapter we propose a possible physical
interpretation of the mathematical theory we have sketched in the present
chapter.

In particular we will be led to relate the components a(σ̄ )
µ , µ = 0, 1, 2, 3 of

each vector potential a(σ̄ )
µ̄ to the physical fundamental interactions carried

by bosons, while the remaining extra components a(σ̄ )
k , k = 4, 5, · · · , n−1

will be related to matter fields describing fermions.

At the beginning of chapter 6 before all, we will examine how the
fundamental fields may be confined within the physical 4-dimensional
space-time V 4, in order that only 4 co-ordinates xµ, µ =, 1, 2, 3 are
observable. Moreover we will see how, just thanks from such a
confinement process, a rest mass can arise for elementary particles, when
they are observed in V 4.
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Chapter 6

Interaction Fields (Bosons)

Abstract
This chapter deals at first with two non-trivial questions: i) the problem of
field confinement within the observable four-dimensional space-time and
ii) the matter of arising of a non-null rest mass for elementary particles.
Subsequently a physical interpretation of the observable components of the
eigenvectors of the metric tensor as equal to the 4-vector potentials of the
fundamental interaction fields will be proposed.





Chapter 6 Interaction Fields (Bosons)

6.1 Introduction

The mathematical theory proposed in the previous chapter, as an
alternative to usual Kaluza-Klein approach to field unification, is required
to pass the test of a possible and possibly non-irrelevant physical
interpretation. In order to fulfill this request we proceed by two
preliminary steps:

1. The former step, which will be shown, is concerned with interpreting
the observable components a(σ̄ )

µ , (µ = 0, 1, 2, 3) of the eigenvectors
of the metric tensor, as the fundamental interaction fields
(gravitational, electro-weak, strong) 4-vector potentials. We will see
how the potentials of all the known fundamental interactions may be
included into the a(σ̄ )

µ , in correspondence to the different values of
the label (σ̄), if the dimensionality of the extended space-time V n is
n = 16.

2. The latter step – which will be presented in the next chapter – is
involved in interpreting the extra components
a

(σ̄ )
l , (l = 4, 5, · · · , 15), as related to the spinor fields describing

matter (leptons, quarks), resulting that just n = 16 is the number of
space-time dimensions required to describe all the known
fundamental matter fields.

But first of all we have to examine two more questions, i.e.

1. The problem of the field confinement within the physical space-time
V 4;

2. The problem of non-null constant particle rest masses.
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In fact, in a realistic theory, all the observable fields may depend only
on the observable co-ordinates xµ, i.e., the fields which we have defined
all over the extended space-time V n are to be confined onto the manifold
V 4. So the next section of the present chapter will be devoted to examine a
possible field confinement “mechanism”, together with a non-null particle
mass constance condition.

6.2 Field Confinement and Massive Wave-Particles

The problem of field confinement and the matter of arising of
non-vanishing masses for elementary particles are tightly related in our
approach. As we will see they both will be solved thanks to a suitable
gauge choice.

6.2.1 Vanishing of Particle Rest Masses in V 4

Let us consider the D’Alembertian field equation governing the V n

vector potential a(σ̄ )
µ̄ in absence of currents:

gᾱ β̄a
(σ̄ )

µ̄ ; ᾱ ; β̄
= 0. (6.1)

We separate now the 4-vector components in V 4:

gᾱ β̄a
(σ̄ )

µ; ᾱ ; β̄
= 0, µ =, 1, 2, 3, (6.2)

which will be interpreted as related to the physical interaction fields carried
by bosons, from the remaining extra components:

gᾱ β̄a
(σ̄ )

l ; ᾱ ; β̄
= 0, l = 4, 5, · · · , n− 1, (6.3)

which behave as scalars when observed within V 4 and will be associated
to the matter fields governing fermions (see chapter 7).
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The previous equations can be written extensively as:

gαβa
(σ̄ )
µ;α;β + g jβ̄a

(σ̄ )

µ̄ ;j; β̄
+ gᾱka

(σ̄ )
µ̄ ; ᾱ ;k + g jka

(σ̄ )
µ̄ ;j;k = 0, (6.4)

and respectively:

gαβa
(σ̄ )
l;α;β + g jβ̄a

(σ̄ )

l;j; β̄
+ gᾱka

(σ̄ )
l; ᾱ ;k + g jka

(σ̄ )
l;j;k = 0. (6.5)

Physically we need to require covariance only respect to any
transformation of the co-ordinates within V 4, which are observable, while
we may accept to break covariance respect to transformations involving
the extra co-ordinates in the entire V n, since the latter are seen as scalars
when observed from the physical space-time V 4. So distinct complex
solutions will be allowed to the 4-vector field equations (6.4), i.e.:

a(σ̄ )
µ ≡ c(σ̄ )

µ eik
[σ̄ ]
α xα+ik

[σ̄ ]
i xi , (6.6)

and to each of the V 4-scalar equations (6.5), i.e.:

a
(σ̄ )
l ≡ c

(σ̄ )
l eik

[σ̄ l]
α xα+ik

[σ̄ l]
i xi , (6.7)

involving distinct wave numbers k[σ̄ ]
α , which are the components of a

4-vector and k[σ̄ l]
α are allowed to assume different values, each for every

index l, related to the field a(σ̄ )
l which is seen as a scalar in 4-dimensional

space-time. In correspondence to these solutions eqs (6.4) and (6.5) may
be written as equivalent to Klein-Gordon equations, as:

gαβa
(σ̄ )
µ;α;β +

m2
[σ̄ ]
c2

~2 a(σ̄ )
µ = 0, (6.8)

gαβa
(σ̄ )
l;α;β +

m2
[σ̄ l]

c2

~2 a
(σ̄ )
l = 0, (6.9)

where:

m[σ̄ ] = ~
c

√
−2g jβk

[σ̄ ]
j k

[σ̄ ]
β − g jkk

[σ̄ ]
j k

[σ̄]
k , (6.10)

m[σ̄ l] = ~
c

√
−2g jβk

[σ̄ l]
j k

[σ̄ l]
β − g jkk[σ̄ l]

j k
[σ̄l]
k . (6.11)

Science Publishing Group 99



Wave-Particles Suggestions on Field Unification Dark Matter and Dark Energy

The covariance, which is broken in V n, but it is preserved in V 4, allows
different rest mass values which will be attributed respectively to boson
vectors carrying the fundamental interactions and to fermions
characterizing the matter fields.

Manifestly a non vanishing wave-particle rest mass is related to the
dependence of the vector potential on the extra co-ordinates xi. So the
request that the fields a

(σ̄ )
µ , a

(σ̄ )
l are confined within the physical

space-time V 4 i.e., that the latter fields may depend only on the
observable co-ordinates xα, is equivalent to require that all the particles
associated to those fields has vanishing rest mass:

m[σ̄ ] = 0. m[σ̄ l] = 0. (6.12)

6.2.2 Particle Masses Arising from Scalar Boson Gauge Fields

In order to attribute non zero masses to elementary particles we are led to
consider the presence of the n-scalar gauge fields φ(σ̄ ), which are candidate
to play a role which is similar to that of the Higgs scalar boson field (see,
e.g., [16], [21, 22], [19]. On the CERN experiments see [1] and [12]), but
here following a different “mechanism”.

In fact, as we know, the n-vector potentials a(σ̄ )
µ̄ are determined except

for a gauge function, through the gauge transformation:

a
(σ̄ )
µ̄ → a

(σ̄ )
µ̄ + φ

(σ̄ )
; µ̄ , (6.13)

where the n-scalar fields φ(σ̄ ) are required to fulfill the D’Alembertian
equation:

gᾱ β̄φ
(σ̄ )

; ᾱ ; β̄
= 0, (6.14)

so that the Lorentz gauge is preserved. We emphasize that those scalar
fields do not appear into the observable tensors f (σ̄ )

µ̄ ν̄ which are gauge
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invariant, since:

f
(σ̄ )
µ̄ ν̄ = a

(σ̄ )
ν̄ ; µ̄ − a

(σ̄ )
µ̄ ; ν̄ ≡ a

(σ̄ )
ν̄ , µ̄ − a

(σ̄ )
µ̄ , ν̄ ≡

(
a

(σ̄ )
ν̄ , µ̄ + φ

(σ̄ )
, ν̄ , µ̄

)
−
(
a

(σ̄ )
µ̄ , ν̄ + φ

(σ̄ )
, µ̄ , ν̄

)
.

Then the dependence of φ(σ̄ ) on the extra co-ordinates x l does not affect
the observables f (σ̄ )

µ̄ ν̄ and cannot be detected by direct observation within
the physical space-time V 4. Introducing now a wave solution for φ(σ̄ ) like:

φ(σ̄ ) ≡ C(σ̄ )eiK
[σ̄ ]
α xα+iK

[σ̄ ]
i xi , (6.15)

into (6.14) we obtain the Klein-Gordon equation:

gαβφ
(σ̄ )
;α;β +

M2
[σ̄ ]
c2

~2 φ(σ̄ ) = 0. (6.16)

The rest mass of the scalar boson associated to the field φ(σ̄ ) is just:

M[σ̄ ] = ~
c

√
−2g jβK

[σ̄ ]
j K

[σ̄ ]
β − g jkK

[σ̄ ]
j K

[σ̄]
k . (6.17)

We remark that while a single solution φ(σ̄ ) is required for the covariance
of the 4-vector φ(σ̄ )

;α in V 4, different solutions:

φ(σ̄ l) ≡ C(σ̄ l)eiK
[σ̄ l]
α xα+iK

[σ̄ l]
i xi , (6.18)

are allowed for each value of the index l, to obtain extra components φ(σ̄ )
; l ,

each of them being a scalar respect to transformations of the co-ordinates
xα within V 4. So different masses:

M[σ̄ l] = ~
c

√
−2g jβK

[σ̄ l]
j K

[σ̄ l]
β − g jkK [σ̄ l]

j K
[σ̄l]
k , (6.19)

arise for the scalar fields contributing respectively to bosons
(
M[σ̄ ]

)
and

fermions
(
M[σ̄ l]

)
.

If we assume that the a(σ̄ )
µ depend only on xα (so that m[σ̄ ] = 0), while

φ(σ̄ ) may depend also on x l, then the gauge transformation (6.13) implies
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into (6.8):
gαβa

(σ̄ )
µ;α;β + gαβφ

(σ̄ )
;µ;α;β +

M2
[σ̄ ]
c2

~2 φ(σ̄ )
;µ = 0, (6.20)

which in correspondence to the solution (6.15) for the field φ(σ̄ ) may be
written as:

gαβa
(σ̄ )
µ;α;β + iK [σ̄ ]

µ

(
gαβφ

(σ̄ )
;α;β +

M2
[σ̄ ]
c2

~2 φ(σ̄ )
)

= 0. (6.21)

Thanks to (6.16) the gauge invariance is preserved in V 4, resulting:

gαβa
(σ̄ )
µ;α;β = 0, (6.22)

Let us now consider the following transformation of field variables:

â
(σ̄ )
µ̄ = 1√

2

(
a

(σ̄ )
µ̄ + iK

[σ̄ ]
µ̄ φ(σ̄ )

)
,

iK̂
[σ̄ ]
µ φ̂(σ̄ ) = 1√

2

(
iK

[σ̄ ]
µ̄ φ(σ̄ ) − a(σ̄ )

µ̄

)
,

(6.23)

and its inverse:

a
(σ̄ )
µ̄ = 1√

2

(
â

(σ̄ )
µ̄ − iK̂

[σ̄ ]
µ φ̂(σ̄ )

)
,

iK
[σ̄ ]
µ̄ φ(σ̄ ) = 1√

2

(
iK̂

[σ̄ ]
µ φ̂(σ̄ ) + â

(σ̄ )
µ̄

)
.

(6.24)

In fact one is able to verify by direct computation that considering a
transformation law w = Av, where:

v̂ ≡

 â
(σ̄ )
µ̄

iK̂
[σ̄ ]
µ φ̂(σ̄ )

 , A ≡ 1√
2

 δν̄µ̄ δν̄µ̄

−δν̄µ̄ δν̄µ̄

 , v ≡

 a
(σ̄ )
µ̄

iK
[σ̄ ]
µ φ(σ̄ )

 .

the inverse transformation v = A−1v̂, has a coefficient matrix:

A−1 ≡ 1√
2

 δν̄µ̄ −δν̄µ̄

δν̄µ̄ δν̄µ̄

 ,
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for which it results:

A−1A ≡ 1
2

 δν̄µ̄ δν̄µ̄

−δν̄µ̄ δν̄µ̄


 δρ̄ν̄ −δρ̄ν̄

δρ̄ν̄ δρ̄ν̄

 ≡
 δρ̄µ̄ 0

0 δρ̄µ̄

 ≡ I.

Now:

1. Substitution of (6.24) into (6.22) leads to:

gαβ â
(σ̄ )
µ̄ ;α;β − iK̂

[σ̄ ]
µ gαβ φ̂

(σ̄ )
;α;β = 0. (6.25)

2. Substitution of (6.24) into (6.16) leads to:

gαβ
(
â

(σ̄ )
µ̄ + iK̂ [σ̄ ]

µ φ̂(σ̄ )
)

;α;β
+

M2
[σ̄ ]
c2

~2

(
â

(σ̄ )
µ̄ + iK̂ [σ̄ ]

µ φ̂(σ̄ )
)

= 0. (6.26)

And then:

gαβ â
(σ̄ )
µ̄ ;α;β+

M2
[σ̄ ]
c2

~2 â
(σ̄ )
µ̄ +iK̂ [σ̄ ]

µ

(
gαβ φ̂

(σ̄ )
;α;β+

M2
[σ̄ ]
c2

~2 φ̂(σ̄ )
)

= 0. (6.27)

After the transformation the fields â(σ̄ )
µ̄ , φ̂(σ̄ ) are required to fulfill the

Klein-Gordon equations:

gαβ â
(σ̄ )
µ̄ ;α;β +

m̂2
[σ̄ ]
c2

~2 â
(σ̄ )
µ̄ = 0, (6.28)

gαβ φ̂
(σ̄ )
;α;β +

M̂2
[σ̄ ]
c2

~2 φ̂(σ̄ ) = 0, (6.29)

where the new particle rest masses, denoted as m̂[σ̄ ], M̂[σ̄ ], are to be
determined. Combining (6.28) and (6.29) with (6.25) and (6.27) we
obtain: (

m̂2
[σ̄ ] −M2

[σ̄ ]

)
â

(σ̄ )
µ̄ = 0, (6.30)(

m̂2
[σ̄ ] −M2

[σ̄ ]

)
â

(σ̄ )
µ̄ +

(
M̂2

[σ̄ ] −M2
[σ̄ ]

)
iK̂ [σ̄ ]

µ φ̂(σ̄ ) = 0. (6.31)
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Then the relations between the masses results to be:

m̂[σ̄ ] = M[σ̄ ], M̂[σ̄ ] = M[σ̄ ]. (6.32)

Therefore non vanishing particle rest masses for the vector bosons
carrying the interaction fields arise, resulting into (6.28):

gαβ â
(σ̄ )
µ̄ ;α;β +

M2
[σ̄ ]
c2

~2 â
(σ̄ )
µ̄ = 0, (6.33)

and into (6.29):
gαβ φ̂

(σ̄ )
;α;β +

M2
[σ̄ ]
c2

~2 φ̂(σ̄ ) = 0. (6.34)

According to the previous approach it results that non-vanishing masses
of interaction vector bosons arise and are equal to the scalar boson masses,
which are hidden within the extra dimensions of space-time.

We observe that any further gauge transformation:
a

(σ̄ )
µ → a

(σ̄ )
µ + f

(σ̄ )
;µ (xα) is always possible involving only the observable

co-ordinates xα, while the gauge is fixed only in the extra space-time.

Of course the same procedure can be implemented also respect to the
extra components a(σ̄ )

l , obtaining the rest masses:

m[σ̄ l] = M[σ̄ l], (6.35)

which will be related to the fermions (leptons and quarks) as we will show
in the next chapter.

We conclude the section observing that the gauge fields φ(σ̄ ) may be
thought also related to only one scalar field Φ, according to the relation:

φ(σ̄ ) = δ
(σ̄ )
[τ̄ ] Φ

g[τ̄ ]

, (6.36)

where the exponents g[τ̄ ] are coupling constants of the vector potentials
with a single scalar boson field:

Φ = CeiKαx
α+iKix

i

, (6.37)
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which fulfills the Klein-Gordon field equation:

gαβΦ;α;β + M2c2

~2 Φ = 0. (6.38)

Then it results:

φ(σ̄ ) = δ
(σ̄ )
[τ̄ ] C

g[τ̄ ]

eg
[τ̄ ]
(
iKαxα+iKix

i
)
, (6.39)

and:

φ
(σ̄ )
; µ̄ = iKµ̄ g

[τ̄ ]δ
(σ̄ )
[τ̄ ] φ

(σ̄ ). (6.40)

Since φ(σ̄ )
; µ̄ = K

[σ̄ ]
µ̄ φ(σ̄ ), we obtain also:

K
[σ̄ ]
µ̄ = g[σ̄ ]Kµ̄ . (6.41)

Then the masses of the vector bosons carrying the interaction fields
would become:

m̂[σ̄ ] = g[σ̄ ]M, (6.42)

being:

M = ~
c

√
−2g jβKjKβ − g jkKjKk. (6.43)

The values of m̂[σ̄ ] depend on the coupling constant with the scalar boson
of mass M . Similarly the masses of fermions will result:

m̂[σ̄ l] = g[σ̄ l]M, (6.44)

being:

φ(σ̄ l) = δ
(σ̄ )
[τ̄ ] Φ

g[τ̄ l]

, (6.45)

and g[τ̄ l] the coupling constants of the fields a(σ̄ )
l with the scalar field Φ.
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6.3 The Fundamental Interaction Fields

After having examined the preliminary matters of the relation between
field confinement and non-vanishing rest masses of elementary particles,
we consider the subject of the physical interpretation of the fields a(σ̄ )

µ .

6.3.1 The Gravitational Field

We start considering the gravitational fields in ordinary space-time.

Case n = 4

The identification of the vector potential components which are suitable
to describe the gravitational field in the physical space-time V 4, is easily
suggested by the consideration of the theory in the special situation when
the dimensionality of the entire space-time is just n = 4. In this occurrence
the metric tensor is given by:

gµν = η(σ)(τ)a
(σ)
µ a(τ)

ν , µ, ν, σ, τ = 0, 1, 2, 3, (6.46)

and the potentials a(σ)
µ are clearly responsible of gravitation, according to

general relativity. The connection coefficient becomes now:

Γα
µν = γαµν − 1

2

(
a(σ)
µ fα(σ)ν + a(σ)

ν fα(σ)µ

)
, (6.47)

where:
γαµν = 1

2
a(σ)
µ hα(σ)ν , (6.48)

are the coefficients of the reduced connection γ. The Ricci tensor, when
written in terms of the full connection ΓΓ has simply the usual form:

Rµν = Γα
µν,α − Γα

µα,ν − Γα
µβΓ

β
να + Γα

µνΓ
β
αβ. (6.49)
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So the Einstein equations are the as usual:

Rµν − 1
2
Rgµν − Λgµν = 0, (6.50)

where no energy-momentum tensor appears, since the whole gravitational
field is included into space-time geometry.

But if we represent the Ricci tensor in terms of the reduced connection
γ, which only partially includes the gravitational field into geometry and
leaves part of it as an external field of strength f (σ) ≡ (f

(σ)
αβ ) we have the

field equations, in the Lorentz gauge (see §5.3.2):

R̃µν − 1
2
R̃gµν − Λgµν − λ[σ]a(σ)µa

(σ)
ν = κT [g]

µν , (6.51)

Dαf
α
(σ)µ

= J(σ)µ, (6.52)

in the r.h.s. of which the following energy-momentum tensor of the
(non-embedded into geometry) contribution to the gravitational field:

κT [g]
µν = f (σ)

αµ f
α
(σ)ν
− 1

4
f

(σ)
αβ f

αβ
(σ)gµν , (6.53)

and the gravitational current density:

J(σ)µ = J(σ)µ +A(σ)µ + 2λ[σ]a(σ)µ, (6.54)

appear. We observe that even the l.h.s. of (6.51) might be thought of as
equivalent to an energy-momentum contribution hidden into geometry:

κT [G]
µν = −R̃µν + 1

2
R̃gµν − Λgµν − λ[σ]a(σ)µa

(σ)
ν . (6.55)

So the field equations for the gravitational field could be written
equivalently in the energetic form:

T [gr]
µν = 0, (6.56)

where:
T [gr]
µν = T [G]

µν + T [g]
µν . (6.57)

Science Publishing Group 107



Wave-Particles Suggestions on Field Unification Dark Matter and Dark Energy

As we will see in chapter 9 the reduction of the Einstein equation in
terms of energy-momentum tensor will be relevant in order to quantization
of the gravitational field.

Case n > 4

We are naturally led to continue to associate the potentials labeled by
σ = 0, 1, 2, 3, to the gravitational field even when the space time
dimensionality is greater than 4, while the components of additional
potentials a(s)

µ̄ , s = 4, 5, · · · , n − 1, and µ̄ = 0, 1, 2, 3, · · ·n − 1, will be
related to non-gravitational interaction fields.

We observe that when n > 4 each vector potential involves also
additional components a(σ̄ )

l , l = 4, 5, · · · , n − 1, because of the increased
dimensionality of space-time.

A compact decomposition of the potentials may result to be useful:

a
(σ̄ )
µ̄ = δ(σ̄ )

σ

(
δµµ̄ a

(σ)
µ + δlµ̄ a

(σ)
l

)
+ δ(σ̄ )

s

(
δµµ̄ a

(s)
µ + δlµ̄ a

(s)
l

)
. (6.58)

Now we are led to the following physical interpretation.

1. The gravitational field observed within the physical space-time V 4 is
now represented by the a(σ)

µ , (σ, µ = 0, 1, 2, 3), which are four-vectors
in V 4.

2. The electro-weak and strong interaction fields are associated to the
a

(s)
µ , (s = 4, 5, · · · , n− 1), which are also four-vectors in V 4.

3. The remaining components a(σ̄ )
l = δ

(σ̄ )
σ a

(σ)
l + δ

(σ̄ )
(s) a

(s)
l , which behave

as scalars within the observable space-time V 4 are related to the
matter fields, i.e., to the fundamental fermions (leptons, quarks).

108 Science Publishing Group



Chapter 6 Interaction Fields (Bosons)

We observe also that the sectors of the potentials of indices µ, l:

a
(σ)
µ = c

(σ)
µ eik

[σ]
α xα+ik

[σ]
i xi , a

(s)
µ = c

(s)
µ eik

[s]
α xα+ik

[s]
i xi ,

a
(σ)
l = c

(σ)
l eik

[σ,l]
α xα+ik

[σ,l]
i xi , a

(s)
l = c

(s)
l eik

[s,l]
α xα+ik

[s,l]
i xi ,

(6.59)

solutions to the corresponding Klein-Gordon field equations:

gαβa
(σ)
µ;α;β +

m2
[σ]
c2

~2 a(σ)
µ = 0, gαβa

(s)
µ;α;β +

m2
[s]
c2

~2 a(s)
µ = 0,

(6.60)

gαβa
(σ)
l;α;β +

m2
[σ,l]

c2

~2 a
(σ)
l = 0, gαβa

(s)
l;α;β +

m2
[s,l]

c2

~2 a
(s)
l = 0,

may be associated to particles of different rest masses:

m[σ] = ~
c

√
k

[σ]
α kα[σ], m[s,l] = ~

c

√
k

[s,l]
α kα[s,l], (6.61)

if we allow that the covariance is preserved only in the observable
space-time V 4, while it may be broken in the extra dimensions of the
multidimensional space-time V n. In fact each field component a(σ)

l , a
(s)
l is

a scalar respect to co-ordinate transformation affecting only V 4 and
fulfills its own Klein-Gordon equation. This circumstance will be useful
when dealing with fermions, the field spinor components of which will be
associated to the extra components a(σ̄ )

l , a
(s)
l .

We emphasize that all the previous masses m[σ],m[s,l] result to be null
when the vector fields depend only on xα. So gravitons have vanishing
masses. While the non zero rest masses of fermions associated to the a(σ)

l

arise thanks to the contribution of the gauge fields φ(σ)
; l to their masses.

The field equations for the gravitational field in V 4, respect to eq (6.51),
involve, beside the terms labelled by σ = 0, 1, 2, 3, the new contributions
labelled by l = 4, 5, · · · , n − 1, and the correspondent additional
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energy-momentum tensor term. So we have:

R̃µν − 1
2
R̃gµν − Λgµν − λ[σ]a(σ)µa

(σ)
ν −

−λ[s]a(s)µa
(s)
ν = κT [g]

µν + κT [f ]
µν , (6.62)

Dαf
α
(σ)µ

= J(σ)µ, (6.63)

where:
κT [f ] = f (s)

αµ f
α
(s)ν
− 1

4
f

(s)
αβ f

αβ
(s) gµν , (6.64)

is the energy-momentum of the non-gravitational Maxwellian fields as they
may be observed within the physical space-time V 4.

The residual equations for the extra terms of potentials do not involve
the gravitational field but the non-gravitational boson electro-weak, strong(
a

(s)
µ

)
and the fermion matter fields

(
a

(σ)
l , a

(s)
l

)
. A more familiar form

of the Einstein equations, which hides the whole gravitational field into
geometry is obtained if we write the metric tensor as:

gµ̄ ν̄ = ḡ µ̄ ν̄ + a
(s)
µ̄ a(s)ν̄ , (6.65)

where:
ḡ µ̄ ν̄ = a

(σ)
µ̄ a(σ)ν̄ , (6.66)

includes only the gravitational vector potentials a(σ)
µ̄ , σ = 0, 1, 2, 3.

The connection coefficients write now as:

Γ ᾱ
µ̄ ν̄ = γ ᾱµ̄ ν̄ − 1

2

(
a

(s)
µ̄ f ᾱ(s)ν̄ + f ᾱ(s)µ̄a

(s)
ν̄

)
, (6.67)

where the coefficients of the new partially reduced connection γ are
defined as:

γ ᾱµ̄ ν̄ = γᾱµ̄ ν̄ − 1
2

(
a

(σ)
µ̄ f ᾱ(σ)ν̄

+ f ᾱ(σ)µ̄
a

(σ)
ν̄

)
. (6.68)

In this way the gravitational field is entirely hidden into geometry and
only the non-gravitational fields contribute to the energy-momentum
tensor.
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In fact now the field equations become:

Rµν − 1
2
Rgµν − Λgµν − λ[s]a(s)µa

(s)
ν = κT [f ]

µν , (6.69)

in which:
Rµν = γ ᾱµν,ᾱ − γ ᾱµᾱ ,ν − γ ᾱµβ̄ γ

β̄
νᾱ + γ ᾱµν γ

β̄

ᾱ β̄
, (6.70)

are the V 4 components of the new partially reduced Ricci tensor R
evaluated respect to the partially reduced connection γ . Of course, now,
the Maxwellian equations for the gravitational vector potentials a

(σ)
µ

disappear since the latter potentials are now absorbed into ḡµν .

Respect to the expected Einstein equations in V 4 a new term has
appeared, i.e.:

L[d]
µν = λ[s]a(s)µa

(s)
ν . (6.71)

Moreover Rµν differs from the expected Ricci tensor R<4>
µν in V 4, being

evaluated respect to γ ᾱµν instead of:

Γα
<4>µν = 1

2
gαβ<4>

(
g<4>
µβ,ν + g<4>

νβ,µ − g<4>
µν,β

)
, g<4>

µν = a(σ)
µ a(σ)ν . (6.72)

Then a complete comparison between the usual Einstein equations in V 4

and (6.51) is possible if we write:

R<4>
µν − 1

2
R<4>gµν + L[d]

µν = κT [f ]
µν + κT [d]

µν , (6.73)

where:

R<4>
µν = Γα

<4>µν,α−Γα
<4>µα,ν−Γα

<4>µβΓ
β
<4>να+Γα

<4>µνΓ
β
<4>αβ, (6.74)

is the usual Ricci tensor in V 4 and:

κT [d]
µν = R<4>

µν − 1
2
R<4>gµν −Rµν + 1

2
Rgµν . (6.75)

The additional contributions L
[d]
µν and T

[d]
µν of the energy-momentum

tensor, appear to be responsible of dark energy and dark matter
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emergence, but as we will see in chapter 8, dealing with cosmology, they
vanish if the metric tensor is diagonal. So small anisotropies, in universe,
near galaxies could play an important role.

6.3.2 The Electro-Weak Interaction Field

The extra space dimensions have been introduced in order to obtain
non-vanishing particle rest masses and to allow the presence of
non-gravitational fields, i.e., electro-weak and strong interaction fields. Of
course it is irrelevant the order according to which these fields are
associated to each of the remaining vector potentials
a

(s)
µ , s = 4, 5, · · · , n − 1, since the labels can be always renamed. So we

can state to start, e.g., with the electro-weak interactions which are carried
by massless photons, and W±, Z0 massive bosons. In order to describe
unified electromagnetic and weak fields we need one Abelian field and
three non-Abelian ones. So the indices s = 4, 5, 6, 7 will be related to
electro-weak interactions and the vector potential components:

a(s)
µ , s = 4, 5, 6, 7, (electro-weak interaction field) (6.76)

will be interpreted as electro-weak fields. The space-time dimensionality
required, is now raised up to n = 8. The electromagnetic and weak
interaction fields are mixed in the unified electro-weak theory. So the
choice of the physical meaning of these vector potentials a(s)

µ will depend
on the standard model representation adopted.

Non-Diagonal Representation

The non-diagonal representation of the electro-weak field involves the
vector fields Bµ,W

a
µ , a = 1,2,3,
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the corresponding strength tensor being given by:

Fµν = Bν,µ −Bµ,ν ,

F a
µν = W a

ν,,µ −W a
µ,,ν + gεabcW

b
µW

c
ν ,

(6.77)

where g is one of the electro-weak coupling constants and εabc is the Levi-
Civita symbol. So we are led to associate the components of each potential
a

(s)
µ in physical space-time V 4 (µ = 0, 1, 2, 3) in the following way:

a(4)
µ = Bµ, a(5)

µ = W 1
µ , a(6)

µ = W 2
µ , a(7)

µ = W 3
µ . (6.78)

Dimensional constants depending on the unit system adopted have been
dropped here to avoid heavier notations, being absorbed into the definition
of the fields themselves. Then the strength field tensors components result:

f (s)
µν = a(s)

ν,µ − a(s)
µ,ν + C

(s)
(r)(q)(0)a

(r)
µ a

(q)
ν . (6.79)

Identifying (6.77) and (6.79) we determine the structure constants:

C
(4)

(r)(q)(0) = 0, C
(s)

(r)(q)(0) = δ
(q−3)
a δb(r−3)δ

c
(q−3)gε

a
bc. (6.80)

Diagonal Representation

According to the standard model the physical fields:

a(4)
µ = Aµ, a(5)

µ = W 1
µ , a(6)

µ = W 2
µ , a(7)

µ = Zµ, (6.81)

are provided by the diagonal representation, which is obtained thanks to a
rotation of W 3

µ , Bµ of the Weinberg angle, defined by the relation:

tan θW =
g′

g
, (6.82)
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g′ being a second electro-weak coupling constant. Then we have the
following alternative way to associate our vector potentials to the
electro-weak fields.

Zµ = W 3
µ cos θW −Bµ sin θW ,

Aµ = W 3
µ sin θW +Bµ cos θW .

(6.83)

In the diagonal representations the strength tensors are given by
substitution of the inverse rotation:

W 3
µ = Zµ cos θW + Aµ sin θW ,

Bµ = −Zµ sin θW + Aµ cos θW .

(6.84)

into (6.77). We have:

Fµν = −FZ
µ,ν sin θW + FA

µ,ν cos θW ,

F 3
µν = FZ

µ,ν cos θW + FA
µ,ν sin θW + gε3bcW

b
µW

c
ν ,

(6.85)

with:
FZ
µν = Zν,µ − Zµ,ν , FA

µν = Aν,µ − Aµ,ν . (6.86)

Finally the strength tensor components in the diagonal representations
results:

FA
µν = Aν,µ − Aµ,ν ,

F 1
µν = W 1

ν, ,µ −W 1
µ,,ν + gε1bcW

b
µW

c
ν ,

F 2
µν = W 2

ν, ,µ −W 2
µ,,ν + gε2bcW

b
µW

c
ν ,

FZ
µν = Zν,µ − Zµ,ν .

(6.87)
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Identification of (6.87) with (6.79) leads to:

f (4)
µν = FA

µν , f (5)
µν = F 1

µν , f (6)
µν = F 2

µν , f (7)
µν = FZ

µν , (6.88)

and determines the relations for the structure constants:

C
(4)

(r)(q)(0) = 0,

C
(5)

(r)(q)(0) = δb(r−3)δ
c
(q−3)gε

1
bc,

C
(6)

(r)(q)(0) = δb(r−3)δ
c
(q−3)gε

2
bc,

C
(7)

(r)(q)(0) = 0.

(6.89)

In principle any other representation is allowed, each one identifying
the correspondent structure constants. In each representation the field
equations exhibit the Maxwellian form:

Dαf
α
(s)µ = J(s)µ, s = 4, 5, 6, 7. (6.90)

We will examine the current density J(s)µ in the next chapter, dealing
with fermions. When expressed in terms of the vector potentials the
previous equation becomes, in the Lorentz gauge, a Klein-Gordon
equation with a current density.

6.3.3 The Strong Interaction Field

Strong interaction field carried by massless gluons remain to be
introduced into the theory. We need other 8 non-Abelian fields AAµ which
we associate to the indices s = 8, 9, · · · , 15:

a(s)
µ = δ

(s−7)
A AAµ , s = 8, 9, · · · , 15 A = 1, 2, · · · , 8. (6.91)
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We conclude that n = 16 space-time dimensions are required to describe
all the known fundamental interactions. The strength tensors are now:

FAµν = AAν,µ − AAµ,ν + gsCABCABµACν . (6.92)

where gs is a coupling constant for strong interactions and the structure
constants, according to the standard model, are given by (see, [20]):

C123 = 1, C147 = 1
2
, C156 = −1

2
, C246 = 1

2
, C257 = 1

2
,

C345 = 1
2
, C367 = −1

2
, C458 =

√
3
2
, C678 =

√
3
2
.

(6.93)

Identification of (6.79) with (6.92) now yields:

C
(s)
(r)(q) = δ

(s−7)
A δB(r−7)δ

C
(q−7)gsCABC. (6.94)

The Maxwellian field equations are now:

Dαf
α
(s)µ = J(s)µ, s = 8, 9, · · · , 15. (6.95)

Also for strong interactions the current density term will be examined in
the next chapter.

All the previous results concerning the interactions fields can be
summarized in the following scheme.
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Unified interaction field equations

(gravitational) R<4>
µν − 1

2
R<4> gµν

dark energy?︷ ︸︸ ︷
−Λgµν − λ[s]a(s)µa

(s)
ν = κ

(
T

[f ]
µν +

dark matter?︷︸︸︷
T

[d]
µν

)
(Abelian e-w) fα

(4)µ|α
= J(4)µ,

(non-Abelian e-w) Dα fα(s)µ
= J(s)µ, s = a+ 4 = 5, 6, 7, a = 1, 2, 3,

(strong) Dα fα(s)µ
= J(s)µ, s = A+ 7 = 8, · · · 15, A = 1, · · · , 8.

In the next chapter we will be concerned with the extra components of
the vector potentials a

(σ̄ )
l , l = 4, 5, · · · , 15, and the respective field

equations.

Science Publishing Group 117





Chapter 7

Matter Fields (Fermions)

Abstract
The present chapter is devoted to show how the matter fields (spinors)
required to describe the leptons and quarks appearing in the standard model,
just fit the extra components of the vector potentials. Current densities are
also examined.





Chapter 7 Matter Fields (Fermions)

7.1 Introduction

In the present chapter we are interested in interpreting the physical
meaning of the 12 extra components of the field vector potentials, i.e.,
a

(σ̄ )
l , l = 4, 5, · · · , 15.

We have just shown in chapter 6 as:

1. The first 4 components a(σ)
µ of the 4 potentials a(σ)

µ̄ , σ = 0, 1, 2, 3,
can be interpreted as related to the gravitational field in the physical
observable space-time V 4;

2. The first 4 components a(4)
µ of the potential a(4)

µ̄ can be interpreted
as related to an Abelian (electromagnetic) counterpart of the electro-
weak field in V 4;

3. The first 4 components a(4+a)
µ , a = 1,2,3 of the 3 potentials a(4+a)

µ̄

can be interpreted as related to the non-Abelian (weak) counterpart of
the electro-weak field in V 4;

4. The first 4 components a(7+A)
µ ,A = 1, 2, · · · , 8 of the 8 potentials

a
(7+A)
µ̄ can be interpreted as related to the strong interaction field in
V 4.

In particular we precise here that, according to the standard model,
for “Abelian counterpart of the electro-weak field” we mean

– either the Abelian field Bµ (in non-diagonal representation),

– or respectively the electromagnetic field Aµ (in diagonal
representation).
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And for “non-Abelian counterpart of the electro-weak field” we
intend

– either the non-Abelian field W a
µ of the unified electro-weak

theory (in non-diagonal representation),

– or respectively the correspondent components Z,W 1
µ ,W

2
µ of the

weak field, rotated by the Weinberg angle (in diagonal
representation).

The residual 12 extra components a
(σ̄ )
l , l = 4, 5, · · · , 15, of each

potential associated to the physical interactions (i.e., gravitational,
electro-weak and strong), can be seen by an observer living within the
physical space-time V 4, as fields which behave as scalars, respect to the
group of Riemannian 4-dimensional co-ordinate transformations.

The problem of interpreting as physically meaningful those
12 × 16 = 192 scalar fields is now to be attacked. We emphasize that the
latter exceeding components behave as scalars respect to curvilinear
co-ordinate transformation in physical space-time V 4, and fulflil
D’Alembert or Klein-Gordon equations (with current densities).

Then, in principle, we could guess that, at least some of them might be
combined into Dirac spinors which satisfy Dirac equations (and then also
Kein-Gordon equations).

In particular, according to the elementary particle standard model, we
need 12 Dirac spinors: 6 for the leptons e, µ, τ, νe, νµ, ντ , and 6 for the
quarks up, down, top, bottom, charm, strange, respectively with left and
right chirality and 12 more ones for the correspondent anti-particles. Since
each spinor has 4 components then 12×2×4 = 96 are required for particles
and 96 for anti-particles i.e., 192 functions.
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7.2 Field Extra Components

Let us, now, examine in some detail the components a(σ̄ )
µ̄ of each vector

potential appearing in the theory.

In the previous chapters we proposed to interpret the first 4 components
of each potential as related to the fundamental interactions (gravitational,
electro-weak and strong).

But in the 16-dimensional extended space-time V 16, each vector
potential a(σ̄ ) ≡ (a

(σ̄ )
µ̄ ), µ̄, σ̄ = 0, 1, · · · , 15, exhibits, beside the 4

components labelled by the index µ = 0, 1, 2, 3, within the physical
space-time V 4, also 12 extra components labelled by the index
l = 4, 5, · · · , 15.

As we have shown, the latter ones are seen as scalar fields by an observer
measuring them in the physical space-time V 4, since they are not affected
by the transformations of the co-ordinates x0, x1, x2, x3 in V 4.

Until now we considered only interaction fields, carried by bosons
(gravitons, photons, W±, Z0 and gluons) and nothing was said about
fermions (leptons and quarks).

In order to complete the theory, now we introduce also the 6 leptons
(e, µ, τ, νe, νµ, ντ ) and the 6 quarks, (up, down, top, bottom, charm,
strange) with their respective anti-particles and chirality.

So we may sketch the physical interpretation of the potential components
according to the following scheme.
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gravitational→

Abelian electro-weak→

non-Abelian electro-weak→

strong→

bosons fermions
↓ ↓

(a
(σ)
µ , a

(σ)
l )

(aµ , al)

(aaµ , aal )

(aAµ , aAl )



← spinor components

≡
(
a

(σ̄ )
µ̄

)
← spinor components

↑ ↑
V 4-vectors V 4-scalars (leptons, quarks)

7.3 Physical Meaning of the Field Extra Components

In this section we want to explain in more detail how the 192 extra
components of the vector potentials a(σ̄ )

µ̄ , may be related to the spinor
fields associated to the fermions (leptons and quarks) appearing in the
standard model of elementary particle theory.

Each spinor is a set of 4 complex valued functions of the observable
co-ordinates xµ, which are to be provided by the 192 complex functions
offered by the extra components of the vector potentials a(σ̄ )

l :

ψ ≡


ψ

ψ

ψ

ψ

 . (7.1)

Every component of ψ can be thought as a linear combination of the
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components a(σ̄ )
l :

ψ
(σ̄ )
l = αl

r a(σ̄ )
r , (7.2)

where αlr are the elements of a constant matrix, the choice of which leads
to one of the possible representations of the same fermions.

The simplest representation is given, of course, by:

ψ
(σ̄ )
l = a

(σ̄ )
l , l = 4, 5, · · · , 15, (7.3)

which can always be obtained with a suitable choice of the extra
co-ordinates xi.

Then we can associate groups of 4 components to the spinors
representing the physical elementary fermions, e.g., as:



ψ
(σ̄ )
l

ψ
(σ̄+1)
l

ψ
(σ̄+2)
l

ψ
(σ̄+3)
l


,

l = 4, 5, · · · , 15,

σ̄ = 0 (l.h. and r.h. leptons),

σ̄ = 4 (l.h. and r.h. red quarks),

σ̄ = 8 (l.h. and r.h. green quarks),

σ̄ = 12 (l.h. and r.h. blue quarks),

(7.4)

where l.h., r.h. denote respectively left-hand and right-hand chirality and
red, green, blue quark color.

According to this representation a detailed scheme of the physical
meaning of all the components of the vector potentials a(σ̄ )

µ̄ is summarized
in the following scheme.
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The index l, running here from 4 to 15, labels 12 spinors corresponding to
the 6 leptons e, µ, τ, νe, νµ, ντ , and to the 6 quarks in dependence on the
values of σ and 12 more spinors related to the respective anti-particles.

7.3.1 Dirac Equations Governing Matter Fields

The extra equations in the complement space of V 4 which govern
fermion fields are given by [see eq (6.73) in §6.3 of chapter 6]:

R<4>
µl − 1

2
R<4>gµl − Λgµl − λ[s]a(s)µa

(s)
l = κTµl, (7.5)

R<4>
jl − 1

2
R<4>gjl − Λgjl − λ[s]a(s)ja

(s)
l = κTjl, (7.6)

Dᾱ f
ᾱ
(σ̄ )l

= J(σ̄ )l. (7.7)

The energy-momentum tensor includes the contribution of the
interaction fields and that of the gravitational contribution arising from
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extra dimensions, i.e.:

Tµ̄ ν̄ = T
[f ]
µ̄ ν̄ + T

[d]
µ̄ ν̄ , (7.8)

κT
[f ]
µ̄ ν̄ = f

(s)
ᾱ µ̄ f

ᾱ
(s)ν̄
− 1

4
f

(s)

ᾱ β̄
f ᾱ β̄(s) gµ̄ ν̄ , (7.9)

κT
[d]
µ̄ ν̄ = R<4>

µ̄ν̄ −R µ̄ ν̄ − 1
2

(
R<4> −R

)
gµ̄ ν̄ . (7.10)

According to the standard model the covariant derivatives are
determined in such a way that the gauge invariance conditions in V 4 are
preserved even when a gauge choice is fixed in the extra space-time. Such
a choice is always possible because of the degrees of freedom provided by
the anti-symmetric tensor Aµ̄ ν̄ (arbitrary until now). Moreover, thanks to
the latter tensor we will be able to obtain also the correct current densities
in the r.h.s. of the interaction fields equations.

Now if we consider (5.72), from chapter 5 with vanishing currents we
have when µ̄ = l:

gᾱ β̄ Dαf
(σ̄ )

β̄ l
= 0, (7.11)

which, thanks to the Lorentz gauge, is equivalent to:

gᾱ β̄ Dᾱ Dβ̄ a
(σ̄ )
l = 0. (7.12)

Following a scheme like (7.4) we may replace the second order equations
(7.12) for the potentials a(σ̄ )

l with the second order spinor equations:

gᾱ β̄ Dᾱ Dβ̄ ψ
(σ̄ )
l = 0. (7.13)

Rest masses and contributions are expected to be hidden into the
derivatives respect to the extra co-ordinates, so that (7.13) identify with
the Klein-Gordon equations:

gαβDαDβψ
(σ̄ )
l +

m2
[σ̄ l]

c2

~2 ψ
(σ̄ )
l = 0, (7.14)
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which lead to the Dirac equations:

γαDαψ
(σ̄ )
l + i

m[σ̄ l] c

~ ψ
(σ̄ )
l = 0, (7.15)

m[σ̄ l] being the respective rest masses of leptons and quarks, related to
solutions arising from the extra components of the vector fields with
masses:

m[σ̄ l] = g[σ̄ l]M. (7.16)

7.3.2 Current Densities

Let us now examine the current densities J (σ̄ )
µ̄ .

When µ̄ = µ, the corresponding 4-vector J (σ̄ )
µ is to be related to the

physical charge current density:

j
(σ̄ )
µ̄ = e(σ̄ )ψ[σ̄ ]γµψ [σ̄ ]δ

µ
µ̄ (no sum over σ̄ ), (7.17)

where the notation e(σ̄ ) means each kind of charge carried by fermions.

Then this identification follows:

J (σ̄ )
µ = e(σ̄ )ψ[σ̄ ]γµψ [σ̄ ]. (7.18)

We remember that special care is required in managing the index notation
since there is no sum over σ̄ when it is enclosed into square brackets, while
summation is intended when σ̄ is enclosed into round parentheses.

Since J (σ̄ )
µ̄ , from eq (5.65) with n = 16, results to be:

where [See chap 5, eqs (5.38) and (5.65)]:

J (σ̄ )
µ̄ = Jµ̄ ν̄ a(σ̄ )ν̄ , A(σ̄ )

µ̄ = Aµ̄ ν̄ a(σ̄ )ν̄ .
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we can determine the until now free term A(σ̄ )
µ̄ as:

7.4 Conclusion

In the last two chapters we have proposed a possible physical
interpretation of the model of unified interaction (boson) and matter
(fermion) unified field within the geometry of a multidimensional
space-time manifold V 16.

We have shown how to identify interaction fields with the vector
components a

(σ̄ )
µ , µ = 0, 1, 2, 3 of the eigenvectors

a
(σ̄ )
µ̄ , µ̄ = 0, 1, 2, · · · , 15 of the metric tensor g ≡ (gµ̄ ν̄ ) in V 16.

More we have seen how to identify fermion matter spinor fields with the
extra components a

(σ̄ )
l , l = 4, 5, · · · , 15 of the same eigenvector

potentials. The model seems to be suitable to agree with the standard
model of elementary particles.

In order to complete a unified description of universe it remains to
examine if and how the proposed theory can be suitable to provide
meaningful results also in cosmology and if it may open a way to
quantization of the gravitational field.

The last two chapters of the book will be just involved with such
intriguing topics.
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Chapter 8

Cosmology and Elementary
Particles

Abstract
This chapter is intended to provide a possibile application to cosmology
of the theory presented in the previous chapters. We test a reasonably
simple diagonal metric solution of the Einstein equations in empty extended
space-time in presence of the cosmological constant and interpret the
energy-momentum contributions appearing in the observable 4-dimensional
space-time as related to the interaction and matter fields and the residual
contribution as related to dark matter and dark energy. It is remarkable
that the flatness of the universe appears naturally for the examined solution.
Geodesic motion is also analyzed.





Chapter 8 Cosmology and Elementary Particles

8.1 Introduction

This chapter is devoted to cosmological applications of the theory
proposed in the previous parts of the book. Some remarkable results will
arise thanks to the extended dimensionality of space-time.

1. First of all the flatness of universe will arise from compatibility of
the space-space components of the Einstein cosmological equations
for a simple diagonal metric solution extending the Robertson-Walker
metric to V 16.

2. As a second result, dark energy and dark matter contributions will
appear as owed to gravity hidden within the extra dimensions of
space-time.

3. Moreover the introduction of the vector potentials a
(σ̄ )
µ̄ , in the

representation of the metric tensor, will allow to build up for each
field, Hamiltonian densities the structure of which is similar to the
well known Hamiltonian of the electromagnetic field. Then the
Hamiltonian of each kind of field may be quantized in an usual way,
like in q.e.d..

Therefore also a way to quantization of the gravitational field appears
be open (see the next chapter 9).

8.2 Extension of Robertson-Walker Metric in V 16

Let us now introduce the cosmological metric in the physical sub-space-
time V 4 embedded within the extended V 16 space-time. The co-ordinates
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are given by:

x0 = ct, x1 = r, x2 = θ, x3 = φ,

xi, i = 4, 5, · · · , 15.

(8.1)

In order to preserve the cosmological principle in V 4 the metric tensor
components gµν are required to be still the usual Robertson-Walker metric
components:

g00 = 1, g11 = − a(t)2

1−Kr2
,

(8.2)

g22 = −a(t)2r2, g33 = −a(t)2r2 sin2 θ.

Additional components gµl, gil required to extend the metric to the entire
V 16 will be added in the extra-space. Then the metric tensor representation
is given by:

g ≡


1 0 0 0 g0l

0 − a(t)2

1−Kr2 0 0 g1l

0 0 −a(t)2r2 0 g2l

0 0 0 −a(t)2r2 sin2 θ g3l

gi0 gi1 gi2 gi3 gil

 . (8.3)

8.3 The Cosmological Field Equations in V 16

We assume that the cosmological field equations, when written in the
extended space-time V 16, are given by the Einstein equations in empty
space-time, so that any fundamental field living in the observable physical
space-time V 4 results to be included into the V 16 metric tensor gµ̄ ν̄ .
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We have:

Rµ̄ ν̄ − 1
2
Rgµ̄ ν̄ − Λgµ̄ ν̄ = 0. (8.4)

It is remarkable that the equations (8.4), being written in empty V 16

space-time are not affected if the metric tensor is multiplied by an
arbitrary non-vanishing factor, except for the same factor multiplying the
cosmological constant which results simply to be rescaled.

In general the latter equations are very hard to solve, unless the metric is
diagonal within the whole space-time V 16.

8.3.1 Diagonal Solution and Universe Flatness

A simple and meaningful solution is immediately obtained if we assume
that the metric is diagonal within the whole extended space-time V 16, and
exhibits the form:

gµl = 0, gi l = −|c[l]|2a(t)2δil, (8.5)

c[l] being a constant to be determined and physically interpreted later.
Conveniently we redefine also the scale of the ordinary space-time
components gµν as follows:

g00 = |cg|2, g11 = −|cg|
2a(t)2

1−Kr2
,

(8.6)

g22 = −|cg|2a(t)2r2, g33 = −|cg|2a(t)2 sin2 θ,

so that a constant coefficient |cg|2 may appear also in g00, g11, g22, g33. As
we will see in chapter 9 the coefficients cg, c[l] will play an important role
in order to the field quantization.
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Therefore the matrix representation of the metric tensor and its inverse
result to be:

g≡


|cg|2 0 0 0 0

0 − |cg|
2a(t)2

1−Kr2
0 0 0

0 0 −|cg|2a(t)2 r2 0 0

0 0 0 −|cg|2a(t)2 r2 sin2 θ 0

0 0 0 0 −|c[l]|2a(t)2δil

 , (8.7)

g
−1≡


1
|cg|2

0 0 0 0

0 − 1−Kr2

|cg|2a(t)2
0 0 0

0 0 − 1
|cg|2a(t)2 r2

0 0

0 0 0 − 1
|cg|2a(t)2 r2 sin2 θ

0

0 0 0 0 −
δil

|c[l]|
2a(t)2

 .

(8.8)

In correspondence to this solution the non-vanishing components of the
connection coefficients become:

Γ i

0̄i
= ȧ(t)

ca(t)
, ī = 1, 3, · · · , 15,

Γ 0
11 = a(t) ȧ(t)

c(1−Kr2)
, Γ 1

11 = Kr
1−Kr2 , Γ 2

12 = Γ 3
13 = 1

r
,

Γ 0
22 = r2a(t) ȧ(t)

c
, Γ 1

22 = −r(1−Kr2), Γ 3
23 = cot θ,

Γ 0
33 = r2a(t) ȧ(t) sin2 θ

c
, Γ 1

33 = −r(1−Kr2)sin2θ,

Γ 2
33 = − cos θ sin θ, Γ 0

j j =
|c[l]|2a(t) ȧ(t)

|cg |2c , j,= 4, 5, · · · , 15,

(8.9)

where no sum is intended over repeated index j in the last term.

The non vanishing Ricci tensor components are now given by:

R00 = −15ä(t)

c2a(t)
, (8.10)

R11 =
a(t)ä(t) + 14ȧ(t)2 + 2Kc2

c2(1−Kr2)
, (8.11)
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R22 =
r2
[
a(t)ä(t) + 14ȧ(t)2 + 2Kc2

]
c2

, (8.12)

R33 =
r2
[
a(t)ä(t) + 14ȧ(t)2 + 2Kc2

]
sin2 θ

c2
, (8.13)

Rj j =
|c[j]|2

[
a(t)ä(t) + 14ȧ(t)2

]
|cg|2c2

(non sum over j), (8.14)

the Ricci scalar curvature resulting:

R = −
6
[
5a(t)ä(t) + 35ȧ(t)2 +Kc2

]
|cg|2c2

. (8.15)

Then the only non-trivial Einstein equations in empty V 16 space-time
become:

105ȧ(t)2 − |cg|2Λc2a(t)2 + 3Kc2 = 0, (8.16)

in correspondence to the time-time component in (8.4). And:

14a(t)ä(t) + 91ȧ2(t)− |cg|2Λc2a(t)2 +Kc2 = 0, (8.17)

in correspondence to the observable space-space components. Moreover
we have for the extra space-space components:

14a(t)ä(t) + 91ȧ2(t)− |cg|2Λc2a(t)2 + 3Kc2 = 0. (8.18)

Then the first new remarkable result appears immediately, thanks to the
presence of extra dimensions, since compatibility between (8.17) and
(8.18) requires:

K = 0, (8.19)

so providing a possible explanation of the observed flatness of the
physical universe, at least in correspondence to the examined diagonal
solution. Then only the following equations remain:

105ȧ(t)2 − |cg|2Λc2a(t)2 = 0, (8.20)
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14a(t)ä(t) + 91ȧ2(t)− |cg|2Λc2a(t)2 = 0, (8.21)

in which the coefficients |c[l]|2 do not appear, while the coefficient |cg|2,
related to the gravitational field in V 4, does. Then from (8.20) one obtains,
for positive Λ (as it is physically observed):

ȧ(t)

ca(t)
= ±|cg|

√
Λ

105
, (8.22)

the integration of which leads to:

a(t) = a[±]

0 e±|cg |
√

Λ
105

ct, (8.23)

since the empty extended space-time V 16 behaves like a multidimensional
De Sitter universe, in which no singularity appears. Substitution of (8.23)
into (8.21) provides:

|cg|2c2a(±)

0 Λe±2 |cg |
√

Λ
105

ct
(

14
105

+ 91
105
− 1
)
≡ 0,

so fulfilling also eq (8.21). Positive sign in the exponential corresponds to
an expanding universe as it is physically observed.

8.3.2 What is Observed in the Physical Space-Time V 4

In the physical space-time V 4 the ordinary Robertson-Walker metric
tensor g<4>

µν , when K = 0, leads to the non-vanishing Ricci tensor
components:

R<4>
00 = − 3ä(t)

c2a(t)
, (8.24)

R<4>
11 =

a(t)ä(t) + 2ȧ(t)2

c2
, (8.25)

R<4>
22 =

r2
[
a(t)ä(t) + 2ȧ(t)2

]
c2

, (8.26)

R<4>
33 =

[
a(t)ä(t) + 2ȧ(t)2

]
sin2 θ

c2
, (8.27)
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and the Ricci scalar curvature:

R<4> = −6[a(t)ä(t) + ȧ(t)2]

|cg|2c2a(t)2
. (8.28)

Then the non-vanishing Einstein field equations in V 4 in presence of
external matter-energy fields result:

3
ȧ(t)2

c2a(t)2
− |cg|2Λ = κ%c2 |cg|2, (8.29)

−2
ä(t)

c2a(t)
− ȧ2(t)

c2a(t)2
+ |cg|2Λ = κ℘|cg|2, (8.30)

where matter-energy fields are represented, as usual, as a perfect fluid of
energy-momentum tensor:

Tµν =
(
%c2 + ℘

)
uµuν − ℘gµν , (8.31)

uµ being the 4-velocity of the fluid particle, which in a co-moving
reference, where:

u0 =
√
g00 ≡ |cg|, uk = 0, (8.32)

assumes the form:

T00 = %c2 |cg|2, Tjk = −℘gjk, (8.33)

%, ℘ being the mass-energy and pressure densities of the fluid.

Some care is required, since all the wave-particles travel at the speed of
light in V 16, so that uµ̄uµ̄ ≡ uµuµ + uiui = u0u0 + uiui + uiui = 0; then
thanks to (8.32-b) it follows uiui = −1. So when the wave-particles travel
at speed c in V 4 a co-moving frame can be defined only as a limiting case.

From (8.20) and (8.21) we solve:

ȧ(t)2

c2a(t)2
= 1

105
Λ|cg|2, (8.34)
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ä(t)

c2a(t)
= 1

105
Λ|cg|2, (8.35)

which substituted into (8.29) and (8.30) lead to:

κ%c2 = −34
35
Λ, (8.36)

κ℘ = 34
35
Λ, (8.37)

resulting:

℘ = −%c2. (8.38)

The astonishing result of a negative mass density % provided by (8.36),
Λ being assumed to be positive, suggests that the cosmological constant,
due to the extra space-time dimensions, plays the role of a repulsive
gravitational source, which is responsible of universe expansion, together
with the positive pressure density ℘ given by (8.37).

The mass-energy density % and ℘ represent the mass-energy and
pressure densities of the empty extended space-time V 16 (vacuum energy
and pressure) which are seen as matter contributions by an observer living
in V 4.

The matter term includes:

1. The mass-energy and pressure densities of matter/interaction fields
(%[f ], ℘[f ]) embedded in V 16 space-time geometry, as evaluated
respect to the reduced connection ΓΓ , being equal to the mass-energy
and pressure densities of matter/interaction fields as observable in
V 4;

2. The usual V 4 vacuum energy %<4>
vac and a vacuum pressure ℘<4>

vac

densities owed to the cosmological constant (standard dark energy);
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3. The residual vacuum energy %<ex>vac and a vacuum pressure ℘<ex>vac

densities owed to the extra space dimensions.

4. The extra mass-energy %<ex>mat and pressure ℘<ex>mat densities owed to
the difference between the usual V 4 connection ΓΓ<4> and the reduced
connection ΓΓ , previously suggested as hypothetical responsible of
dark matter (see §6.3.1 in chapter 6):

κ%<ex>mat c2g00 = R<4>
00 −R00 − 1

2

(
R<4> −R

)
g00,

κ℘<ex>mat gjk = R<4>
jk −Rjk − 1

2

(
R<4> −R

)
gjk.

(8.39)

Eventually eqs (8.29) and (8.30) may be written equivalently as:

3 ȧ(t)2

c2a(t)2 = κ
(
%<4>

vac + %<ex>vac + %<ex>mat + %[f ]
)
c2|cg|2,

−2 ä(t)
c2a(t)

− ȧ2(t)
c2a(t)2 = κ

(
℘<4>

vac + ℘<ex>vac + ℘<ex>mat + ℘[f ]
)
|cg|2.

(8.40)

where:
κ%<4>

vac c
2 = Λ, κ℘<4>

vac = −Λ,

κ
(
%<ex>vac + %<ex>mat

)
c2 = −34

35
Λ− κ%[f ]c2,

κ
(
℘<ex>vac + ℘<ex>mat

)
= 34

35
Λ+ κ℘[f ].

(8.41)

Remarkably the total mass-energy and pressure densities:

% = %<4>
vac +%<ex>vac +%<ex>mat +%[f ], ℘ = ℘<4>

vac +℘<ex>vac +℘<ex>mat ℘[f ], (8.42)

are constant and directly proportional to the cosmological constant.

In the following sections we evaluate the mass-energy and pressure
contributions of the matter/interaction fields and the dark matter owed to
the extra dimensions.
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8.3.3 The Solution for the Potentials a(σ̄ )
µ̄

The potentials a(σ̄ )
µ̄ are the eigenvectors of the metric tensor gµ̄ ν̄ .

Then they appear to be easily obtained in correspondence to the diagonal
solution to the metric (8.7) as:

a
(σ̄ )
µ̄ = cg δ

(σ̄ )
(0) δ

(0)
µ̄ + cga(t)

[
δ

(σ̄ )
(1) δ

(1)
µ̄ + rδ

(σ̄ )
(2) δ

(2)
µ̄ +

+r sin θδ
(σ̄ )
(3) δ

(3)
µ̄

]
+ c[s]δ

(σ̄ )
(s) δ

(s)
µ̄ . (8.43)

We observe that the latter is the most general real valued representation.
But even a more general complex representation is allowed (see §5.2.1 in
chapter 5), which is physically relevant providing oscillating wave
solutions. In fact the metric tensor is not altered if we introduce imaginary
exponential factors into (8.43) which do not affect the products
η(σ̄ )(τ̄ )a

∗(σ̄ )
µ̄ a

(τ̄ )
ν̄ appearing in gµ̄ ν̄ , being:

η(σ̄ )(τ̄ )a
(σ̄ )∗
µ̄ a

(τ̄ )
ν̄ = η(σ̄ )(τ̄ )c

(σ̄ )∗
µ̄ c

(τ̄ )
ν̄ . (8.44)

In particular we are interested in distinguishing the boson interaction
fields a(σ̄ )

µ , and the fermion matter fields, i.e.:

a(σ̄ )
µ = cg δ

(σ̄ )
(0) δ

(0)
µ eik

[0]
ᾱ xᾱ + cga(t)

[
δ

(σ̄ )
(1) δ

(1)
µ eik

[1]
ᾱ xᾱ +

+rδ
(σ̄ )
(2) δ

(2)
µ eik

[2]
ᾱ xᾱ + r sin θδ

(σ̄ )
(3) δ

(3)
µ eik

[3]
ᾱ xᾱ

]
, (8.45)

a
(σ̄ )
l = c [s]a(t)δ

(σ̄ )
(s) δ

(s)
l eik

[sl]
α xα eik

[sl]
l xl . (8.46)

According to the rule established in chapter 7 we may collect the 192

components a(σ̄ )
l of the vector potential into 192/4 = 48 Dirac spinors ψA,

where we may introduce for the sake of simplicity the dummy index A =

1, 2, · · · , 48.
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Now we choose:

k [A]
α = k

[A]
[α] γα. (8.47)

where γα are the Dirac gamma matrices, which obey the anti-commutation
rule:

γµγν + γνγµ = 2gµν I, (8.48)

I being the 4× 4 identity matrix. And we write (8.46) in a compact spinor
form as:

ψA = cAa(t) exp
[
i
(
k

[A]
[α] γαx

α + k
[A]
l xl I

)]
, (8.49)

cA being a constant spinor.

Some comment is required to the result provided by (8.46). In fact, as
one is able to realize soon, only the gravitational field components
a

(σ)
µ , σ, µ = 0, 1, 2, 3, can contribute to the vector potentials in V 4, in

order to preserve a diagonal metric.

Therefore neither electro-weak nor strong interaction vector potentials
appear in V 4 in the cosmological metric, while their energy does.
Non-vanishing a

(s̄)
µ components may appear if a co-ordinate change is

performed, such that the metric tensor becomes no longer diagonal. In
fact while the strength fields f (s)

µ̄ ν̄ of the non-gravitational interaction fields
have non-vanishing components f

(s)
µν which are observable in V 4, the

vector potential components a(s)
µ , are zero being necessarily µ 6= s (being

µ = 0, 1, 2, 3, while s = 4, 5, · · · , 15 in δ(s)
µ ) in order to ensure a diagonal

metric. So the vector potentials of the electro-weak and strong
interactions cannot appear within V 4 in a diagonal representation of gµ̄ ν̄ .

On the contrary, the electro-weak and strong interactions vector
potential components a

(s)
µ appear naturally when we perform a

co-ordinate transformation, so that the representation of the metric tensor
results to be no longer diagonal. Let us consider a general co-ordinate
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transformation:
x̂µ̄ ≡ x̂µ̄(xν̄ ), (8.50)

so that the components of any vector transform as the differentials of the
co-ordinates:

dx̂µ̄ = Sµ̄ν̄ dxν̄ , Sµ̄ν̄ =
∂x̂µ̄

∂xν̄
. (8.51)

Now each vector potential transforms as:

â
(σ̄ )
µ̄ = Sµ̄

ν̄ a
(σ̄ )
ν̄ . (8.52)

In particular it results that the observable components of all the
interaction fields:

â(s)
µ = Sµ

ν̄ a
(s)
ν̄ , (8.53)

which become:

â
(s)
µ = a(t)δ

(s)
ν̄ Sµ

ν̄ eik
[sµ̄ ]
ᾱ xᾱ , (8.54)

will be generally non zero.

A similar occurrence was already known in special relativity according
to which a magnetic field appears as generated by an electric field, when
this latter is observed by a traveling frame. Here the result is generalized
to the electro-weak and strong fields, which appear as generated by a
gravitational field when it is observed in a different frame.

8.3.4 The Solutions for the Fields f (σ̄ )
µ̄ ν̄

Starting form (8.46) we can evaluate the field strength tensors f (σ̄ )
µ̄ ν̄ .
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We have:

f
(0)
µ̄ ν̄ = i

(
k

[0]
µ̄ a

(0)
ν̄ − k

[0]
ν̄ a

(0)
µ̄

)
, (8.55)

f
(1)
µ̄ ν̄ = i

(
k

[1]
µ̄ a

(1)
ν̄ − k

[1]
ν̄ a

(1)
µ̄

)
+ 1

c
ȧ(t)
a(t)

(
a

(1)
µ̄ δ0

ν̄ − a
(1)
ν̄ δ0

µ̄

)
+

(8.56)

+c
(1)
(2)(3)

(
a

(2)
µ̄ a

(3)
ν̄ − a

(3)
µ̄ a

(2)
ν̄

)
,

f
(2)
µ̄ ν̄ = i

(
k

[2]
µ̄ a

(2)
ν̄ − k

[2]
ν̄ a

(2)
µ̄

)
+

(8.57)

+1
c
ȧ(t)
a(t)

(
a

(2)
µ̄ δ0

ν̄ − a(2)
ν δ0

µ̄

)
+ 1

r

(
a

(2)
µ̄ δ1

ν̄ − a
(2)
ν̄ δ1

µ̄

)
+

(8.58)

+c
(2)
(3)(1)

(
a

(3)
µ̄ a

(1)
ν̄ − a

(1)
µ̄ a

(3)
ν̄

)
,

f
(3)
µ̄ ν̄ = i

(
k

[3]
µ̄ a

(3)
ν̄ − k

[3]
ν̄ a

(3)
µ̄

)
+ 1

c
ȧ(t)
a(t)

(
a

(3)
µ̄ δ0

ν̄ − a
(3)
ν̄ δ0

µ̄

)
+

(8.59)

+1
r

(
a

(3)
µ̄ δ1

ν̄ − a
(3)
ν̄ δ1

µ̄

)
+ cot θ

(
a

(3)
µ̄ δ2

ν̄ − a
(3)
ν̄ δ2

µ̄

)
+

(8.60)

+c
(3)
(1)(2)

(
a

(1)
µ̄ a

(2)
ν̄ − a

(2)
µ̄ a

(1)
ν̄

)
,

f
(s)
µ̄ ν̄ =

(
ik

[s]
µ̄ + 1

c
δ0
µ̄
ȧ(t)
a(t)

)
a

(s)
ν̄ −

(
ik

[s]
ν̄ + 1

c
δ0
ν̄
ȧ(t)
a(t)

)
a

(s)
µ̄ +

(8.61)

+C
(s)
(q)(r)

(
a

(q)
µ̄ a

(r)
ν̄ − a

(r)
µ̄ a

(q)
ν̄

)
.

(See chapter 7 for the conventions about the notations of the C(s)
(q)(r)).
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Here we are especially interested in the f (s)
µ̄ ν̄ , which represent the only

strength tensors appearing in the energy-momentum tensor of the
non-gravitational fields. In terms of spinors it results convenient (as we
will see in §8.4.2) to introduce:

FA
µ̄ = a(t)

[(
δµµ̄ψ

A
,µ + CA

µBψ
B
)

+ δ
j
µ̄ k

[A]
j ψA

]
+ 1

c
δ0
µ̄ ȧ(t)ψA, (8.62)

with the symbolic notation CA
µ̄B which collects into spinors the terms

C
(s)
(q)(r)a

(q)
µ̄ .

From (8.62) we obtain:

FA
µ̄ = a(t)

(
ik

[A]
[µ] δ

µ
µ̄ γµψ

A + CA
µ̄Bψ

B + δ
j
µ̄ k

[A]
j ψA

)
+ 1

c
δ0
µ̄ ȧ(t)ψA. (8.63)

It is important to remember that ψA is a scalar respect to co-ordinate
transformation in V 4, its elements being built only by a(s)

l , so its ordinary
derivative is covariant in the four-dimensional physical space-time V 4.

8.4 The Energy-Momentum Tensor

In this section we evaluate the energy-momentum tensor T [s]
µν in V 4 of

each non-gravitational field of strength f
(s)
µ̄ ν̄ both by a direct calculation

starting from the component representation and following the spinor
formulation.

8.4.1 Component Representation

The energy-momentum tensor of each non-gravitational field labelled by
(s) is given by:

κT [s]
µν = f

(s)
ᾱµ f

ᾱ
(s)ν
− 1

4
f

(s)

ᾱ β̄
f ᾱ β̄(s) gµν (non sum over s). (8.64)
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So we have to calculate the tensor products f (s)
ᾱµ f

ᾱ
(s)ν

and f (s)

ᾱ β̄
f ᾱ β̄(s) .

We observe soon that the non-Abelian terms do not contribute to the
energy-momentum tensor, since their products cancel. In fact if we
examine, e.g.:

gᾱ β̄C
(1)
(a)(b)C(1)(c)(d)a

(a)
µ̄ a

(b)
ᾱ a

(c)

β̄
a

(d)
ν̄ , a, b, c, d = 1, 2, 3,

we obtain:

gᾱ β̄C
(1)
(a)(b)C(1)(c)(d)a

(a)
µ̄ a

(b)
ᾱ a

(c)

β̄
a

(d)
ν̄ =

= gᾱ β̄C
(1)
(2)(3)C(1)(2)(3)

(
a

(2)
µ̄ a

(3)
ᾱ − a

(3)
µ̄ a

(2)
ᾱ

)(
a

(2)

β̄
a

(3)
ν̄ − a

(2)

β̄
a

(3)
ν̄

)
. (8.65)

The structure constant (see §6.3.2 and §6.3.3 in chapter 6) are completely
anti-symmetric and can be written, in general, as:

C(a)(b)(c) = g[f ]ε(a)(b)(c), (8.66)

g[1] being the coupling constant of the field labelled by (1) it follows:

gᾱ β̄C
(1)
(a)(b)C(1)(c)(d)a

(a)
µ̄ a

(b)
ᾱ a

(c)

β̄
a

(d)
ν̄ ≡

≡ −g[1]g
ᾱ β̄a

(2)
µ̄ a

(3)
ᾱ a

(2)

β̄
a

(3)
ν̄ + g[1]g

ᾱ β̄a
(2)
µ̄ a

(3)
ᾱ a

(2)

β̄
a

(3)
ν̄ +

+g[1]g
ᾱ β̄a

(3)
µ̄ a

(2)
ᾱ a

(2)

β̄
a

(3)
ν̄ − g[1]g

ᾱ β̄a
(3)
µ̄ a

(2)
ᾱ a

(2)

β̄
a

(3)
ν̄ = 0. (8.67)

Similar result is obtained for different values of the indices. Then we
may drop non-Abelian contributions in evaluating the products appearing
in the energy-momentum tensor. We begin evaluating (no sum over s will
be intended also in what follows):

f
(s)∗
ᾱ β̄

f ᾱ β̄(s) ≡ η(s)(s)g
µ̄ ν̄ gᾱ β̄ f

(s)∗
µ̄ ᾱ f

(s)

ν̄ β̄
=

= 2
[
kᾱ[s]k

[s]
ᾱ + 1

c2
ȧ(t)2

a(t)2

]
|c[s]|2 ≡ 2

(
kᾱ[s]k

[s]
ᾱ + 1

105
Λ
)
|c[s]|2. (8.68)
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Since any wave-particle in V 16 travels at the speed of light, so that its
momentum pᾱ is a light-like vector, i.e.:

pᾱpᾱ = 0, (8.69)

and because of the Einstein-Planck-De Broglie relation pᾱ = ~kᾱ , also the
wave vector kᾱ results to be light-like, then resulting:

kᾱkᾱ = 0. (8.70)

It follows in (8.68):
f

(s)∗
ᾱ β̄

f ᾱ β̄(s) = 2
105
Λ. (8.71)

Moreover we need the contributions:

f
(s)∗
ᾱ0 f ᾱ(s)0 ≡ ηssg

ᾱ β̄ f
(s)
ᾱ0 f

(s)

β̄0
=

=
(
k

[s]
0 k

0
[s] + 1

c2
ȧ(t)2

a(t)2

)
|c[s]|2 ≡

(
k

[s]
0 k

0
[s] + 1

105
Λ
)
|c[s]|2,

f
(s)∗
ᾱ1 f ᾱ(s)1 ≡ ηssg

ᾱ β̄ f
(s)
ᾱ1 f

(s)

β̄1
= −k[s]

1 k
1
[s]|c[s]|2a(t)2,

f
(s)∗
ᾱ2 f ᾱ(s)2 ≡ ηssg

ᾱ β̄ f
(s)
ᾱ2 f

(s)

β̄2
= −k[s]

2 k
2
[s]|c[s]|2a(t)2r2,

f
(s)∗
ᾱ3 f ᾱ(s)3 ≡ ηssg

ᾱ β̄ f
(s)
ᾱ3 f

(s)

β̄3
= −k[s]

3 k
3
[s]|c[s]|2a(t)2r2 sin2 θ.

(8.72)

The following non-vanishing energy-momentum tensor components in
V 4 result to be given by:

κT
[s]
00 =

(
k

[s]
0 k

0
[s] + 1

210
Λ
)
|c[s]|2, (8.73)

κT
[s]
11 = −

(
k

[s]
1 k

1
[s] − 1

210
Λ
)
|c[s]|2a(t)2, (8.74)

κT
[s]
22 = −

(
k

[s]
2 k

2
[s] − 1

210
Λ
)
|c[s]|2a(t)2r2, (8.75)
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κT
[s]
33 = −

(
k

[s]
3 k

3
[s] − 1

210
Λ
)
|c[s]|2a(t)2r2 sin2 θ. (8.76)

Comparison with (8.33) leads to the mass-energy and pressure densities
of each interaction field of strength f (s)

µν in V 4, and imposes isotropy of
space leading to the conditions:

k
[s]
1 = k

[s]
2 = k

[s]
3 . (8.77)

Introducing the notation:

ω[s] = k0
[s]c, (8.78)

and taking into account (8.70) we have:

k
[s]
1 k

1
[s] = k

[s]
2 k

2
[s] = k

[s]
3 k

3
[s] ≡ −1

3

(
ω2

[s]

c2
+ k

[s]
i k

i
[s]

)
. (8.79)

And being:

k
[s]
i k

i
[s] = −

m2
[s]
c2

~2 , (8.80)

we may write:

k
[s]
1 k

1
[s] = k

[s]
2 k

2
[s] = k

[s]
3 k

3
[s] ≡ −1

3

(
ω2

[s]

c2
−

m2
[s]
c2

~2

)
. (8.81)

Eventually we arrive at:

κT
[s]
00 = 1

c2

(
ω2

[s] + 1
210
Λc2
)
|c[s]|2, (8.82)

κT
[s]
11 = 1

c2

[
1
3

(
ω2

[s] −
m2

[s]
c4

~2

)
+ 1

210
Λc2
]
|c[s]|2a(t)2, (8.83)

κT
[s]
22 = 1

c2

[
1
3

(
ω2

[s] −
m2

[s]
c4

~2

)
+ 1

210
Λc2
]
|c[s]|2a(t)2r2, (8.84)

κT
[s]
33 = 1

c2

[
1
3

(
ω2

[s] −
m2

[s]
c4

~2

)
+ 1

210
Λc2
]
|c[s]|2a(t)2r2 sin2 θ. (8.85)
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Then we can identify the mass-energy and pressure densities as:

%[s]c
2 = 1

κc2

(
ω2

[s] + 1
210
Λc2
)
, (8.86)

℘[s] = 1
κc2

[
1
3

(
ω2

[s] −
m2

[s]
c4

~2

)
+ 1

210
Λc2
]
. (8.87)

The previous results are easily extended to a many and even infinite
particles solution provided that we replace the wave number vectors kα[s]
with diagonal matrices:

K [s]
ᾱ ≡

 k
[s]
[1]ᾱ 0 · · · 0

0 k
[s]
[2]ᾱ · · · 0

· · · · · · · · · · · ·

 , (8.88)

The vector potential solutions are also given by matrices, becoming:

a(s)
µ̄ = a(t)δ

(s)
µ̄ c[s]e

iK [sµ]
ᾱ xᾱ , (8.89)

from which the field strength tensor matrices result:

f (s)
µ̄ ν̄ = −i

(
K [s]
µ̄ δ

(s)
ν̄ − K [s]

ν̄ δ
(s)
µ̄

)
a(t)c[s]e

iK [s]
ᾱ xᾱ +

+1
c
ȧ(t)

(
δ

(s)
µ̄ δ0

ν̄ − δ
(s)
ν̄ δ0

µ̄

)
c[s]e

iK [s]
ᾱ xᾱ . (8.90)

So mass-energy and pressure densities of the fields f (s)
µν are given by:

κ%[s]c
2 = Tr

(
K [s]

0 K0
[s]

)
+ 1

210
Λ, (8.91)

κ℘[s] = −Tr
(

K [s]
1 K1

[s]

)
+ 1

210
Λ. (8.92)

In fact the latter result is equivalent to the summation of each particle
contribution:

κ%[s]c
2 =

∑
p

(
k

[s]
p0k

0
p[s]

)
+ 1

210
Λ, (8.93)

κp[s] = −
∑

p

(
k

[s]
p1k

1
p[s]

)
+ 1

210
Λ. (8.94)

150 Science Publishing Group



Chapter 8 Cosmology and Elementary Particles

8.4.2 Spinor Representation

In order to evaluate the energy-momentum tensor in terms of spinors we
can follow two equivalent approaches:

1. The former combines directly the products of the strength field as
given by (8.63) in which the derivative of each spinor is explicitly
calculated.

2. While the latter combines respectively one of the strength fields as
provided by (8.63) with another one as it is given by (8.62).

First Approach

Adopting the representation (8.63) of the field strength in terms of
spinors, the energy-momentum tensor of the fermion fields assumes the
following form:

κT [A]
µν = 2FA+

µ FAν − 1
2
FA+
ᾱ Fᾱ

A gµν (no sum over A). (8.95)

A factor 2 appears because each product of any FA
µ̄ contributes twice to

the products of the anti-symmetric strength tensors f (s)
µ̄ ν̄ . We have:

Fᾱ+
A FA

ᾱ = −ψ+
A

[
1
2
k

[A]
[α]k

[α]
[A]g

αβ
(
γαγβ + γβγα

)
+

+
(
k

[A]
j k

j

[A] + 1
c2
ȧ(t)2

a(t)2

)
I
]
ψA. (8.96)

Taking into account (8.47) we have:

1
2
k

[A]
[α]k

[α]
[A]g

αβ
(
γαγβ + γβγα

)
= gαβ gαβk

[A]
[α]k

[α]
[A]I. (8.97)
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Some care is required in evaluating:

gαβ gαβk
[A]
[α]k

[α]
[A] ≡ g00g00k

[A]
[0] k

[0]
[A] + g11g11k

[A]
[1] k

[1]
[A] +

+g22g22k
[A]
[22]k

[22]
[A] + g33g33k

[A]
[33]k

[33]
[A] ≡ k

[A]
[α]k

[α]
[A]. (8.98)

Then it results:

Fα+
A FA

α = −
[
k[A]
α kα[A] + k

[A]
j k

j

[A] + 1
c2
ȧ(t)2

a(t)2

]
ψ+
Aψ

A. (8.99)

Vector k[A]
ᾱ being light-like, since the particles travel at the speed of light

c in V 16, so that:

k
[A]
ᾱ kᾱ[A] ≡ k[A]

α kα[A] + k
[A]
j k

j

[A] = 0 =⇒ k
[A]
[α]k

[α]
[A] =

m2
Ac

2

~2 , (8.100)

it just results:
Fα+
A FA

α = − 1
c2
ȧ(t)2

a(t)2 ψ
+
Aψ

A, (8.101)

as expected. Moreover we evaluate:

FA+
µ FAν = −ψ+

A

[
1
2

(
k[A]
)2(

γµγν + γνγµ
)

+ 1
c2
δ0
µδ

0
ν
ȧ(t)2

a(t)2 I
]
ψA, (8.102)

which, thanks (8.47) becomes:

FA+
µ FAν = −

[
k[A]
µ k[A]ν + 1

c2
δ0
µδ

0
ν
ȧ(t)2

a(t)2

]
ψ+
Aψ

A. (8.103)

Then the energy-momentum tensor results:

κT [A]
µν = −

[
k[A]
µ k[A]ν + 1

c2
δ0
µδ

0
ν
ȧ(t)2

a(t)2 − 1
2c2

ȧ(t)2

a(t)2 gµν

]
ψ+
Aψ

A. (8.104)

The components of which are:

κT
[A]
00 = −

(
k

[A]
0 k0

[A] + 1
210
Λ
)
ψ+
Aψ

A, (8.105)

κT
[A]
11 =

(
k

[A]
1 k1

[A] − 1
210
Λ
)
ψ+
Aψ

Aa(t)2, (8.106)
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κT
[A]
22 =

(
k

[A]
2 k2

[A] − 1
210
Λ
)
ψ+
Aψ

Aa(t)2r2, (8.107)

κT
[A]
33 =

(
k

[A]
3 k3

[A] − 1
210
Λ
)
ψ+
Aψ

Aa(t)2r2 sin2 θ. (8.108)

Or in an equivalent form:

κT
[A]
00 =

(
k

[A]
0 k0

[A] + 1
210
Λ
)
c∗[A]c

[A], (8.109)

κT
[A]
11 = −

(
k

[A]
1 k1

[A] − 1
210
Λ
)
|c∗[A]c

[A]a(t)2, (8.110)

κT
[A]
22 = −

(
k

[A]
2 k2

[A] − 1
210
Λ
)
|c∗[A]c

[A]a(t)2r2, (8.111)

κT
[A]
33 = −

(
k

[A]
3 k3

[A] − 1
210
Λ
)
|c∗[A]c

[A]a(t)2r2 sin2 θ. (8.112)

Isotropy condition and analogous calculations as in the previous sections
lead to the same results according to a spinor formalism.

Second Approach

A second approach leading to the energy-momentum tensor of the
fermion fields in an alternative equivalent form combines the products of
the strength fields as given respectively by (8.62) and (8.63).

We obtain the following products:

FA+
ᾱ Fᾱ

A = ik
[α]
[A]ψ

+
Aγ

αψA,α + k
[A]
j k

j

[A]ψ
+
Aψ

A + 2
105
Λψ+

Aψ
A. (8.113)

Introducing the fermion masses mA we have:

k
[A]
j k

j

[A] = −m2
Ac

2

~2 , k
[α]
[A] = mAc

~ , (8.114)

from which it follows:

FA+
ᾱ Fᾱ

A = ik
[α]
[A]ψ

+
Aγ

αψA,α −
m2

[A]
c2

~2 ψ+
Aψ

A + 2
105
Λψ+

Aψ
A ≡

≡ imAc~ ψ+
A

(
γαψA,α +

im[A]c

~ ψA
)

+ 2
105
Λψ+

Aψ
A = 2

105
Λψ+

Aψ
A,

(8.115)
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thanks to Dirac equation:

γαψA,α +
im[A]c

~ ψA = 0. (8.116)

Moreover we need:

FA+
µ FAν = 1

2
ψ+
A

(
ik

[A]
[µ] γµψ

A
,ν + ik

[A]
[ν] γνψ

A
,µ

)
+ 1

105
Λδ0

µδ
0
νψ

+
Aψ

A, (8.117)

which is equivalent to:

FA+
µ FAν = 1

2
i
m[A]c

~ ψ+
A

(
γµψ

A
,ν + γνψ

A
,µ

)
+ 1

105
Λδ0

µδ
0
νψ

+
Aψ

A. (8.118)

Therefore the energy-momentum tensors becomes:

κT [A]
µν = i

m[A]c

~ ψ+
A

(
γµψ

A
,ν +γνψ

A
,µ

)
+ 1

105
Λ
(
δ0
µδ

0
ν− 1

2
gµν

)
ψ+
Aψ

A. (8.119)

In particular the Hamiltonian density is given by:

κH[A] ≡ κT
[A]
00 = i

m[A]c

~ ψ+
Aγ0ψ

A
,0 + 1

210
Λψ+

Aψ
A. (8.120)

Now from Dirac equation we may solve:

γ0ψ
A
,0 = −γiψA,i −

im[A]c

~ ψA, (8.121)

which we substitute into (8.120) obtaining, at the end:

κH =
m[A]c

~ ψ+
A

(
− iγiψA,i +

m[A]c

~ ψA
)

+ 1
210
Λψ+

Aψ
A. (8.122)

8.4.3 Geometry Contributions to Dark Matter and Energy

We are know able to evaluate explicitly the contributions to dark matter
and dark energy arising from the extra space dimensions of space-time.
We start from the last two eqs in (8.41), i.e.:

κ
(
%<ex>vac + %<ex>mat

)
c2 = −34

35
Λ− κ%[f ]c2, (8.123)
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κ
(
℘<ex>vac + ℘<ex>mat

)
= 34

35
Λ+ κ℘[f ], (8.124)

and replace %[f ]c2, ℘[f ], which represent the total mass-energy and pressure
densities contributions of all the non-gravitational fields and all particles,
with their values, which thanks to (8.86) and (8.87) are given by:

κ%[f ]c2 = 1
c2

∑
p,s ω

2
[s] + 1

210
Λ, (8.125)

κ℘[f ] = 1
3

∑
p,s

(
ω2

[s]

c2
−

m2
[s]
c2

~2

)
+ 1

210
Λ. (8.126)

After substitution we obtain:

κ
(
%<ex>vac + %<ex>mat

)
c2 = −41

42
Λ− 1

c2

∑
p,s ω

2
[s], (8.127)

κ
(
℘<ex>vac + ℘<ex>mat

)
= 41

42
Λ+ 1

3

∑
p,s

(
ω2

[s]

c2
−

m2
[s]
c2

~2

)
. (8.128)

We recognize in the terms involving the cosmological constant the
vacuum contributions arising because of the extra space dimensions:

κ%<ex>vac c2 = −41
42
Λ, (8.129)

κ℘<ex>vac = 41
42
Λ, (8.130)

and in the remaining terms:

%<ex>mat

)
c2 =

∑
p,s ω

2
[s], (8.131)

℘<ex>mat

)
= 1

3

∑
p,s

(
ω2

[s]

c2
−

m2
[s]
c2

~2

)
, (8.132)

the contributions arising from matter-energy residing in the extra space.

8.5 Geodesics and Particle Charges

Let us now consider a geodesic path in the extended space-time V 16

described by the parametric equations:
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xµ̄ ≡ xµ̄(t), (8.133)

and the tangent vector:

uµ̄ =
dxµ̄

dt
, µ̄ = 0, 1, · · · , 15. (8.134)

The equation of a light-like geodesic in V 16, writes:

duµ̄

d š
+ Γ µ̄

ᾱ ν̄ u
ᾱuν̄ = 0. (8.135)

According to the previous results – see chapter 6, eq (6.67) – we know
that:

Γ µ̄
ᾱ ν̄ = γ̄ µ̄ᾱ ν̄ − 1

2

(
a

(s)
ᾱ f µ̄(s)ν̄

+ f µ̄(s)ᾱ
a

(s)
ν̄

)
.

From which it follows:
duµ̄

dt
= −γ̄ µ̄ᾱ ν̄ uᾱuν̄ + 1

2

(
a

(s)
ᾱ f µ̄(s)ν̄

+ f µ̄(s)ᾱ
a

(s)
ν̄

)
uᾱuν̄ . (8.136)

And thanks to symmetries:

duµ̄

dt
= −γ̄ µ̄ᾱ ν̄ uᾱuν̄ + uᾱ a

(s)
ᾱ f µ̄(s)ν̄

uν̄ . (8.137)

Introducing the notations:

gµ̄ = −γ̄ µ̄ᾱ ν̄ uᾱuν̄ , E µ̄(s) = −f µ̄(s)ν̄u
ν̄ , e(s) = −m[s]u

ᾱa
(s)
ᾱ , (8.138)

we arrive at the law of wave-particle geodesic motion, related to the
partially reduced connection:

duµ̄

dt
= gµ̄ +

e(s)

m[s]

E µ̄(s), (8.139)

where gµ̄ is interpreted as gravity acceleration field (dark matter
contribution included), E µ̄(s) as the electric counterpart force of
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electro-weak and gluon fields, e(s) as the respective charge and m[s] as the
traveling wave-particle mass.

In general, e(s) as defined by (8.138) is not a constant. Actually we know
that each wave-particle (boson or fermion) is represented by a solution for
a potential a(σ̄ )

µ̄ of the field equations. Then eq (8.138) is to be written,
properly, as:

e
(s)
[σ̄ ] = −~kᾱ[σ̄ ]a

(s)
ᾱ , (8.140)

since:
pᾱ[σ̄ ] = m[σ̄ ]u

ᾱ
[σ̄ ], (8.141)

and:
pᾱ[σ̄ ] = ~kᾱ[σ̄ ], (8.142)

thanks to De Broglie and Einstein-Planck relations. In correspondence to
solutions (8.46) the charge becomes:

e(s) = −~kᾱ[s]c[s]δ
(s)
ᾱ eik

[sᾱ ]
ᾱ xᾱ . (8.143)

Each particle is actually localized (maximum probability of presence) on
the wave-front of equation:

k
[sᾱ ]
ᾱ xᾱ = 0, (8.144)

on which the charge assumes the constant value:

e(s) = −~kᾱ[s]c[s]δ
(s)
ᾱ ≡ −~k

s
[s]c[s]. (8.145)

We remember that the dimensional constants required to fit the standard
systems of measure units (M.K.S. or c.g.s., or other) have been implicitly
included within a

(s)
ᾱ , f

(s)
µ̄ ν̄ . Then also the unit of measure of the charges

here is not the usual one. Of course, when required it always possible
to restore the conventional unit system, introducing suitable dimensional
constant factors.
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If, e.g., the s-th extra-component of the momentum ps[s] = ~ks[s] is
interpreted as related to the particle rest mass term m[s]:

ps[s] ≡ ~k s[s]c[s] = c[s]m[s]c, (8.146)

the charge becomes:
e(s) = −c[s]m[s]c. (8.147)

Compactification of the extra co-ordinates could lead to the
quantization of charges and the consequent well known mass gap (see
[25]) could probably be avoided assuming that the compactification path
is not a circle but a curve of higher length, as e.g., a fractal path (see [29]).
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Chapter 9

A Way to Quantum Gravity?

Abstract
In this last chapter, after quantizing the non-gravitational spinor fields,
we show also a way leading to quantization of the gravitational field in
correspondence to a cosmological solution. The present approach arises
just from the assumption that the fundamental fields (including gravity) are
the eigenvectors of the metric tensor in a multidimensional space-time.





Chapter 9 A Way to Quantum Gravity?

9.1 Introduction

In the previous chapter we have evaluated the energy-momentum tensor
of the non-gravitational fields a(s)

µ̄ , s = 4, 5, · · · , 15, in correspondence
to the diagonal metric (8.7) which generalizes to V 16 the cosmological
Robertson-Walker metric of the physical space-time V 4. In particular we
have found representations both in terms of components and in terms of
spinors.

But nothing was said about the energy-momentum of the gravitational
field in V 4, the latter field being embodied within the geometry of the
space-time manifold.

So also quantization of gravity seems to be prevented at least following
a way similar to the electromagnetic or other interaction fields.

In the present chapter we want just to attack the problem of field
quantization. First of all we quantize the fermion fields and then, we
propose a natural way to quantization of the gravitational field itself.

9.2 Quantization of the Fermion Fields

The diagonal metric solution we examined in the previous chapter 8
allows for the non-gravitational field a

(s)
µ̄ , only the non-vanishing

components a(s)
k , which are related to fermions.

Quantization can be performed as usual starting from their Hamiltonian
densities, equal to the T [s]

00 components of their energy-momentum tensor.

In correspondence to the cosmological solution examined in the previous
chapter we have, in presence of more particles – see eqs (8.86) and (8.93)
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– the following Hamiltonian density:

H[s] = 1
c2κ

∑
p

(
ω2

[sp] + 1
210
Λc2
)
|c[s]|2. (9.1)

Then the total Hamiltonian in a region D of the space, of volume V
results by integration of the Hamiltonian density over the volume of the
domain D, i.e.:

H [s] = 1
c2κ

∫
D

∑
p

(
ω2

[s]p + 1
210
Λc2
)
|c[s]|2

√
|g[3]| d3x ≡

≡ V
c2κ

(
ω2

[s]p + 1
210
Λc2
)
|c[s]|2. (9.2)

Conveniently we replace the coefficients c[s] with a combination of two
other coefficients b[s]p, d[s]p (and their complex conjugates), defined by:√

V
c2κ

(
ω2

[s]p + 1
210
Λc2
)
c[s] =

=
√

1
2
~ω[s]p

[(
b∗[s]p + b[s]p

)
+ i
(
d[s]p − d∗[s]p

)]
, (9.3)

so that the square modulus results:

V
c2κ

(
ω2

[sp] + 1
210
Λ
)
|c[s]|2 = 1

2
~ω[s]

[(
b[s]p

)2
+
(
b∗[s]p
)2

+

+2b∗[s]pb[s]p +
(
d[s]p)

2 +
(
d∗[s]p

)2 − 2d[s]pd
∗
[s]p

]
. (9.4)

Then the Hamiltonian becomes:

H [s] = 1
2

∑
p

~ω[sp]

[(
b[s]p

)2
+
(
b∗[s]p
)2

+

+2b∗[s]pb[s]p +
(
d[s]p)

2 +
(
d∗[s]p

)2 − 2d[s]pd
∗
[s]p

]
. (9.5)

Quantization is obtained by replacing the arbitrary coefficients b[s], d[s]

by the creation and annihilation fermion operators:

b[s]p −→ b [s]p, d[s]p −→ d [s]p, (9.6)
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which fulfill the anti-commutation relations:

{b [r]p,b [s]q} = 0, {d [r]p,d [s]q} = 0, (9.7)

{b [r]p,b∗[s]q} = δrsδpq I, {d [r]p,d∗[s]q} = δrsδpq I. (9.8)

Because of anti-commutation laws (9.7) each squared operator results to
be null and the Hamiltonian operator becomes:

H [s] =
∑

p ~ω[s]p

(
b+

[s]pb [s]p − d [s]pd+
[s]p

)
. (9.9)

And thanks to (9.8) it becomes:

H [s] =
∑

p ~ω[s]p

(
b+

[s]pb [s]p + d+
[s]pd [s]p − I

)
. (9.10)

Summation over s gives the total Hamiltonian operator of all the non
gravitational fields:

H [f ] =
∑

s

∑
p ~ω[s]p

(
b+

[s]pb [s]p + d+
[s]pd [s]p − I

)
, (9.11)

which is the known Hamiltonian of the quantized Dirac fields.

9.3 Energy-Momentum Tensor of Gravitational Field

In the present section we investigate a way to obtain an interpretation of
the Einstein tensor as equivalent to the energy-momentum tensor of
gravitational fields (labelled by [G]), in order to be able to quantize the
gravitational field itself in a natural manner.

Let us start considering the Einstein field equations in the physical
space-time V 4, in presence of external fields:

R<4>
µν − 1

2
R<4>gµν − Λgµν = κT [F ]

µν . (9.12)
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And let us introduce the notation:

κT [G]
µν = −R<4>

µν + 1
2
R<4>gµν + Λgµν . (9.13)

We can interpret in a natural way T [G]
µν as the energy-momentum tensor of

the gravitational field and write now the Einstein equations as an energetic
balance between the gravitational and non-gravitational fields:

T [G]
µν + T [F ]

µν = 0, (9.14)

instead of embedding gravity within the geometry of space-time.

In particular from the calculations developed in chapter 8 we are able to
evaluate T [G]

µν in correspondence to the Robertson-Walker metric.

In fact we have:

κT
[G]
00 = − 3ȧ(t)2

c2a(t)2
+ Λ|cg|2 ≡ − 3

105
Λ|cg|2 + Λ|cg|2 ≡ 34

35
Λ|cg|2, (9.15)

κT
[G]
11 = −

[
− 2ä(t)

c2a(t)
− ȧ(t)2

c2a(t)2
+ Λ|cg|2

]
a(t)2 ≡

≡ −
(
− 3

105
Λ|cg|2 + Λ|cg|2

)
a(t)2 ≡ −34

35
Λ|cg|2a(t)2, (9.16)

κT
[G]
22 = −

[
− 2ä(t)

c2a(t)
− ȧ(t)2

c2a(t)2
+ Λ|cg|2

]
a(t)2r2 ≡

≡ −
(
− 3

105
Λ|cg|2 + Λ|cg|2

)
a(t)2r2 ≡ −34

35
Λ|cg|2a(t)2r2, (9.17)

κT
[G]
33 = −

[
− 2ä(t)

c2a(t)
− ȧ(t)2

c2a(t)2
+ Λ|cg|2

]
a(t)2r2 sin2 θ ≡

≡ −
(
− 3

105
Λ|cg|2 + Λ|cg|2

)
a(t)2 ≡ −34

35
Λ|cg|2a(t)2r2 sin2 θ. (9.18)

In order to consider what happens in presence of more gravitons we
introduce a coefficient cpg for each graviton and we choose cg .
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We define:
|cg|2 =

∑
p|cgp|

2. (9.19)

Then the total energy-momentum tensor for the gravitational field will
result:

κT
[G]
00 = 34

35

∑
pΛ|cgp|

2,

κT
[G]
11 = −34

35

∑
pΛ|cgp|

2a(t)2,

(9.20)

κT
[G]
22 = −34

35

∑
pΛ|cgp|

2a(t)2r2,

κT
[G]
33 = −

∑
pΛ|cgp|

2a(t)2r2 sin2 θ.

Now we can identify:

κ%[G]c2 = 34
35
Λ, κ℘[G] = −34

35
Λ, (9.21)

as the energy and pressure densities of the gravitational field as observed
in V 4, which include both visible and dark contributions, pressure being
here negative as a consequence of gravitational attraction. Of course the
energy and pressure densities of the gravitational field are equal and
opposite in sign respect to the mass-energy and pressure densities %, ℘
given by (8.36), (8.37) arising from the non-gravitational fields, so that
the balance of gravity and non-gravitational fields is exactly zero.

9.4 Quantization of the Gravitational Field

Let us now examine the Hamiltonian density of the gravitational field,
which is given by the T [G]

00 component of the energy-momentum tensor we
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have just evaluated:
H[G] = 34

35
1
κ

∑
pΛ|cgp|

2. (9.22)

Integrating on a space region D of volume V we get the total
Hamiltonian of the gravitational field enclosed within this region:

H [G] =

∫
D
H[G]

√
|g|d3x = 34

35
V
κ

∑
pΛ|cgp|

2. (9.23)

Note that ifD is assumed to be the whole universe at instant t the volume
becomes time dependent.

Now we introduce the frequencies ω[g]p through the relations:√
34
35
V
κ
Λ cgp =

√
~ω[g]p a[g]p. (9.24)

The square modulus yields:

34
35
V
κ
Λ|cgp|2 = 1

2
~ω[g]p

(
a∗[g]pa[g]p + a[g]pa∗[g]p

)
. (9.25)

Then the Hamiltonian becomes:

H [G] = 1
2

∑
p ~ω[g]p

(
a∗[g]pa[g]p + a[g]pa∗[g]p

)
. (9.26)

Quantization results by replacing the coefficients a∗[g]p, a[g]p with the
quantum creation and annihilation operators a+

[g]p,a [g]p, by the
correspondence rules:

a∗[g]p −→ a+
[g]p a[g]p −→ a [g]p. (9.27)

The coefficient c[g]p being arbitrary it can always be adjusted in such a
way to fit the right commutation relations for the operators a+

[g]p, a[g]p :

a [g]pa+
[g]p − a+

[g]pa [g]p = I, (9.28)
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thanks to which we obtain:

H [G] =
∑

p ~ω[g]p

(
a+

[g]pa [g]p + 1
2

)
, (9.29)

which provides also for the gravitational field a quantized Hamiltonian in
the usual form known in q.e.d.
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Conclusion

At the end of this book we may simply conclude that we have attempted
to explore some intriguing problems on field unification and particles
theory, with cosmological implications.

A first step was exploited in the part I of the book where we have
proposed a unification of the concepts of particles and waves, based on
the mathematical formal identity of the Hamilton-Jacobi equations
governing the wave front motion and the mechanics of a family of
particles. The relevant consequence of such approach is that unification
implies that all motions, both of waves and particles, take place at the
speed of light c. This circumstance seems to prepare, in some way, the
conceptual unification also of relativity and quantum mechanics. In fact,
according to this scheme, interactions can be included into the metric of
space-time, rather than by a additional potentials which would break the
identity of the Hamiltonians of waves and particles. Not surprisingly, as it
happens in the standard model, when some tight symmetry condition is
required, particles loose a rest mass. Here the strong condition imposing
to waves and particles to travel all at the speed of light destroys their rest
mass, unless an higher dimensional space-time embedding the
experimentally known physical environment is supposed.
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Furthermore, as we have seen in part II of the book, the assumption of
an extended space-time with more than four dimensions provides the
opportunity of unifying all the known fundamental interaction fields
(bosons) within the metric tensor, when the dimension number is raised
up to 16. So the eigenvectors of the metric tensor can be interpreted as
vector potentials of the fundamental interactions. When a suitable gauge
choice in the extra space-time V 16 – which does not affect gauge
invariance within the physical sub-space-time V 4 – is assumed, the
dependence of the fields on the extra co-ordinates xi may be assumed to
affect only the scalar gauge function Φ (which is not an observable), and a
non-vanishing rest mass of the particles arises, which is related to the
mass of the scalar boson governed by Φ. This approach leads to a
mechanism to generate particle mass which is different from the usual
Higgs one, even if it is always based on the existence of a scalar boson.

The fermion fields governing matter particles (leptons, quarks) resulted
automatically included in extra components a

(σ̄ )
l of the metric tensor

eigenvectors.

Remarkably, introducing new auxiliary variables λ(σ̄ )µ̄ , the field
equations could be written by means of an equivalent system in which
also Maxwellian equations appear beside the Einstein equations.

In the last chapters we have examined possible applications of the theory
to cosmology and to quantization of the gravitational field.

More is of course to be developed, e.g., about universe anisotropies
related to dark matter/dark energy, charge quantization, co-ordinate
compactification, possible extended string-like solutions, etc. In any case
the two approaches to wave-particle unification and field unification we
have proposed has appeared to us worthy of being at least partially
explored.
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Appendix A

Non-Linear Wave Propagation
(Non Covariant Theory)

In order to facilitate the reader who is unfamiliar with the topic, here we
present some notes on the elements of non-linear wave propagation theory
we have employed in chapter 2.

A.1 Wave Kinematics

Let us consider a regular function ϕ(t, xī). We can interpret the equation:

ϕ(t, xī) = 0, ī = 1, 2, · · · , n− 1, (A.1)

as the Cartesian equation of a wave-front traveling across space.

Physically it is supposed that something happens to a physical field,
along this wave-front, as we will specify in the next §A.1.2.
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Figure A.1. A traveling wave-front in two dimensions.

Let us now consider some point on the wave-front, related to the initial
condition xī0 and actual position given by the function xī(t).

On a geometrical stand-point the equations:

xī ≡ xī(t), ī = 1, 2, · · · , n− 1, (A.2)

are the parametric equations of the trajectory of some point of the wave-
front, considered as endowed with its own individuality. During motion of
this point we have:

ϕ
(
t, xī(t)

)
= 0. (A.3)

Differentiation respect to time of (A.3) yields:

ϕ, t + ϕ, ī
dx ī
dt

= 0, (A.4)

where:
ϕ, t =

∂ϕ

∂t
, ϕ, ī =

∂ϕ

∂xī
. (A.5)
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A.1.1 Ray and Normal Velocity

The trajectories described by each point of the wave-front are called rays
and the vector of components:

V ī =
dx ī

dt
, (A.6)

is referred to as the ray velocity of the wave in the considered point.

The vector of components ϕ, ī , being the gradient of the function ϕ

respect to the space co-ordinates, is locally orthogonal to the wave-front
manifold at time t. So it results helpful to introduce also the unit vector:

n ī =
ϕ, ī
|∇ϕ|

, |∇ϕ| =
√
−gī k̄ϕ īϕ k̄ , (A.7)

which is defined at any point for which |∇ϕ| 6= 0.

Now, from (A.4) we have soon:

ϕ, t
|∇ϕ|

+ V īnī = 0. (A.8)

Introducing the notation:

λ = − ϕ, t
|∇ϕ|

, (A.9)

we have from (A.8):

λ = V īn ī . (A.10)

Then it results immediate do interpret λ as the normal speed of the wave-
front in each of its points. As we will see λ plays an important role in non-
linear wave theory, since it represents the rate of the wave displacement
across the space.
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A.1.2 A Classification of Waves from an Analytic View-Point

A relevant classification of non-linear waves concerns the analytical
properties of the field function u the waves are solutions to. We
distinguish:

1. Simple waves, when the field u is a regular function of ϕ, i.e.:

u ≡ u(ϕ), (A.11)

and it is assumed that:

ϕ = xīn ī − λ(ϕ)t. (A.12)

Figure A.2. A simple wave traveling along the x axis with normal speed λ = c.

This kind of regular waves represents a generalization to non-linear
wave propagation theory of the plane waves known in linear theory.

2. Discontinuity waves when the directional derivative of the field u,
along n ī (normal derivative) is discontinuous across the wave-front
(weak discontinuity).

3. Shock waves when the field u itself is discontinuous across the wave-
front (strong discontinuity).
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Figure A.3. A discontinuity wave traveling along the x axis.

Figure A.4. A shock wave traveling along the x axis.

A.2 Wave Dynamics

Until now we have considered some elements of the kinematics
describing wave motion, i.e., the evolution of the wave-front across the
space.

Now we want to say something about the wave dynamics concerning the
field equations governing the filed u, the waves are solutions to.
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A.2.1 Qausi-Linear Systems

We start observing that the most general system of N non-linear first
order partial differential equations, for the field unknowns u ≡ (uJ),
J = 1, 2, · · · , N , assumes the following form:

FI

(
∂uJ
∂t

,
∂uJ
∂xī

, uJ , t, x
ī

)
= 0, I, J = 1, 2, · · · , N. (A.13)

We remember that any system of higher order equations may be always
reduced to a system of first order equations, provided that new variables
and equations are added to the system.

When FI is a differentiable function, as it generally happens for physical
fields and (A.13) holds at the initial time (say t = t0), the previous system
results to be equivalent to a new one which is linear respect to all first order
derivatives.

In fact, differentiating (A.13) respect to t, we obtain:

∂FI
∂vJ

∂vJ
∂t

+
∂FI
∂wJī

∂wJī
∂t

+
∂FI
∂uJ

∂uJ
∂t

+
∂FI
∂t

= 0, (A.14)

where we have introduced the notations:

vJ =
∂uJ
∂t

, wJi =
∂uJ
∂xi

. (A.15)

Now, thanks to Schwarz condition, we can write the new equivalent
system as:

∂FI
∂vJ

∂vJ
∂t

+
∂FI
∂wJī

∂vJ
∂xī

= −∂FI
∂uJ

vJ −
∂FI
∂t

, (A.16)

∂uJ
∂t

= vJ , (A.17)

∂wJī
∂t
− ∂vJ
∂xī

= 0, (A.18)
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F |t=t0 = 0. (A.19)

Since FI does not involve the derivatives of vJ , wJi, the system results
to be linear respect to such derivatives.

A system of partial differential equations involving higher order
derivatives of the field variables at most linearly is said to be a
quasi-linear system. Its general form is given by:

A0 u, t + A ī u, ī = f , u, t =
∂u
∂t
, u, ī =

∂u
∂xī

. (A.20)

The matrices A0,A ī and the vector f , may be functions of the field u ≡
u(t, xī) and t, xī .

A.2.2 Systems of Balance Laws

A physically relevant special case of quasi-linear systems is offered by
the systems of balance laws. Such systems enjoy the property that the
coefficient matrices assume the form of gradients respect to the field
variables. Now when:

A0 =
∂ f 0

∂u
, A ī =

∂ f ī

∂u
, (A.21)

f 0, f ī being differentiable functions of the field u and possibly of t, xī , the
system of field equations assumes the form of a set of balance laws:

f 0
, t + f ī, ī = f . (A.22)

A.2.3 Lagrangian Systems

The Lagrangian systems represent a class of very relevant systems of
balance laws, in physical field theories. If we consider some field φ (which
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may be a scalar, or a vector or a tensor of any rank), which is governed by a
Lagrangian density L(φ, φ, t, φ, ī), yielding the Euler-Lagrange equations:

∂

∂t

(
∂L
∂φ, t

)
+

∂

∂xī

(
∂L
∂φ, ī

)
=
∂L
∂φ

, (A.23)

we can reduce (A.23) to a system of first order equations:

∂

∂t

(
∂L
∂v

)
+

∂

∂xī

(
∂L
∂wī

)
=
∂L
∂φ

, (A.24)

∂wī
∂t
− ∂v

∂xī
= 0, (A.25)

∂φ

∂t
= v, (A.26)

which assumes also the compact form (A.22) if we set:

f 0 =



∂L
∂ v

wj̄

φ

 , f ī =



∂L
∂wi

−δij v

0

 , f =



∂L
∂φ

0

v

 . (A.27)

We emphasize that when the Lagrangian density depends only on the
derivatives of the field φ the system assumes the simpler form of a set of
conservations laws involving the only field variables v, wj̄ .

In the latter case the last condition is unnecessary and we have simply:

f 0 =


∂L
∂ v

wj̄

 , f ī =


∂L
∂wī

−δij v

 , f =

 0

0

 . (A.28)
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A.2.4 Hyperbolic Systems

In order that the waves related to some field variable travel with real and
finite normal speeds, so that a field theory may be consistent with relativity,
it is required that the system of field equations is hyperbolic.

A quasi-linear system (A.20) is said to be hyperbolic if and only if the
two following conditions are fulfilled:

1. The matrix A0 is non-singular, i.e.:

det A0 6= 0, (A.29)

2. The generalized eigenvalue problem:(
An − λA0

)
d = 0, An = A ī nī , (A.30)

allows only real eigenvalues and a basis of eigenvectors, for any
choice of the unit vector of components n ī .

A.2.5 Simple Waves

Here we limit ourselves to consider only the essential features of the
simple waves, which are enough for the purposes of the present book,
therefore we will not deal with neither discontinuity waves nor shock
waves.

Let us consider a hyperbolic system of quasi-linear equations with
vanishing production term f :

A0u, t + A īu, ī = 0. (A.31)
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It follows that the system (A.31) is fulfilled by a class of regular solutions
which exhibit the form of simple waves, i.e.:

u ≡ u(ϕ), ϕ = xn − λ(ϕ)t, xn = xī n ī . (A.32)

Note that the definition of ϕ, in the non-linear case, becomes an implicit
definition, since λ is, in its turn, a function of ϕ, being dependent on u(ϕ),
as the matrix of which it is an eigenvalue.

In fact, by direct calculation we have:

u, t = u,ϕϕ, t, u, ī = u,ϕϕ, ī , u,ϕ =
∂u
∂ϕ

. (A.33)

Now the derivatives of ϕ = xn − λ(ϕ)t result to be:

ϕ, t = − λ

1 + λ,ϕ t
, ϕ, ī =

nī
1 + λ,ϕ t

. (A.34)

Substitution into (A.31) leads to:

(An − λA0) u,ϕ = 0. (A.35)

We conclude that:

1. Simple waves propagate with normal speeds λ given by the
eigenvalues of the problem (A.35) and their amplitudes have normal
derivatives u,ϕ which are eigenvectors of the same problem.

2. Hyperbolicity of the system of field equations ensures that their
normal speeds are real finite quantities.

3. Finally we observe that it is possible to provide an operational rule
to obtain directly the eigenvalue problem (A.35), starting from the
system of differential equations (A.31).
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The latter rule is given by the correspondence:

∂

∂t
−→ −λ ∂

∂ϕ
,

∂

∂xī
−→ ni

∂

∂ϕ
, (A.36)

avoiding to evaluate explicitly the coefficient matrices in order to obtain
their eigenvalues and eigenvectors.
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Appendix B

Non-Linear Wave Propagation
(Covariant Theory)

In this appendix we present an outline of the elements of non-linear wave
propagation theory in an explicitly covariant formulation.

B.1 Wave Kinematics

Let us consider a regular function ϕ(xᾱ). We can interpret the equation:

ϕ(xᾱ) = 0, ᾱ = 0, 1, 2, · · · , n− 1, (B.1)

as the Cartesian equation of a wave-sheet living in space-time, which may
be thought of as the world sheet swept by a wave-front as some
evolutionary parameter σ increases its value. Physically it is supposed
that something happens to some physical field on this wave-front, as we
will specify in the next §B.2. Let us now consider some point on the
wave-front, related to an actual position given by the function xᾱ(σ) with
xᾱ(0), when σ = 0. On a geometrical stand-point the equations:

xᾱ ≡ xᾱ(σ), ᾱ = 0, 1, 2, · · · , n− 1, (B.2)

are the parametric equations of the path of some point of the wave-front,
considered as endowed with its own individuality. During motion we have:

ϕ(xᾱ(σ)) = 0. (B.3)

When the wave-sheet is time-like the parameter σ can be chosen as equal
to the proper time multiplied by c (proper length) along the trajectory.
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While light-like paths do not allow a similar choice, the proper time being
null. So σ cannot be chosen in such a way that it is a V n invariant scalar.

Differentiation respect to σ of (B.3) yields:

ϕ, ᾱ
dx ᾱ

dσ
= 0, (B.4)

where:
ϕ, ᾱ =

∂ϕ

∂xᾱ
. (B.5)

B.1.1 Ray Velocity

The vector of components:

V ᾱ =
dx ᾱ

dσ
, (B.6)

is referred to as the ray velocity of the wave in the considered point.

The vector of components ϕ, ᾱ , being the gradient of the function ϕ

respect to the space co-ordinates, is orthogonal to the wave-sheet
manifold at the point xᾱ(σ). So it results helpful to introduce also the unit
vector:

n ᾱ =
ϕ ᾱ√∣∣gᾱ β̄ϕ ᾱϕ β̄ ∣∣ , (B.7)

which is defined at any point for which gᾱ β̄ϕ ᾱϕ β̄ 6= 0.

Now, from (B.4) we have soon:

V ᾱϕ, ᾱ = 0. (B.8)

And:
V ᾱnᾱ = 0. (B.9)
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Manifestly the normal velocity becomes identically vanishing when
evaluated by contraction with nᾱ . So its introduction becomes useless.

If desired it may be defined anyway, even within a covariant formulation
of the theory, respect to any time direction τ ᾱ which is different from V ᾱ ,
thanks to the decomposition (covariant Lorentz transformation):

V ᾱ =
τ ᾱ − λ

c
νᾱ√

1− λ2

c2

, nᾱ =
νᾱ − λ

c
τᾱ√

1− λ2

c2

, (B.10)

where:

τ ᾱ τᾱ = 1, νᾱ νᾱ = −1, τ ᾱ νᾱ = 0. (B.11)

It follows:

λ = c
V ᾱνᾱ√

1 + (V ᾱνᾱ)2
, (B.12)

and also:

λ = −c τ ᾱ nᾱ√
1 + (τ ᾱ nᾱ)2

. (B.13)

B.1.2 A Classification of Waves from an Analytic View-Point

A relevant classification of non-linear waves concerns the analytical
properties of the field function u the waves are solutions to. We
distinguish:

1. Simple waves when the field u is a regular function of ϕ, i.e.:

u ≡ u(ϕ), (B.14)

and it is assumed that:

ϕ = V ᾱ x
ᾱ . (B.15)
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This kind of regular waves represents a generalization to non-linear
wave propagation theory of the plane waves known in linear theory.

2. Discontinuity waves when the directional derivative of the field u,
along ϕ, ᾱ (normal derivative) is discontinuous across the wave sheet
(weak discontinuity).

3. Shock waves when the field u itself is discontinuous across the wave
front (strong discontinuity).

B.2 Wave Dynamics

Until now we have considered some elements of the kinematics
describing wave motion, i.e., the evolution of the wave-sheet across the
space. Here we want to say something about the wave dynamics
concerning the field equations governing the filed u, the waves are
solutions to.

B.2.1 Qausi-Linear Systems

A system of partial differential equations involving higher order
derivatives of the field variables at most linearly is said to be a
quasi-linear system. Its more general covariant form is given by:

A ᾱ u, ᾱ = f , u, ᾱ =
∂u
∂xᾱ

. (B.16)

The matrices A ᾱ and the vector f , may be functions of the field
u ≡ u(xᾱ) and possibly xᾱ .

We point out that the partial derivatives may always be replaced by
covariant derivatives, if required, since the additional contributions arising
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from the connection coefficients do not involve the derivatives of the
components of the field u, but only the field itself. Therefore they simply
contribute to modify the production term f . In that case the quasi-linear
system assumes the form:

A ᾱ u; ᾱ = f̂ , f̂ = f + ∆f(u), ∆f(u) = u; ᾱ − u, ᾱ . (B.17)

B.2.2 Systems of Balance Laws

A physically most relevant special case of quasi-linear systems is
offered by the systems of balance laws. Such systems enjoy the property
that the coefficient matrices assume the form of gradients respect to the
field variables, i.e.:

A ᾱ =
∂ f ᾱ

∂u
, (B.18)

f ᾱ being differentiable functions of the field u and possibly of xᾱ . Then
the system of field equations assumes the compact form:

f ᾱ, ᾱ = f . (B.19)

When the covariant derivatives are required it becomes:

f ᾱ; ᾱ = f̂ . (B.20)

B.2.3 Lagrangian Systems

The Lagrangian systems represent a class of most relevant systems of
balance laws, in physical field theories.

If we consider some field φ (which may be a scalar, or a vector or a
tensor of any rank), which is governed by a Lagrangian density L(φ, φ,α),
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yielding the Euler-Lagrange equations:( ∂L
∂φ, ᾱ

)
, ᾱ

=
∂L
∂φ

, (B.21)

we can reduce (B.21) to a system of first order equations:( ∂L
∂wᾱ

)
, ᾱ

=
∂L
∂φ

, (B.22)

wᾱ , β̄ − wβ̄ , ᾱ = 0, (B.23)

which assumes also the compact form (B.19) if we set:

f ᾱ =


∂L
∂wᾱ

gᾱ γ̄ wβ̄ − gᾱ β̄ wγ̄

 , f =


∂L
∂φ

0

 . (B.24)

When the Lagrangian density depends only on the derivatives of the field
φ the system assumes the form of a system of conservations laws ( f = 0).

B.2.4 Hyperbolic Systems

In order that the waves related to some field variable travel with real and
finite normal speeds, so that a field theory is consistent with relativity, it is
required that the system of field equations is hyperbolic.

A quasi-linear system (B.16) is said to be hyperbolic along the time
direction defined by a time-like congruence τᾱ if and only if the two
following conditions are fulfilled:

1. The matrix A ᾱ τᾱ is not singular, i.e.:

det
(
A ᾱ τᾱ

)
6= 0, (B.25)
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2. The generalized eigenvalue problem:(
νᾱ − λ

c
τᾱ

)
A ᾱd = 0, (B.26)

allows only real eigenvalues and a basis of eigenvectors, for any
choice of the unit vector of components n ᾱ .

We observe that, thanks to (B.7) and (B.10), eq. (B.26) is equivalent to
the more compact forms:

ϕ, ᾱA ᾱd = 0, (B.27)

or:
nᾱA ᾱd = 0. (B.28)

B.2.5 Simple Waves

Let us consider a hyperbolic system of quasi-linear equations with
vanishing production term f :

A ᾱu, ᾱ = 0. (B.29)

It follows that the system (B.29) is fulfilled by a class of regular solutions
which exhibit the form of simple waves, i.e.:

u ≡ u(ϕ), ϕ = nᾱ x
ᾱ . (B.30)

In fact, by direct computation we have:

u, ᾱ = u,ϕϕ, ᾱ , u,ϕ =
∂u
∂ϕ

. (B.31)

Now the derivatives of ϕ = nᾱ x
ᾱ result to be:

ϕ, ᾱ =
nᾱ

1 + nβ̄ ,ϕ x
β̄
, (B.32)
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since nα is in its turn a function of ϕ. Substitution into (B.29) leads to:

ϕ, ᾱA ᾱu,ϕ = 0. (B.33)

We conclude that:

1. Simple waves propagate with normal speeds λ given by the
eigenvalues of the problem (B.27) and their amplitudes have normal
derivatives u,ϕ which are eigenvectors of the same problem.

2. Hyperbolicity of the system of field equations ensures that their
normal speeds are real finite quantities.

3. Finally we observe that it is possible to provide an operational rule
to obtain directly the eigenvalue problem (B.27), starting from the
system of differential equations (B.29). The latter rule is given by the
correspondence:

∂

∂xᾱ
−→ ϕ, ᾱ

∂

∂ϕ
, (B.34)

avoiding to evaluate explicitly the coefficient matrices in order to
obtain their eigenvalues and eigenvectors.

Science Publishing Group 189



Wave-Particles Suggestions on Field Unification Dark Matter and Dark Energy

Appendix C

Covariant Hamiltonian Mechanics

In this appendix we present some notes on covariant Lagrangian and
Hamiltonian formulation of relativistic particle dynamics which can
include also the massless particle case.

C.1 Covariant Lagrangian of a Particle

Let S be a scalar action integral governing the dynamics of a relativistic
particle:

S =

∫ σ2

σ1

Ldσ, (C.1)

where:

L = 1
2
Kgµ̄ ν̄ ẋµ̄ ẋν̄ , (C.2)

dot denoting, here, the derivative respect to the parameter σ, which maps
the position xᾱ(σ) of some particle in space-time and K being an arbitrary
dimensional constant.

1. When the particle rest mass m is non-vanishing, one can choose σ
equal to the particle proper time multiplied by the speed of light c
(proper length) and K equal to mc2 so that L has the physical
dimension of an energy and it is a covariant scalar.

2. In the limiting case when the particle has zero rest mass, σ cannot be
identified with proper time which is null, and cannot be a V n scalar
parameter. For instance it can be chosen equal to the proper time in
V 4 if this latter is non-vanishing. In this case it results invariant under
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general transformations of the co-ordinates x0, x1, x2, x3, being a V 4

scalar.

Or it may be defined by the local time co-ordinate x0 = ct. In any
case the time co-ordinate x0 can be always re-scaled in such a way
that it results g00 = 1 in any co-ordinate frame. So σ will result to be
a scalar respect to any co-ordinate change preserving the condition
g00 = 1, leaving arbitrary the remaining components of the metric
tensor.

The Lagrange motion equation of the particle:

d
dσ

∂L

∂ẋᾱ
− ∂L

∂xᾱ
= 0, (C.3)

being:
∂L

∂ẋᾱ
= K ẋᾱ ,

∂L

∂xᾱ
= 1

2
Kgµ̄ ν̄ , ᾱ ẋµ̄ ẋν̄ , (C.4)

assumes the explicit form:

ẍᾱ − 1
2
gµ̄ ν̄ , ᾱ ẋ

µ̄ ẋν̄ = 0. (C.5)

The latter equation is equivalent to the geodesic condition:

dẋᾱ
dσ
− Γ µ̄

ᾱ ν̄ ẋµ̄ ẋ
ν̄ = 0, (C.6)

being:
Γ µ̄
ᾱ ν̄ = 1

2
g µ̄ ρ̄ (gᾱ ρ̄ ,ν̄ + gν̄ ρ̄ , ᾱ − gᾱ ν̄ , ρ̄) . (C.7)

C.2 Covariant Hamiltonian

The Hamiltonian is the Legendre transform of the Lagrangian, i.e.:

H = pᾱ ẋ
ᾱ − L, (C.8)
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with the conjugate canonical momentum:

pᾱ =
∂L
∂ẋᾱ

. (C.9)

It follows:
H =

1

2K
g µ̄ ν̄ pµ̄ pν̄ , (C.10)

resulting:

ẋᾱ =
1

K
pᾱ . (C.11)

This formulation has the advantage of being explicitly covariant when
m 6= 0 and to hold, in any case also if m = 0.

When the particle has non-vanishing rest mass, H is a covariant scalar.

Then the canonical Hamilton equations:

ṗᾱ = − ∂H
∂xᾱ

, ẋᾱ =
∂H

∂pᾱ
, (C.12)

become:
ṗᾱ = − 1

2K
g µ̄ ν̄, ᾱ pµ̄ pν̄ , ẋᾱ =

1

K
gᾱ µ̄ pµ̄ . (C.13)

192 Science Publishing Group



References
[1] ATLAS Collaboration (2012). Observation of a new particle in the

search for the Standard Model Higgs boson with the ATLAS detector
at the LHC, Phys. Lett., 716B, pp. 1-29.

[2] Barger, V., Ishida, M. and Keung, Wai-Yee (2012). Differentiating
the Higgs Boson from the Dilaton and Radion at Hadron Colliders.
Phys. Rev. Lett., 108, pgs101802-809.

[3] Brans, C. and Dicke, R. H. (1961). Mach’s Principle and a
Relativistic Theory of Gravitation.Phys. Rev., 124, pp. 925-935.

[4] Bohm, D. (1952). A Suggested Interpretation of the Quantum Theory
in Terms of “Hidden” Variables. I. Phys. Rev., 85, pp. 166-193.

[5] Bohr, N. (1999). The Philosophical Writings of Niels Bohr, vol. VI:
Causality and Complementarity, (Faye, J and Folse, H.J. eds), Ox
Bow Press, Woodbridge (CT).

[6] Boillat, G. (1970). Nonlinear Electrodynamics: Lagrangians and
Equations of Motion J. Math. Phys., 11, pp. 941-951.

[7] Boillat, G. (1974). Covariant disturbances and exceptional waves, J.
Math. Phys, 14, pp. 973-976.

[8] Boillat, G. (1996). Nonlinear hyperbolic fields and waves, Lecture
Notes in Mathematics, vol. 1640, edited by Ruggeri, T., Springer-
Verlag, Berlin-Heidelberg-New York, pp. 1-47.

[9] Boillat, G. and Strumia, A. (1999). On the Born-Infeld electron, J.
Math. Phys., 40, pp. 1-11.

[10] Boozer, A.D. (2011). Classical Yang-Mills Theory, Am. J. Phys., 79,
pp. 925-931.



Wave-Particles Suggestions on Field Unification Dark Matter and Dark Energy

[11] Chacko, Z., Franceschini, R. and Mishra, R.K. Resonance at 125
GeV: Higgs or Dilaton/Radion?, hep-ph, arXiv:1209.3259.

[12] CMS Collaboration (2012). Observation of a new boson at a mass of
125 GeV with the CMS experiment at the LHC, Phys. Lett., 716B,
pp. 30-61.

[13] De Broglie, L. (1965). Nobel Lectures in Physics 1922-1941, Elsevier
Publ. Co., Amsterdam, pp. 244-256.

[14] Dirac, P.A.M. (1928). The quantum theory of the electron, Proc. R.
Soc. (London), 117, pp. 610-612.

[15] Dirac, P.A.M. (1928). The quantum theory of the electron. Part II,
Proc. R. Soc. (London), 118, pp. 351-361.

[16] Englert, F. and Brout, R. (1964). Broken Symmetry and the Mass of
Gauge Vector Mesons, Phys. Rev. Lett., 13, pp. 321-322.

[17] Garrod, C. (1968). Covariant Hamiltonian Dynamics with
Interactions, Phys. Rev. 167, pp. 1143-1145.

[18] Goenner, H.F.M. (2004). On the History of Unified Field Theories,
http://www.livingreviews.org/lrr-2004-2.

[19] Guralnik, G.S., Hagen, C.R. and Kibble, T.W.B. (1964). Phys. Rev.
Lett., 13, pp. 585-587.

[20] Herrereo, H. (1998). The Standard Model, arXiv:hep-ph/9812242.

[21] Higgs, P. (1964). Broken Symmetries and the Masses of Gauge
Bosons, Phys. Rev. Lett., 13, pp. 508-509.

[22] Higgs, P. (1966). Spontaneous symmetry breakdown without
massless bosons, Phys. Rev., 145, pp. 1157-1163.

194 Science Publishing Group



References

[23] Kaluza, Th. (1921). On the problem of unity in physics, Sitzungsber.
Preuss. Akad. Wiss. Berlin (Math. Phys.), 1921, pp. 966-972.

[24] Nakamura, K et al. (2010). Review of Particle Physics, J. Phys. G:
Nucl. Part. Phys., 37A, pp. 1-1422.

[25] Overduin, J.M. and Wesson, P.S. (1997). Kaluza-Klein gravity, Phys.
Rep., 283, pp. 303-378.

[26] Strumia, A. (1983). Main field and symmetric-hyperbolic form of the
Dirac equation, Lettere Nuovo Cimento, 36, pp. 609-613.

[27] Strumia, A. (2006)-a. Wave Propagation and Particle Dynamics,
Rend. Circ. Mat. Palermo, 78II, pp. 313-331.

[28] Strumia, A. (2006)-b. Waves, particles, and field dynamics, J. of
Math. Phys., 47, pp. 083509/1-13.

[29] Strumia, A. (2013). Waves, particles and fields. An explicitly
covariant approach, Ricerche mat, 62, pp. 1-17.

[30] Wesson, P.S. (2003). The 4D Klein-Gordon, Dirac and quantization
equations from 5D null paths, Gen. Rel. Grav., 35, pp. 111-119.

[31] Wesson, P.S. (2006). Wave mechanics and general relativity: a
rapprochement, Gen. Rel. Grav., 38, pp. 937-944.

[32] Yang, C. N. and Mills, R. (1954). Conservation of Isotopic Spin and
Isotopic Gauge Invariance, Phys. Rev., 96, pp. 191-195.

More References

1. Buckley, M.R., Feld, D., and Gon?alves, D. (2015). Scalar simplified models for dark matter,

Phys. Rev., D91, pp. 015017-015035.

Science Publishing Group 195



Wave-Particles Suggestions on Field Unification Dark Matter and Dark Energy

2. Barger, V., Ishida, M. and Keung, Wai-Yee (2012). Differentiating the Higgs boson from the

dilaton and the radion at hadron colliders, http://arxiv.org/abs/1111.4473.

3. Bojowald, M. (2010). Canonical Gravity and Applications. Cosmology, Black Holes, and

Quantum Gravity, Cambridge University Press, Cambridge.

4. Carmeli, M. and Kuzmenko, T. (2001). Value of the Cosmological Constant: Theory versus

Experiment, http://arxiv.org/abs/astro-ph/0102033.

5. Carroll, S.M. (2001). The Cosmological Constant, http://www.livingreviews.org.

6. Grishchuk, L.P. , Petrov, A.N. and Popova, A.D. (1984). Exact Theory of the (Einstein)

Gravitational Field in an Arbitrary Background Space-Time, ?Communications in Commun.

Math. Phys., 94, pp. 379-396.

7. Hsu, J.P. and Sudarshan, E.C.G. (1978). Theory of massive and massless Yang-Mills fields,

Phys. Rev., D9, pp. 1678-1686.

8. Langacker, P. (2003). Structure of the Standard Model, http://arxiv.org/abs/hep-ph/0304186.

9. Lidsey, J.E., David Wands2 and Copeland, E.J. (2000). Superstring Cosmology,

http://arxiv.org/abs/hep-th/9909061.

10. Lyth, D.H. (1993). Introduction to Cosmology, http://arxiv.org/abs/astro-ph/9312022.

11. Norton, J.D. (1993). General covariance and the foundations of general relativity: eight

decades of dispute, Rep. bog. Phys., 56, pp. 791-858.

12. Novosyadlyj, B., Pelykh, V., Shtanov, Yu., Zhuk, A. (2105). Dark Energy: Observational

Evidence and Theoretical Models. arXiv:1502.04177 [astro-ph.CO].

13. Petraki, K. and Volkas, R.R. (2013). Review of asymmetric dark matter,

http://arxiv.org/abs/1305.4939.

14. Porto, R.A. and Zee, A. (2010). Reasoning by analogy: attempts to solve the cosmological

constant paradox, http://arxiv.org/abs/1007.2971.

15. Rodrigues, H. (2014). Modeling compact stars without numerical integration,

http://arxiv.org/abs/1407.5192.

16. Savvidy, G. (2010). Non-Abelian Tensor Gauge Fields, http://arxiv.org/abs/1004.4456.
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